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The task of predicting solar irradiance is critical in the development of renewable energy sources. This research is aimed at
predicting the photovoltaic plant’s irradiance or power and serving as a standard for grid stability. In practical situations,
missing data can drastically diminish prediction precision. Meanwhile, it is tough to pick an appropriate imputation approach
before modeling because of not knowing the distribution of datasets. Furthermore, not all datasets benefit equally from using
the same imputation technique. This research suggests utilizing a recurrent neural network (RNN) equipped with an adaptive
neural imputation module (ANIM) to estimate direct solar irradiance when some data is missing. Without imputed
information, the typical projects’ imminent 4-hour irradiance depends on gaps in antique climatic and irradiation records. The
projected model is evaluated on the widely available information by simulating missing data in each input series. The
performance model is assessed alternative imputation techniques under a range of missing rates and input parameters. The
outcomes prove that the suggested methods perform better than competing strategies when measured by various criteria.
Moreover, combine the methodology with the attentive mechanism and invent that it excels in low-light conditions.

1. Introduction

Using solar photovoltaic (PV) electricity instead of fossil
fuels is an excellent way to reduce civilization’s impact on
the environment. Solar photovoltaic (PV) power plants use
PV modules and inverters to generate electricity from the

sunshine. PV modules, also known as solar panels, are made
up of photovoltaic cells that convert sunlight into electricity
through the photovoltaic effect. These modules are typically
made up of multiple cells that are connected together and
mounted onto a support structure to form an array. By
2050, experts anticipate doubling the world’s installed PV
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capacity [1]. Due to the inherent unpredictability of PV sys-
tems, their rapid evolution makes it difficult for us to use
them effectively. Predicting irradiance with great precision
helps reduce the wasteful use of resources and unnecessary
expenditures. Significant progress has been made since then
in the field of solar irradiance prediction [2–4]. The output
of PV plants can be predicted with high accuracy by focusing
on two variables: global horizontal irradiance (GHI) and
direct normal irradiance (DNI). Finally, GHI can be calcu-
lated using the natural, normal incidence, and solar
angles [5].

The three main methods for predicting irradiance are
those based on physical mechanisms, classical statistical
models, and machine learning. One such physical model is
numerical weather prediction (NWP) [6]. In NWP,
researchers use complex differential equations to simulate
the atmosphere behavior [7]. The findings of such
approaches are valid on a regional scale but do not apply
to local predictions. Time series data from sources like
power plants and weather satellites are crunched by data-
driven methods like statistical modeling and machine learn-
ing to identify features [8, 9].

One of the most popular statistical models is the autore-
gressive integrated moving average model (ARIMA), which
uses data order determination and optimization techniques
to learn the model’s parameters. Approaches like this make
good use of past data and are far simpler to train than conven-
tional physical models [10]. Priority model templates, such as
the linear assumption, introduce bias into learned models that
cause them to distort reality. In recent years, there has been a
significant uptick in using machine learning (ML) techniques
and intense learning in the renewable energy sector. Recurrent
neural networks (RNNs) have effectively tackled sequence pre-
diction challenges. Neural networks can theoretically provide
approximations for any nonlinear function. Thus, model bias
is reduced, and fewer assumptions about the starting model
are needed compared to the prior two approaches. However,
long historical connections might arise from numerical issues
like vanishing gradients [11]. Gate recurrent units (GRUs) and
long-short-term memories (LSTMs) are frequently utilized in
RNNs to get around this problem. Enhancing the outdated
recurrent neural network with forgetting update and output
gates makes it possible for the network to capture a wider vari-
ety of contexts more accurately. These strategies can reduce
the effects of the vanishing gradient problem by extracting
more meaningful information from the sequence [12].

All of the following techniques necessitate a substantial
quantity of raw data. At PV stations, irradiance data and
meteorological parameters can be gathered in two common
approaches [13]. Some of the most common methods are
ground-based weather stations, satellite-based remote sens-
ing, sky imagers, pyranometers and pyrheliometers, and
numerical weather prediction models.

The satellite can first offer approximations of surface
irradiation. The data is more comprehensive but too dis-
persed to be helpful. Therefore, the actual irradiance at a
given location can vary. The ground station radiometer can
deliver the observed data under various conditions [14].
However, there are significant gaps due to communication

and instrumentation breakdowns. Similar openings can be
found in the weather records. Around 50% of solar energy
is lost in actual circumstances [15].

