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Today, the desire to use renewable energy as a source of clean and available energy in the grid has increased. Due to the
unpredictable behavior of renewable resources, it is necessary to use energy storage resources in the microgrid structure. The
power generation source and the storage source in microgrids should be selected in such a way that it has the ability to
respond to the maximum demand in the state connected to the grid and operate independently. In this article, the optimal
capacity and economic performance of a microgrid based on photovoltaic and battery system have been investigated. In this
way, first, using the iterative optimization method, the optimal microgrid capacity has been obtained. Then, the dynamic
planning method has been used for optimal microgrid energy management. The simulation results show the accuracy and
efficiency of the proposed solutions. The proposed controller, while automatically and dynamically adapting to the solar cell
output changes, is capable of responding to external requests, such as price signals or satisfying power system constraints or
operator requests. In addition, the results indicate that by using the proposed energy management system, the microgrid
system can regain stability during one to two cycles, during the occurrence of PV system radiation changes as well as ESS
charge changes. And also, according to the ESS charge changes, the voltage changes should be within the defined permissible
range between 0.95 and 1.05 pu, which is the result of the unique efficiency of the proposed energy management system.

1. Introduction

The concerns of the world community regarding the envi-
ronment have caused the use of scattered products that use
new energy production sources to increase rapidly. But the
nature of most new energies is variable and unpredictable,
which has become an obstacle for the wider use of new ener-
gies. To solve this problem, energy storage sources are used
[1–3], which solve the unpredictable and variable nature of
new energies. Electrical microgrids consisting of distributed

production sources are the main elements of the future
smart grid, which will play an important role in reaching
the aforementioned goals. The microgrids created on the
distribution side provide the conditions for the operation
of DG resources. These resources include new technologies
such as diesel generators, microturbines, and fuel cells,
which, along with photovoltaic systems and wind turbines,
will be responsible for feeding part of the consumer demand
on the distribution side [4]. Coordination between these
sources with energy storage elements and controlled loads
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(such as air conditioning equipment) will be one of the chal-
lenges facing electric microgrids [5, 6]. Depending on the
location and conditions of electrical networks, different sce-
narios have been defined in the operation of electrical micro-
grids. Microgrids are mostly operated when connected to the
upstream grid, in which case, the needs of consumers are
met by the energy received from the main grid and the
energy produced by their own internal resources. But in
some situations (such as supplying loads to remote areas
or during maintenance of a part of the network), these
microgrids can also work in separate mode. In this case,
the supply of the entire load is the responsibility of domestic
sources [7].

With the advances made in the technology of energy
storage elements, the use of these equipment’s will deter-
mine the achievement of a flexible network. The presence
of storage elements enables the operator to operate the net-
work with higher reliability and with lower production costs.
In reference [8], the authors have presented a solution for
the optimal use of the microgrid, based on which, the cost
of the microgrid is significantly reduced by storing energy
in low load hours and selling it in peak load hours. The algo-
rithm used in solving the optimization problem was PSO.

In reference [9], a similar work has been done by mini-
mizing the cost of microgrid operation with the help of lin-
ear programming algorithm. Another strategy based on the
participation of wind turbine and energy storage elements
has been proposed in [10], which also considered the ran-
dom nature of wind turbine output. Also, in this reference,
the researchers have presented an intelligent energy manage-
ment system (SEMS), whose task is to create coordination
between power forecasting, energy storage, and energy
exchange with the main grid, which leads to an optimal pro-
duction planning in the period of time. Short term (next 24
hours) leads. Another important point in using microgrids is
how to interact with the main grid. Considering that micro-
grids have the ability to connect with the main grid, they can
receive energy from the grid in case of shortage. Therefore, it
is necessary to receive information about the status of the
main network every hour in order to use them in the opera-
tion of the microgrid.

In order to optimize energy management in microgrids,
algorithms have been proposed in the literature so far. Law-
based optimal energy management in an island microgrid is
described in [11, 12]. In [13], energy management is per-
formed in an island microgrid consisting of PV and WT as
the main sources and fuel cell as the backup system. The
operation of this system depends on the developed rules.
Despite observing all the limitations under the optimizations
performed in these two references, the results are not
comprehensive. In reference [14], microgrid has a combined
topology, including PV and fuel cell. The presence of fuel
cells is less due to the improvement of power quality in
voltage drop. Among the objectives of this reference are to
reduce the size of PV, reduce costs, increase reliability, and
create a compact structure. Reference [15] deals with
optimal management in a hybrid microgrid, including WT
battery. This reference assumes that information such as
production volume, load demand, and instantaneous price

is available. In order to eliminate the dilemma between
long-term planning of storage devices for economic reasons
and short-term planning of WT production and load
demands, two-scale dynamic planning has been used. The
simulation results show a reduction in energy costs under
the two-scale method compared to the single-scale method.
In [16, 17], fuzzy logic estimates rules in improving the
law-based method. The proposed method in [18] consists
of two steps: one is to determine the behavior of the energy
management system by fuzzy logic, and the other is to deter-
mine the appropriate parameters for the fuzzy controller.
The general purpose of the proposed method is to minimize
the fuel consumption of parallel vehicles.

In [19], the optimal energy management of a microgrid
is performed with the help of game theory and multiobjec-
tive optimization. In this reference, the operating cost and
the level of pollution are considered as the objective
function. Electronic power converters play a key role in con-
trolling the flow of energy in a microgrid. For this purpose,
the measured information is used in the control and moni-
toring of distributed generation sources. In communicating
between a microgrid with other system components such
as the distribution system operator, central control is used,
and in controlling several microgrids in a feeder, the distrib-
uted management system is used. These control methods
can be implemented in the form of a hierarchical controller,
including three levels.

Among other control methods, centralized control can
be mentioned. The basic principles of this method are to
determine the average current. In fact, by considering the
total load current, the current reference of each power gen-
eration unit will be determined [20]. Then, a current error
is obtained and sent to the current control loop, and the
command signal of the switches is generated. Other methods
in this field include the follower method [21] and drop con-
trol [22]. Reference [23] uses a PV-battery composite struc-
ture in a microgrid for home use. Reason battery and diesel
generators have been used as a backup to solve the problems
of renewable sources.

In reference [24, 25], the dynamic programming method
is used to manage the optimal energy for the microgrid based
on the PV battery connected to the grid. The purpose of this
method is to minimize the energy received from the grid.
Problem constraints also include balancing each resource’s
production/consumption and capacity. The results show that
the dynamic planning method performs better than the law-
based method. Reference [26–30] presents a two-tier hierar-
chical control strategy for a flexible inverter-based microgrid.
This inverter can operate in either grid or island mode. The
simulation results show that the acceptable microgrid perfor-
mance under study [31–38] presents a hierarchical control
strategy for parallel power supply inverters in an island micro-
grid. The proposed control method consists of drop control,
virtual impedance control, compound voltage control, and
sliding mode control.

Therefore, integrating the power grid with the PV system
is one of the topics worth researching. Also, the battery can
be used as a lever to increase the penetration of the PV sys-
tem. Despite the advantages that this structure can provide

2 International Journal of Photoenergy



for setting up an intelligent network, it is always associated
with challenges that affect the microgrid’s performance. The
optimal estimation and economic performance of a microgrid,
along with other performance characteristics such as high reli-
ability, require an accurate and efficient control strategy.

The main purpose of this paper is optimal energy man-
agement in a microgrid based on PV and battery usage.
Among other goals that will be achieved in this regard, we
can mention the optimization of microgrid size and optimal
power exchange between the power network and microgrid.

2. Energy Management Optimization for a Grid
Connected to the Grid

The microgrid structure under study in the network connec-
tion mode includes a power network, solar panel, and bat-
tery. The power grid directly meets the microgrid load
requirement through the AC bus. When the power output
of the panel system is insufficient, the power shortage is
compensated by the battery or power grid. In contrast, the
excess power produced by PV will first fully charge the bat-
tery, and then, the rest of the power will be injected into the
power grid. Therefore, having an energy management sys-
tem in order to schedule resources to achieve the objective
function is essential. Figure 1 presents the model of com-
bined power generation system.