Research into imputation models used during the pre-
processing of data to fill in missing information has been
extensively pursued to make algorithms more useful in prac-
tice [16]. Random sampling, Kalman filters, weighted mov-
ing average (MA), persistence, and interpolation are only
some of the 36 imputation methods covered, along with
their impacts at various temporal frequencies and their
implications for midterm horizontal solar irradiance esti-
mates. Recently, generative adversarial networks (GAN)
have been used in unsupervised imputation algorithms for
photovoltaic (PV) data [17]. These methods can generate
the imputed sequence during the inference phase because
they employ generative models to understand the possible
distribution of the data.

However, some problems with GAV approaches are chal-
lenging to fix. However, PV data is notoriously unreliable and
is intricately connected to the weather. Therefore, conventional
statistical methods typically only address intermittent missing
values and frequently disregard the actual distribution of the
data [18]. Moreover, traditional imputation techniques often
impute missing values using straightforward changes of the
nearest neighbor or history sequence. They will struggle more
when the target changes because of the difficulty in accurately
representing nonlinear, multidimensional data. However, quick
action is essential for short-term irradiance forecasts. Forecast-
ing using an unsupervised technique involves an additional,
time-consuming imputation step [19]. Many parameters
require specific optimization because of the unpredictable
nature of the training process of a generative model, which
necessitates a great deal of time and human effort. Overfitting
can occur if training data imputation is performed with too
much precision, reducing the practical utility of the application.

To include more data and capture any oscillations in the
initial difficulty stated above, more dimensional factors and
nonlinear norms are frequently employed [20–22]. The sec-
ond problem necessitates a plan that simplifies the network
and the process. To tackle these issues, the researcher sug-
gests an imputed GRU (IGRU), a bidirectional gate recur-
rent unit that employs an adaptive neural imputation
module for DNI prediction. Preimputation network and
GRU were combined into a single-stage network [23]. When
there are gaps in data, the preimputation network uses posi-
tional prior and delay techniques to fill them in. Subse-
quently, the completed series is directly encoded instead of
the raw data to generate summary characteristics. This pro-
cess culminates in decoding the created features to recover
the desired series. During the training procedure, prediction
loss is used to fine-tune the GRU and imputation module
weights jointly [24, 25]. As a result, the imputation values
are based on operational procedures. This is the primary dis-
tinction from approaches that fill raw data’s gaps before
modeling. The researcher also added a novel attention mod-
ule to IGRU called attention imputed gate recurrent units
(AIGRU) to help with the high-frequency volatility of irradi-
ance data. The model now pays more attention to higher-
energy information than higher-frequency information.
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The following are the most significant contributions of
the research:

(i) To avoid time-consuming and inefficient imputa-
tion of raw data that may be missing, the researcher
suggests a method for forecasting solar irradiance
straight from the missing data, which performs well
under a wide range of cutting rates. The benefits of
preimputation include simplifying the two-stage
process into a single step, lowering the model’s
complexity, and achieving accuracy on par with that
of alternative approaches. The two-stage process is
simplified into a single step, the model’s complexity
is lowered, and the resulting accuracy is on par with
that of alternative approaches. Second, the network
parameters are learned by evaluating the accuracy
with which they anticipate future events. In this
way, the bias and overfitting phenomena are miti-
gated by preventing the mistake of an outcome
acquired by the imputation technique in prepro-
cessing from being transferred to the learners. The
network parameters are learned by evaluating the
accuracy with which they anticipate future events,
thereby preventing the mistake of an outcome
acquired by the imputation technique in prepro-
cessing from being transferred to the learners.
Finally, not many hyperparameters are needed to
be modified in this method compared to others.
KNN’s nearest neighbors, Kalman filtering’s order,
and so on have a significant role in determining per-
formance. Third, more information is required for
model-based imputation than for prediction. It is
challenging to have amassed enough original data
in some industrial contexts to provide high-
precision imputation. That is why it is possible to
get meaningful findings by imputing during predict-
ing with fewer data than with model-based imputa-
tion methods based on a priori assumptions

(ii) Researchers present a neural imputation module
that is adaptable and able to produce imputation
data from prediction errors. Using this module,
the researcher can skip the step of calculating impu-
tation values before making a forecast

(iii) Researchers present a missing data prediction method
based on attention, which is more effective under
bright light. In irradiance prediction, it aims to address
the issue of uneven sample sizes between high and low
radiation levels without resampling. An ensemble set-
ting can compensate for the other models

2. Related Works

2.1. Solar Irradiance Forecast/Regression with Missing Value.
In the last few years, there has been a lot of focus on missing
data radiation and prediction. Since irradiance imputation
has many features with more common time series imputation
problems, many tried-and-true traditional approaches can be
applied with slight modification. While conventional methods

relied on the moment and neighborhood information, they
often avoided handling missing values. To fill in the gap, the
author [26] employs two techniques. For missing time series
data, the author [27] uses k-nearest neighbors (KNN). When
it comes to characterizing multidimensional inputs; however,
these methods fall short, as they do not consider the things like
the correlation between irradiance and climatic data.

Several imputations by chained equivalences and
regression-built imputation approach, such as multiple linear
regression representations and converse distance weightage,
are compared and contrasted in the article [28]. Matrix com-
pletion is used by the author of [29] to fill in data gaps before
making solar radiation predictions for the near future. Several
imputation approaches are investigated by the author [30],
who concludes that KNN is the best option for day-ahead
forecasting of photovoltaic generation. Several publications
have appeared recently that attempt to summarize and com-
pare the effectiveness of various imputation approaches.
Numerous interpolations and prediction approaches are com-
bined, and their effects are compared by authors [31, 32]. They
put each method through its paces under varying time frames
for predicting and conclude that Kalman filtering (KF) is the
most effective for hourly data. Recent years have seen a rise
in interest in using deep learning for imputation and predic-
tion. Generative adversarial network (GAN) is the first unsu-
pervised deep learning model to be employed as an
imputation approach in solar irradiance prediction. As with
conventional methods, these take two steps—first interpolat-
ing, then using the resulting data for prediction to arrive.

2.2. Time Series Imputation. Numerous disciplines, includ-
ing medicine and traffic, face the age-old challenge of filling
in gaps in temporal data. Mean imputation is one type of
interpolation still extensively employed because of its sim-
plicity and effectiveness. The primary source of negative
consequences brought on by the absence of imputations is
the split in the frequency domain [33]. In addition, model
noise in the temporal field must be tolerated well. Varia-
tional autoencoders and generative adversarial networks
are two unsupervised deep-learning methods that apply gen-
erative models to uncover the underlying pattern in
sequence data. Together, they apply generative models to
uncover the underlying pattern in sequence data. The differ-
ence between variational autoencoders and generative adver-
sarial networks is that GAN does not aim to maximize the
hidden representation in any particular way. Another
RNN-based algorithm is the self-learning approach, such
as Bayesian regression and inference for time series (BRITS),
where the positional information of the missing data is used
to dampen the hidden layer information [20].

3. Methodology

3.1. Problem Setting. For a given multivariant time series X
= x1, xn, yn , the research investigates the problem of irra-
diance Y prediction. Multihorizon forecasting refers to the
prediction of multiple future steps in the time series, specif-
ically predicting the next m steps based on the first k steps. The
goal is to construct a direct method multihorizon forecasting
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model that makes comprehensive, rather than incremental,
predictions of all outputs [34, 35]. Researchers have one-
time series represented by x1 and the number of feature
dimensions indicated by n. The researcher zeroed down on
the challenge of predicting the next m steps based on t.

The firstksteps, where the input includes previous values
for the output, researchers attribute missing data to either a
communication breakdown or a malfunctioning sensor. The
researcher next proceeds to define several key terms. The letter
M represents the positive data for missing values, where 0
indicates no data is missing and one suggests all information
is present. Additionally,M states that the missing value’s time
step from the nearest valid observation is denoted by δt.

3.2. Traditional Imputation Methods. Here are some of the
most typical approaches taken to fill in the gap during PV
prediction and the methodologies utilized for comparison
during the experiments.

3.2.1. Interpolation. Averages are often interpolated by using
the k values closest to the gap, and standard deviations are also
estimated in this module. This method of interpolation assumes
that missing values are typically located near the mean distribu-
tion or median if they were lost due to random chance. The
original allocation of the variables has been warped.

3.2.2. I Matrix Factorization. A matrix X with a missing
value can be broken down into two or three smaller matri-
ces using MF. The original matrix Xˆ can then be approx-
imated by multiplying the decomposed matrices. To
complete the unique matrix Xˆ, the researcher employs
the values found in this estimate composites, X. To maxi-
mize the loss function J in equation, the decomposition
often uses an arithmetical class technique of gradient
descent.