2.1. Cost Function. The objective function considered in
Equation (1) minimizes the final CF value. The CF parame-
ter includes received cost (CR) and paid cost (CP). CR value
is defined negatively, and CP value is defined as positive.
That is,

min CF =min 〠
T

t0

CR t + CP t 1

The amount of CR is considered a benefit obtained from
selling excess power to the power grid. The value of this
parameter is in the form

CR t = Pgrid t FIT t t 2

In the above relation, the parameters Pgrid and FIT are
the power injected into the network and the sales tariff,
respectively, considered by the microgrid. The amount of
CP includes the cost of electricity purchased from the power
grid and the cost of replacing the battery. The following
equation can also calculate the value of this parameter:

CP t = Pgrid t t EgP t t + BrC t 3

In the above relation, the parameters Pgrid, EgP , and BrC
are the power purchased from the network (with a positive
value), the electricity tariff, and the battery replacement cost,
respectively. Therefore, the objective function of the prob-
lem under study is written as follows:

min CF =min 〠
T

t0

Pgrid t FIT t + Pgrid t t EgP t t

+ Bic
Z SOCxi t − Δt − SOCxi t

1 − SOHmin

4

In the above relation, Z is considered equal to 0.0003,
and Bic is the investment cost of the battery. The parameters
Pgrid and EgP are the power purchased from the network and
the electricity cost, respectively.

2.2. Limitations. In this section, the limitations of the pro-
posed method are mentioned.

(i) Power adjustment limit

Output power of the battery

PL t = PPV t + PB t + Pgrid t , 5
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Figure 1: Combined power generation system.
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PBmin ≤ PB t ≤ PBmax 6

(ii) Battery SOC limit

ΔSOCmin ≤ ΔSOC t ≤ ΔSOCmax, 7

SOCmin ≤ SOC t ≤ SOCmax 8

(iii) Battery life time limit

SOH t ≥ ΔSOHmin 9

(iv) Network power limit

Pgrid min ≤ Pgrid t ≤ Pgrid max 10

In order to minimize the power received from the power
grid, the value Pgrid max is limited as follows:

0 ≤ Pgrid max ≤ Ppeak load,

Pgrid min = −Pgrid max
11

In this paper, the value of Ppeak load is considered equal to
50 kW.

2.3. Rule-Based Energy Management Strategy. This section
proposes a “constraint” management strategy based on pre-
defined rules for network-connected microgrids.

Rule-based energy management guidelines have the fol-
lowing main rules:

(i) The PV system primarily provides loads

(ii) The battery is discharged only when the PV power
and network are insufficient

(iii) The battery is charged as soon as the first available
source is found

Rule-based energy management has the limitations men-
tioned in Equations (5), (6), (7), and (10).

The approach of this method is as follows:

(i) Power grid power is determined as a PV and load
power function

(ii) Battery capacity is also calculated according to the
assigned relationships

(iii) The obtained values are confirmed according to the
considered restrictions

(iv) The maximum power delivered from the power grid
is the same as the optimal value obtained by the DP
method

Figure 2 presents the law-based energy management
flowchart.

2.4. Application of the Bellman Algorithm in Microgrid
Energy Management Connected to the Grid. Battery power
(PB) is obtained by changing the SOC (ΔSOC). Network
power is obtained by specifying PB, given that PL and PPV
values are also available. The value obtained must be true
under the conditions considered.

Figure 3 presents the PB and Pgrid calculation process.
Given the initial vector Pgrid max as

Pgrid max = Pgrid i max , i = 1,⋯, k, 12

for each element of this vector, the Bellman algorithm finds
the minimum value of CFi.

Assuming that

Ai = argmin CFi, 13

after several times of analysis, the optimal energy manage-
ment of a grid connected to the grid is defined as the mini-
mum value of vector A:

min A ,A = Ai 14

The optimal capacity of the PV-battery system con-
nected to the network has been investigated in this section.
The radiation intensities and the load profiles considered
in this regard are shown in Figures 4 and 5, respectively.
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Figure 3: PB and Pgrid calculation process.
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Also, the electricity tariff and flowchart of the proposed
method are shown in Figures 6 and 7, respectively. This
algorithm first receives data such as radiation intensity, tem-
perature, and load for different hours. Then, it calculates

different values of Npv and CB (battery capacity). Thus, in
each iteration, ACS is calculated according to the capacity
of PV and battery. These calculations are continued until
each Npv and CB parameter reaches its maximum value.
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Finally, the values of Npv and CB for which the minimum
ACS is obtained are extracted. This flowchart is designed
to calculate the optimal microgrid capacity during a year.
Since one-year data are unavailable, the optimal microgrid
size is obtained here with only one summer day in mind.
In the ACS calculation, the FR value is 1 (i.e., the microgrid
is supplied by RES only), and the EER is 0.01 for each day.

The flowchart shown in the figure above is coded in
MATLAB software. The maximum values of Npv and CB

are 18 and 110 kWh, respectively. In each step, the amount
of Ppv increases by 1 unit (during 18 steps) and the amount
of CB by 10 kW (during 11 steps). In order to examine the
financial benefits more closely, the amount of profit from
the sale of surplus power has also been calculated for differ-
ent amounts of ACS. Since in this article, the power signal
sold to the grid is considered negative, and the power signal
received from the grid is considered positive; in case the
profit from the power exchange with the grid reaches its
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maximum, the final cost is negative higher. This is well illus-
trated in Figure 8. Thus, at Npv = 18, the optimal battery
capacity for step 9 is 90 kW. However, for Npv = 16, the opti-
mal battery capacity value is 100 kW.

The power change curve is obtained during one day
according to the optimal number of Npv and CB. These
curves are shown in Figure 9. As shown in this figure, the
charge is fed through the battery as long as the Ppv is zero.
Here, a positive value of battery power is a discharge of the
battery, and a negative value is a charge of the battery.
Meanwhile, if the electricity tariff exceeds the average over-
night tariff, part of the battery capacity will be sold to the
network. When PV generates power, the required power of
the load is fully supplied, and the excess PV power is sold
to the network or used to charge the battery. At the end of
the day and as the PV power decreases, the battery responds
to the load again and sells electricity to the grid at certain
times. As it is known, the battery’s capacity is determined
in such a way that no power is received from the power grid
day and night.

3. Optimal Microgrid Management

This section discusses the optimal energy management of a
microgrid in network connection mode. The curve related
to changes in radiation intensity and the load is considered
as in the previous section. Table 1 shows the values of the
parameters considered in the simulation. In this section,
the Bellman algorithm determines the minimum value of
the objective function described in Equation (15). In this
equation, FIT t is the tariffs for the sale of surplus micro-
grid power, Egp t is the tariffs for electricity of the network,
and BrC is the cost of replacing the battery.

CF = 〠
T

1
Pgrid t FIT t t + Pgrid t EgP t t + BrC t

15

The coding of the Bellman algorithm is also done in
MATLAB software. Figure 10 shows an example of the out-
put of the implemented code for three hours. In this figure,
each row (except the first row: node 1) represents one hour
of the day. Nodes in a row also represent the number of
states intended to change the SOC. For example, in the
figure below, the SOC can take three values. Accordingly,
the nodes in columns (i.e., 2 and 5) have a minimum value
of SOC, the nodes in the right column (i.e., 4 and 7) have
a maximum value of SOC, and the nodes in the middle
column (3 and 6) have a value between minimum and
maximum.

Nodes 1 and 8 are equal to the initial and final SOC,
respectively. As it turns out, each branch has a value or the
same weight calculated based on the same values of the
path’s cost between the initial and final SOC. Since the num-
ber of nodes in this figure is relatively small, achieving the
optimal path at a low cost is shown in Figure 11. In this
figure, there are 92 nodes and 1155 branches. To achieve a

better display and prevent the shape from getting crowded,
the weight values of the branches are not shown in this
figure. The optimal path in this figure is shown in green. It
is clear that the Bellman algorithm selects different values
of SOC at different times during this path. As mentioned
earlier, the logic of selecting SOCs is also according to the
objective function and the terms and conditions.

According to the information in Table 1, there will be 15
nodes per hour (except 24 hours). The total number of

Table 1: Simulation parameters.

Measure Value Parameter

Hour 24 Simulation time (T)

Hour 1 Time step (Δt)

Percentage 50 Initial SOC

Percentage 80 Final SOC

Percentage 20 Minimum SOC (per hour)

Percentage 90 Maximum SOC (per hour)

Percentage 5 Step time for each SOC

Percentage 70 SOH min

kW 70 Maximum exchange power with the network
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Figure 10: Implementation of the Bellman algorithm for 3 hours
(including 8 nodes and 15 branches).

Figure 11: Demonstration of the optimal path in the Bellman
algorithm for 7 hours (with 92 nodes and 1155 branches).
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nodes will be 347, and the total number of branches will be
4980. The plot command in MATLAB will not be able to
draw graphs with more than 100 nodes. Thus, in drawing
such graphs, changes such as nonautomatic labeling of
nodes reduce the size of nodes and branches are applied to
make the result of the work visible. However, the result will
not give the reader an understandable figure such as
Figures 10 and 11. For example, the processing result of
the Bellman algorithm for the case where the number of
nodes is 347 and the number of branches is 4980 is shown
in Figure 12.