J = X − Xˆ 2 = X −UV⊤2 = 〠
i,j,xi≠man

xij − 〠
k

l=1
uilvjl

2

1

Regularization methods, as shown in equation (2), can
improve estimation accuracy.

J = X − Xˆ 2 + β

2 U 2 + V 2

= 〠
i,j,xi≠≠an

xij − 〠
k

l=1
uilvjl

2

+ β

2 〠
i,l
u2il +〠

j,l
v2jl

2

3.2.3. K-Nearest Neighbors. The distance between the sam-
ples is considered by the nearest neighbor filling concept.
When there is a gap in the data, it is filled in by averaging
or weighting the nearby observations. KNN is preferable
to mean imputation because it is less sensitive to outliers
and works better with high-dimensional data. On the
downside, it is computationally and spatially intensive
and cannot account for sample imbalance. KNN may be

computed using

xm = ∑i wlcl
∑i wi

, 3

where

wi =
1
di

4

Here, xm indicates the missing data. i indicates the ith

of designated k nearest data. d indicates the distance
between two specimens.

3.2.4. Multiple Imputation by Chained Equations (MICE).
Assume there are n such variables as (x1, x2, xn). The vari-
ables x2 through xk will be used to perform a regression on
the missing x1. In this case, the regressed values are
substituted for x1 in the expression. If x2 is missing data,
the regression model will still use x1, x3, and up to xn as
inputs. Later, regression estimates will be substituted for
the missing values.

3.2.5. Kalman Filtering. The state space model upon which
the Kalman filter is based consists of two equations [36].

yt =Htαt + ωt ,
αt+1 = Ftαt + εt ,

5

where α is for the hidden condition, y stands for the
observing data, H stands for the measuring matrix, F
stands for the transitional matrix, and ω and ε stand for
the noise. Standard practice for interpolation involves
two stages. In the first stage, the states and covariances
in equation (5) are erudite depending on the observable
data. In the second stage, the researcher uses the past data
to make an educated guess or smooth the future goal. For
this purpose, the researcher employs Kalman filtering’s
smoothing technique.

3.3. IGRU and AIGRU. Two different approaches are pre-
sented here. For starters, the researcher presents the neu-
ral imputation module, any predictive model with
imputation capabilities. Then, a neural imputation mod-
ule for GRU and the rationale for employing a bidirec-
tional structure are shown. The paper concludes by
introducing an attention-based GRU with a neural impu-
tation module.

3.3.1. Module for Neural Imputation. To better handle miss-
ing data, researchers in the current paper develop an adap-
tive imputation unit in a neural network. When dealing
with missing data, researchers presume that the location of
the missing data is either known empirically or using tech-
niques like irregularity finding or that the position range is
nil. In post-apocalyptic scenarios, for instance, the radiome-
ter readings may show up as long stretches of zeros between
sunrise and sunset. For example, suppose raw data are fed
into a neural network without preprocessing. In that case,
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the model may incorrectly infer features based on a high
proportion of missing values in the input and the supervised
data.

The law of large numbers states that gaps in data are typ-
ically filled in by values close to the most recent measure-
ments. The missing step δ in equation (6) defines the
decay coefficient as γ.

γt = exp −m 0,Wγδt + bγ , 6

where the linear coefficient and bias for the missing stage δ
are denoted by Wγ and bγ. In the first place, the step size
is linearly transformed. Afterward, the activation function
places constraints on the altered result, checking that γ is
not equivalent to one and is not equal to nil. The process
on the right-hand side of this equation does not have to be
exponential; rather, it can be any member of a class of
monotonically decreasing functions. If the decline is mono-
tonic, then the more significant the δ missing values relative
to the last observation, the lesser the γ, and the higher the
decay.

xt =mt ⊙ xt + 1 −mt ⊙ γtxt 7

The estimated, xt incorporates both the actual value and
the imputed values after missing information has been “filled
in.” The researcher may generate a new estimate if the
researcher knows the time step of the preceding observation

and the largest possible range within the observation win-
dow. The nearest observation is insufficient since it is not
easy to guarantee that the missing value is less than the most
relative value. That is why it makes sense to use historical
data, like the highest value during the preceding days, by
considering the maximum observation inside the period.
Looking at Figure 1 shows a simplified version of the impu-
tation procedure.

The revised estimates are fed into the model. All the net-
work weightage, such as the linear factors in the decay coef-
ficients and the missing step coefficients, is learned by
backpropagation during the training process. A reliable esti-
mate for the missing data will result from this. The overall
algorithm flow and the loss propagation track are displayed
in Figure 2.