Although the resulting figure is incomprehensible, the
results of Bellman’s analysis can be extracted manually from
the workspace. Figure 13 shows the optimal SOC changes
under the capacities obtained in the previous section.

According to the SOC curve in the figure above, first, the
amount of charge and discharge power of the battery is

determined; then, according to the values of PV power and
load consumption, the amount of power exchanged with
the power grid will be calculated. Thus, Figure 14 shows
the changes in PV output power, load consumption power,
battery charge/discharge exchange power, and power
exchange with the power network under coding. In this fig-
ure, the positive values of power grid power and battery
power indicate the power delivered from the grid and the
discharge power of the battery, respectively. The negative
values of these two parameters also indicate the injection
power and battery charging power, respectively.

This section simulates a microgrid sample based on a PV
battery with optimal capacity and performance under opti-
mal management. An overview of the simulation in
MATLAB Simulink is shown in Figure 15. In this simula-
tion, a DC-DC boost converter is used to connect the PV
to the DC link, a two-way DC-DC converter is used to
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Figure 19: Microgrid electricity cost curve.
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connect the battery to the DC link, and an inverter is used as
the interface between the DC link and the power grid. A var-
iable DC load is also connected to the DC link. The load
curve changes according to what is considered in the coding
space (Figure 14).

The power exchange curve between the various compo-
nents in the microgrid under study is shown in Figure 16.
These results are obtained from simulation and under opti-
mal microgrid management.

The power exchanges shown in the figure above are
based on the optimal SOC reference in Figure 14:

(1) The SOC difference is calculated for two consecutive
hours based on the SOC curve

(2) The battery exchange capacity is determined to meet
the SOC difference obtained

(3) The battery power reference is divided by its voltage
into the current reference

PV boost converter also produces the most available
power due to the radiation intensity. Also, if there is excess
power, the inverter injects it into the network. Conversely,

in the event of a shortage, it will receive the power it needs
from the grid. As a result, the SOC of the microgrid battery
will change, as shown in Figure 17.

The voltage and current change curves of the power grid
side are shown in Figure 18.

As shown in the figure above, the current and voltage on
the grid side have no phase difference. Also, the grid current
is stabilized during one to two cycles, according to the
intended situation. The cost/receipt of the microgrid to the
network is calculated by multiplying the purchase/sale tariff
by the consumption/sales capacity. Accordingly, the micro-
grid cost curve is shown in Figure 19. The average value of
this curve is 0.9221 pounds. This figure indicates that the
microgrid under study should pay the same amount to the
network operator for its overnight consumption. Since the
final SOC of the battery is 80% and the initial SOC is 50%,
the positive result of the charges was not unexpected.

The DC link voltage changes are shown in Figure 20.
This figure shows that the DC link voltage varies under dif-
ferent conditions around the reference value (i.e., 410 volts).
Only in one case, at the beginning of the 12th hour, when
the battery power starts to discharge at the highest rate
and the PV output power is at its maximum, the DC link’s
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Figure 20: DC link voltage.

Table 2: Comparison of the proposed energy management method with reference [15].

Optimization technologies:
rule-based algorithm

Objective Decision variable Application strategy Target

Reference [15]
Peak shaving Power flow Control

Grid-connected microgrid of a
sport centre facility

Economic dispatching — — —

Proposed method

Self-consumption Power flow Control sizing Building with PV system

Peak shaving Capacity — —

Price arbitrage

Npv Power flow — —
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voltage increases. This voltage increase can be adjusted by
resetting the coefficients of the control system. However, since
the time step for change in this paper is 0.2 seconds, achieving
a stable state quickly in this short period is not easy.

As it is clear in Table 2, the proposed method has been
compared with reference [15]. It is found that reference [15]
only performed a control evaluation by the energy manage-
ment system, while the proposed method of energy manage-
ment in this article has been able to simultaneously control
and size the microgrid in the presence of PV and ESS.

4. Conclusion

In this article, determining the optimal capacity, control, and
energy management strategy for a microgrid based on PV
and battery has been researched and developed. The models
of microgrid elements have been developed in line with the
different goals of this article. The correctness and accuracy
of the developed models have been investigated by the sim-
ulation results. Finally, an iteration-based method has been
used in order to find the optimal capacity of the microgrid
including PV and battery in the state of connection to the
grid. The optimal structure is not only effective in achieving
technical conditions and reducing energy costs. The results
indicate that the proposed method is aimed at optimal
energy management in grid connection mode, minimization
of microgrid power exchange with power grid, reduction of
energy cost, and increase of PV efficiency.

Abbreviations

PLL: Phase-locked loop
RB: Rule-based
CR: Cash received
SS: Single-source
CC: Cash pay
DP: Dynamic programming
EER: Excess energy ratio
REF: Renewable energy fractions
ACS: Annual cost of the system
ACC: Annual capital cost
ARC: Annual replacement cost
AOM: Annual operation maintenance
ASC: Annual selling cost
HC: Hierarchical control
GT: Game theory
SOC: State of charge
MPPT: Maximum power point tracking
PCI: Parallel-connected inverters
ESS: Energy storage systems
BMS: Battery management system
NLP: Nonlinear programming problem
PV: Photovoltaic system
BESS: Battery energy storage systems
DERs: Distributed energy resources
LV: Low voltage
RES: Renewable energy sources
ML: Hysteresis current controller
SMC: Sliding mode control

PRC: Proportional resonant controller
PIC: Proportional integral controller
IPV: Fuzzy logic control
MG: Microgrid
EER: Excess energy ratio
VI: Virtual impedance
EMS: Energy management strategy
LIB: Lithium-ion battery.

Data Availability

Data will be available on request. For the data-related queries,
kindly contact Baseem Khan (Baseem_khan04@yahoo.com).

Conflicts of Interest

There is no conflict of interest of any author in any form.

References

[1] M. Zand, M. A. Nasab, A. Hatami, M. Kargar, and H. R.
Chamorro, “Using adaptive fuzzy logic for intelligent energy
management in hybrid vehicles,” in 2020 28th Iranian Confer-
ence on Electrical Engineering (ICEE), Tabriz, Iran, 2020.

[2] H. Ahmadi-Nezamabad, A. Alizadeh, M. Vosoogh, and
S. Nojavan, “Multi-objective optimization based robust sched-
uling of electric vehicles aggregator,” Sustainable Cities and
Society, vol. 47, article 101494, 2019.

[3] M. Zand, M. A. Nasab, P. Sanjeevikumar, P. K. Maroti, and
J. B. Holm-Nielsen, “Energy management strategy for solid-
state transformer-based solar charging station for electric vehi-
cles in smart grids,” IET Renewable Power Generation, vol. 14,
no. 18, pp. 3843–3852, 2020.

[4] O. H. Milani, S. Motamedi, S. Sharifian, and M. Nazari-Heris,
“Intelligent service selection in a multi-dimensional environ-
ment of cloud providers for Internet of Things stream data
through cloudlets,” Energies, vol. 14, no. 24, p. 8601, 2021.

[5] T. Nguyen, A. Parekh, A. E. Cetin, and B. Prasad, “0537 Inci-
dent Hypertension prediction in obstructive sleep apnea using
machine learning,” Sleep, vol. 46, Supplement_1, pp. A236–
A237, 2023.

[6] C. Xue, J. Wang, and Y. Li, “Model predictive control for grid-
tied multi-port system with integrated PV and battery stor-
age,” IEEE Transactions on Smart Grid, vol. 13, no. 6, 2022.

[7] M. H. Elkholy, H. Metwally, M. A. Farahat, T. Senjyu, and
M. Elsayed Lotfy, “Smart centralized energy management sys-
tem for autonomous microgrid using FPGA,” Applied Energy,
vol. 317, article 119164, 2022.

[8] Q. Hassan, M. Jaszczur, S. A. Hafedh et al., “Optimizing a
microgrid photovoltaic-fuel cell energy system at the highest
renewable fraction,” International Journal of Hydrogen Energy,
vol. 47, no. 28, pp. 13710–13731, 2022.

[9] H. Armghan, M. Yang, N. Ali, A. Armghan, and A. Alanazi,
“Quick reaching law based global terminal sliding mode con-
trol for wind/hydrogen/battery DC microgrid,” Applied
Energy, vol. 316, article 119050, 2022.

[10] L. Tightiz, H. Yang, and A. Addeh, “An intelligent system
based on optimized ANFIS and association rules for power
transformer fault diagnosis,” ISA Transactions, vol. 103,
pp. 63–74, 2020.

14 International Journal of Photoenergy



[11] A. Singhal, V. Thanh Long, and D. Wei, “Consensus control
for coordinating grid-forming and grid-following inverters in
microgrids,” IEEE Transactions on Smart Grid, vol. 13, no. 5,
pp. 4123–4133, 2022.