3.3.2. IGRU. An in-depth description of GRU is provided
here. GRU is a type of recurrent neural network, a kind of
neural network structure typically employed in sequence
modeling. To solve sequence problems, RNNs rely on a cru-
cial component: memory state neurons. These neurons’ job
is to memorize past events, and the researcher may express
them as generalities using equation (8).

bt = f bt−1, yt , xt , 8

where b is the hidden-layer neuron’s value and f is the
update function that must be memorized.
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Both an update gate and a reset gate are labeled f in the
GRU model. Equated to LSTM, the memory is guaranteed,
and gradient disappearance is reduced with fewer parame-
ters and faster training.

rt = σ Wr · bt−1, xt , 9

zt = σ Wz · bt−1, xt , 10

bt = tanh Wb · rt ∗ bt−1, xt , 11

bt = 1 − zt ∗ bt−1 + zt ∗ bt , 12

yt = σ Wo · bt , 13

where r and z stand for the reset and update gates,
respectively, and the current hidden layer’s information
and observations are used by the rearranged gate function
to determine the next in-between hidden layer. The update

gate determines how much the current weighted average of
hidden layer data deviates from the previous value. The
input-output relationship and GRU cell architecture are dia-
grammed in Figure 3.

This paper makes use of the bidirectional structure. The
two-way recurrent network uses both past information and
predictions for the future. Neighboring neurons whose time
windows extend beyond the current time step represent
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(b)(a)
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Gate
Recurrent

Unit (GRU)
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Figure 3: GRU’s structural arrangement. (a) The GRU’s input and output and (b) the GRU cell’s internal structure.
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Figure 4: Mechanism for attention. (a) Input(I\P) and output(O/P) of the attention unit and (b) internal structure of the attention unit.

Table 1: Processing factors.

Factors Unit

Humidity %

Temperature °C

Wind speed m/s

Cloud cover %

DNI W/m2
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information about what will happen in the future without
any data loss. Compared to regular GRU, bidirectional
GRU is preferable since the factors are instantaneously
defined by material from both instructions, making it worth-
while even if the assertion is primarily decided by ancient
data (maximum and missing steps).

3.3.3. AIGRU. In this paper, the researcher provides the
GRU model based on attention. Natural language processing
(NLP) was the first area to make use of the attention mech-
anism [37, 38]. Its primary purpose is to quantify the degree
of association between a source word and the rest of the sen-
tence. Like in equation (9), the final hidden layer is often
used as the output source. A linear combination that can
be taught is allocated to the hidden layer, even if the network
can remember substantial time steps from the past. In equa-
tion (14), the researcher finds the updated weights for the
hidden layer [39].

αi = p z = i X, q = softmax s xi, q = exp s xi, q
∑N

j=1 exp s xj, q
14

In the interpreter, where the confidential data from the
highest-order GRU layer is accessed, q is the number of
queries. The weights are normalized from zero to one
through the SoftMax function. The internal construction of
attention and the link between its inputs and outputs are
depicted in Figure 4.

3.4. Performance Evaluation Metrics. Even though RMSE is
the utmost popular statistic, it is still insufficient. The follow-
ing case study uses three evaluation measures, each briefly
described below. The number of test samples,m, observation
is denoted by yi, whereas the prediction results are indicated
by yˆi.

3.4.1. RMSE. The RMSE formula, equation (15), employs the
square of the variation among the predicted and actual
values.

RootMean Square Error RMSE = 1
m
〠
m

i=1
yi − yˆi

2

15

3.4.2. Mean Absolute Error (MAE). Distinct RMSE, MAE
uses absolute error in equation (16). It more accurately
depicts the condition of the error in the projected values
than RMSE does and is not as susceptible to extreme levels.
However, specific gradient optimizers find it inconvenient to
utilize because the calculation cannot be distinguished.

MAE = 1
m
〠
m

i=1
yi − yˆi 16

3.4.3. Squared Differences between the True Value and the
Mean Value. The numerator in equation (17) is the total of
the squares of the discrepancies between the actual and esti-
mated values. In this case, the summation of the squared dis-
crepancies between the actual and the average value is
represented in the denominator.

R2 = 1 − ∑i yˆi − yi
2

∑i yi − yi
2 17

The reliability of a regression model may often be
assessed using the R2. The improved model estimate is asso-
ciated with a higher value of R2.

4. Results and Discussion

4.1. Data. The coordinates 39.8320 (N), 106.210 (W), and
1832.9 (meters) are the center and the edge of the target
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Figure 5: Incomplete data with different missing rate.
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region, respectively. The case study makes use of five sets of
meteorological data, all of which are listed in Table 1.

Researchers generate the missing data at random to
make the model more accurate. Here, the researcher pro-
vides a concise introduction of “missing” and its impetus.
Radiometers and anemometers are just two examples of
meteorological sensors used in PV facilities to measure irra-
diance and other weather conditions. The two most frequent
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Table 2: Error valuation.

Missing data AIGRU GRU IGRU

0.30 −456.6563 −469.6538 −407.2598

0.50 −391.1825 −431.3310 −404.1761
0.70 −409.6805 −379.0675 −329.7932

0.90 −423.5651 −434.6867 −348.8767
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maintenance voids are single-point voids and segmented
voids. The most frequent cause of a single missing point is
a malfunctioning instrument, while the most frequent rea-
son for a segmented missing is a severed line of communica-
tion. Because of the warning systems and routine checks,
these outages never last more than a day. In Figure 5, the
researcher saw the synthetic DNI researcher generated, with
the missing data at varying percentages. When the interest
rate is high, the situation is reversed. When there is a lot of
missing data, it is not easy to conclude anything, such as
when irradiance levels are highest.

4.2. Experimental Setting. The variables used in the experi-
ment are briefly explained below. The researcher begins with
a summary of the network’s settings. A GRU encoder and
two linear layers make up each bidirectional GRU’s three-
layer structure. At present, each GRU encoder has two hid-
den layers. There are 32 neurons in each of the hidden
layers. The linear layer performs the dimensional transla-
tion, ensuring that all networks produce the same results.
An early-stopping approach is implemented alongside a pro-
longed learning rate of 0.001. Once the validation set loss is
not minimized after 20 iterations of training, overfitting is
prevented by stopping the activity. The current epoch is
100. There is a 90% training ratio, a 16% validation rate,
and a 4% testing rate.

4.3. Case Study. During this section, the researcher reclaims
the case study. Starting with the past four days of radiation
ranges and weather information, our studies use numerous
input solitary outputs to predict the next 4 hours of diffuse
near-infrared illumination (DNI). Considering the current
state of affairs, the lack of irradiance is set at 50%, while
the percentage of other meteorological parameters that are
absent varies from 30% to 90%. In contrast to imputation
tasks, predictions made without sufficient background
knowledge are meaningless. There is also little chance of a
significant number of missing due to maintenance with the
primary variable monitors. Increasing the training sample
can overcome the problem of missing data, even if there is
a lot of it in a short time.

4.3.1. Evaluation among AIGRU, GRU, and IGRU. The find-
ings are primarily analyzed using the three most typical
parameters: temperature, wind speed, and DNI. The out-
comes for the 30, 50, 70, and 90% missing rates are depicted
in Figure 6. The test sequence is 20 days long, and the verti-
cal axis represents the DNI power (500W/m2). If looking for

an approach that gets the researcher closer to the actual
numbers, IGRU is the best result. In Table 2, the researcher
saw the average inaccuracy of the methods when the actual
DNI is more significant than 500W/m2. Improved results
are seen across a range of missing rates when using the pro-
posed strategy.

This suggests that IGRU can improve its predictions.
There is no significant difference in performance between
the three approaches when the missing data rate is 30%.
When the light intensity is high, AIGRU performs well.
The most important goal is that the consideration module
directs the model’s attention to the most important objec-
tives when there is enough accurate data. IGRU outperforms
MSE in three additional scenarios with varying missing
rates. The three scenarios are (1) evaluating model perfor-
mance, (2) image processing, and (3) signal processing.

The inaccuracy of three approaches across four evalua-
tion measures is shown in Table 3. Systems that include a
neural imputation module improve on average by 4-18% in
RMSE compared to methods that do not, with IGRU outper-
forming the competition. At a 30% missing rate, AIGRU is
superior to IGRU in all measures except RMSE. One possi-
ble explanation is that the model can better match high-
energy data, such as high-irradiance data. However, as the
gap grows, the imputation module’s estimates become less
reliable, and the data becomes more skewed. Despite this,
it shows improvement over the original data without losing
quality, reassuring the accuracy of the imputed values.
Moreover, IGRU improves its performance as the missing
rate increases, peaking at a missing rate of 90%. Weaker per-
formance is seen from the initial strategy as the IGRU is
raised higher.

The error distribution Y − Yˆ is displayed graphically
through a histogram, which the researcher uses to compare
the two methods. Error distributions for the suggested
approaches of AIGRU and IGRU and the baseline GRU
model are shown in Figure 7. When plotted, mistakes with
the correct DNI are shown along the horizontal axis, while
error frequency is shown along the vertical axis in the test
dataset. It is generally accepted that both AIGRU and IGRU
perform better than the approach without imputation due to
their high frequency at zero. The proposed methods focus
on the range from 200W/m2 to 600W/m2, with a greater
frequency at low error density and a lower frequency at high
error density. Performance-wise, AIGRU is at its finest at
30% and vilest at 70%. In the range from 260 to zero with
a 70% missed rate, AIGRU is still somewhat more frequent
than GRU.

Table 3: The results of AIGRU, IGRU, and GRU.

Evaluation
technique

Mean absolute error
Masked root mean

squared error
Regression Root mean square error

GRU IGRU AIGRU GRU IGRU AIGRU GRU IGRU AIGRU GRU IGRU AIGRU

0.30 158.60 132.15 125.72 257.24 220.53 209.97 0.25 0.45 0.49 254.97 223.91 227.63

0.50 139.88 132.28 138.81 230.31 220.63 231.03 0.40 0.44 0.39 235.32 228.38 236.40

0.70 128.22 117.81 124.70 211.09 199.74 208.02 0.49 0.54 0.51 212.40 201.58 228.89

0.90 140.45 121.46 126.27 234.33 200.13 213.66 0.37 0.54 0.48 241.16 208.15 231.03
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Figure 7: Continued.
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Figure 8: An outcome of AIGRU, IGRU, and GRU at higher irradiance (500W/m2).
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By either metric, AIGRU lags behind IGRU in terms of
overall performance, but it pulls ahead by a wide margin when
the radiation levels are high. When true DNI is more signifi-
cant than 500W/m2, the results of the three models are shown
in Figure 8. For a variety of missing rates, AIGRU is superior.

Scatter plots show the relation between the two
approaches; they can be used to check this theory. In
Figure 9, the GRU’s blunders are shown along the horizontal
axis. Possible flaws in the suggested procedures are shown in
the vertical axis. Meanwhile, since Y = X, the mistakes
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Figure 9: The scatter error for various missing rates.
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Figure 10: An outcome of variant missing design with 50% missing data.
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associated with the two approaches are equivalent. The line’s
higher portion indicates wherever the GRU performs
restored than the proposed approaches, while the line’s
lower part shows where the GRU serves worse. The smaller
the distance between the point and the line, the more similar
the two approaches are. The further the moment is from the
line, the greater the method’s superiority over the alterna-
tive. More data points are below the line than above, suggest-
ing that the proposed approaches outperform GRU. When
equating AIGRU and gate recurrent unit, the researcher
can also see that the data under AIGRU are further spread
out, which denotes that AIGRU is more precise than IGRU
at forecasting specific values. For instance, in the locations
near the right border, the GRU error is about 400W/m2,
while the error in AIGRU is nearly zero. Errors of over
400W/m2 are possible only under extreme illumination
conditions.

This finding agrees with the one drawn from the predic-
tion mentioned in the graph. In conclusion, the attention
module enables the model to pay closer attention to impor-
tant details, but at the sacrifice of some average accuracy or
the need for tweaks.

4.3.2. Different Missing Patterns. The impact on the model
varies depending on the type of missing data. Here, the
researcher undertakes tests using three frequently encoun-
tered pattern types: (1) sensor noise-related random miss-
ing (existence of short segments and sporadic missing)
and (2) intervals of missing data for all variables (e.g., an
entire day), most often due to technical difficulties with
the network. Missing DNI segments (the primary aim),
climate factor segments at random, or DNI segments with
climate factor missing are all missing data in category
three. In Figure 10(a), the researcher saw random missing
data; somewhere, 50% of all variables are missing. Since
the researcher does not see the whole picture, our model
for comparing patterns is a learned one, so the researcher
can only make educated guesses about what the missing
design might be.

The upper figure depicts the absent Temp and DNI,
while the lower figure contrasts the original GRU with the
two enhanced approaches based on 96 days of data. The long
history of data used and the higher model order prevent the
prediction failure caused by the sporadic missing during the
model inference process. Similar convincing predictions can
be made by the GRU without imputation, albeit with a little
lower accuracy. The third type of missing data is segmented
missing data, where all input variables are blank for a given
period, say, 24 hours. Figure 10(b) demonstrates the two
approaches to predicting the DNI. IGRU and GRU suffer
performance drops under these conditions, although
AIGRU outperforms random missing. Possible explanation:
accuracy suffers significantly at the expense of robustness to
missing all day when utilizing more extensive historical data.
Adverse effects on IGRU and AIGRU are apparent when the
weather factor and typical DNI are removed. While the
absence of DNI has less impact on both approaches, AIGRU
obtains better results in Figures 10(c) and 10(d). Instinc-
tively, as DNI fluctuates, it becomes clear that incorporating

the weather factor into the prediction task is essential.
Despite the overall decrease in loudness and smoothness of
the waveform, GRU remains unaffected by these absences.
As with filtering, GRU achieves a desirable smoothing out-
come at the expense of precision.

4.3.3. Comparison with Other Imputation Techniques. To
authenticate that the approaches were as reliable as adver-
tised, the researcher expanded their range from three to five
variables and tested each using a variety of interpolation
schemes. Using these techniques, the researcher attributes
the missing variables and sets GRU to work on the predic-
tion. Mean interpolation, matrix complementarity, mini-
mum irradiance consistent emulation, and K-nearest
neighbor are some additional irradiance imputation
methods compared in Tables 4 and 5. Two climatic ele-
ments, cloud cover and humidity, are added to the three
input factors of the other group. To create this approach,
the researcher combined the most valuable aspects of both
IGRU and AIGRU. Here, MAE is the error of choice.

According to Table 4, the suggested technique is more
accurate than the poorest imputation methods by as much
as 32% and provides a 4-8% enhancement over the best
imputation method. The proposed methods outperform
most of the existing techniques in the case study with five
contributions. When comparing KF to the suggested
approach, KF performs better in the 50% and 70% missing
proportion cases. On the other hand, the recommended
strategy is the best option when 90% of the data is absent.
In conjunction with the trivariate case, it demonstrates that
KF and the suggested technique perform well under condi-
tions with an adequate amount of reliable information.
However, the proposed method exhibits higher performance
with high missing rates, indicating that it is more robust. It
also shows that the proposed strategy may be applied to
any situation without modifying the model. However, the
various data sets will still require different imputation
procedures.

As the percentage of missing values rises, the perfor-
mance of mean interpolation declines compared to the other
approaches. In contrast, MICE and MF outcomes are data-
driven.

Table 4: Mean absolute error valuation with three characteristics.

Missing data MICE Mean MF KF KNN This study

0.50 161.28 154.26 172.82 138.86 144.17 131.43

0.70 156.13 169.34 176.68 129.53 124.12 118.22

0.90 164.44 174.12 155.26 126.01 128.42 121.81

Table 5: Mean absolute error valuation with five characteristics.

Missing
data

MICE Mean MF KF KNN
This
study

0.50 162.63 162.36 187.22 121.96 130.31 137.81

0.70 154.57 162.58 157.23 124.59 131.24 151.12

0.90 179.78 188.41 140.38 133.63 145.54 126.24
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5. Conclusion

With the help of a neural imputation module, this research
suggests a new approach to predicting irradiance. In many
cases, its performance is superior to the standard method
and other well-known imputation techniques. The IGRU
benefits from being highly adaptable, requiring no additional
imputation step during data pre-processing, and having
minimal computational complexity. Additionally, it is an
effort to combine the imputation and prediction steps, hop-
ing that incorporating prediction data can improve imputa-
tion. Of course, there is still much room for improvement in
the field of time series imputation for renewable energy.

Irradiance readings fluctuate wildly and are significantly
influenced by weather patterns. This finding demonstrates
that the outcomes of various approaches vary among data-
sets. Traditional methods are effective when the targets are
easy to hit. It is still worthwhile to study imputation tech-
niques, especially under challenging conditions like heavy
rain or other extreme weather. Because of this, the imputa-
tion module can benefit from encoding feature correlations
by investigating more explicit model properties, such as fun-
damental relationships among components and time graph
relations among its parts.

For optimal performance in the field, the imputation
architecture should be fine-tuned using real-world applica-
tions, such as irradiance prediction and missing data states
for power prediction in photovoltaic plants. Designing tem-
poral windows with flexibility, interpolating data in real-
time, using multiple modalities, and other strategies are all
viable alternatives. The model parameters can also be
adjusted to make it more generalizable.
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