[12] M. Zand, M. A. Nasab, M. Khoobani, A. Jahangiri, S. H. Hossei-
nian, and A. H. Kimiai, “Robust speed control for induction
motor drives using STSM control,” in 2021 12th Power Electron-
ics, Drive Systems, and Technologies Conference (PEDSTC),
Tabriz, Iran, 2021.

[13] M. A. Hanif andM. S. Bhaskar, “Spider community optimization
algorithm to determine UPFC optimal size and location for
improve dynamic stability,” in 2021 IEEE 12th Energy Conver-
sion Congress & Exposition - Asia (ECCE-Asia), Singapore, 2021.

[14] M. Azimi Nasab, M. Zand, M. Eskandari, P. Sanjeevikumar,
and P. Siano, “Optimal planning of electrical appliance of res-
idential units in a smart home network using cloud services,”
Smart Cities, vol. 4, no. 3, pp. 1173–1195, 2021.

[15] M. A. Nasab, M. Zand, S. Padmanaban, M. S. Bhaskar, and
J. M. Guerrero, “An efficient, robust optimization model for
the unit commitment considering renewable uncertainty and
pumped-storage hydropower,” Computers and Electrical Engi-
neering, vol. 100, article 107846, 2022.

[16] M. Azimi Nasab, M. Zand, S. Padmanaban, and B. Khan,
“Simultaneous long-term planning of flexible electric vehicle
photovoltaic charging stations in terms of load response and
technical and economic indicators,” World Electric Vehicle
Journal, vol. 12, no. 4, p. 190, 2021.

[17] H. Saadatinezhad, A. Ramezani, M. Alizadeh, and E. Hajimalek,
“Fault tolerant load frequency sharing of a multi-area power
system using model predictive control,” The Journal of Engi-
neering, vol. 2022, no. 3, pp. 337–347, 2022.

[18] S. M. Ghazali, M. Alizadeh, J. Mazloum, and Y. Baleghi, “Mod-
ified binary salp swarm algorithm in EEG signal classification
for epilepsy seizure detection,” Biomedical Signal Processing
and Control, vol. 78, article 103858, 2022.

[19] S. A. Motamedi and S. Sharifian, “Multiobjective optimization
in the cloud computing environment for storage service selec-
tion,” in 2018 4th Iranian Conference on Signal Processing and
Intelligent Systems (ICSPIS), Tehran, Iran, 2018.

[20] M. Khalili and R. Hanif, “Optimal instantaneous prediction of
voltage instability due to transient faults in power networks
taking into account the dynamic effect of generators,” Cogent
Engineering, vol. 9, no. 1, article 2072568, 2022.

[21] A. H. K. Asadi, A. Jahangiri, M. Eskandari, and H. Meyar-
Naimi, “Optimal design of high density HTS-SMES step-
shaped cross-sectional solenoid to mechanical stress reduc-
tion,” in 2022 International Conference on Protection and
Automation of Power Systems (IPAPS), Zahedan, Iran, 2022.

[22] M. A. Nasab, M. Zand, A. Hatami, F. Nikoukar,
S. Padmanaban, and A. H. Kimiai, “A hybrid scheme for fault
locating for transmission lines with TCSC,” in 2022 Interna-
tional Conference on Protection and Automation of Power Sys-
tems (IPAPS), Zahedan, Iran, 2022.

[23] M. Alizadeh, S. E. Mousavi, M. T. Beheshti, and A. Ostadi,
“Combination of feature selection and hybrid classifier as to net-
work intrusion detection system adopting FA, GWO, and BAT
optimizers,” in 2021 7th International Conference on Signal Pro-
cessing and Intelligent Systems (ICSPIS), Tehran, Iran, 2021.

[24] S. Rastgoo, Z. Mahdavi, M. A. Nasab, M. Zand, and
S. Padmanaban, “Using an intelligent control method for elec-
tric vehicle charging in microgrids,” World Electric Vehicle
Journal, vol. 13, no. 12, p. 222, 2022.

[25] R. K. Dhavala and H. N. Suresh, “Effects of different batteries
and dispatch strategies on performance of standalonePV/
WT/DG/battery system: a case study,” Energy Storage, vol. 4,
no. 2, article e306, 2022.

[26] M. Elkazaz, M. Sumner, S. Pholboon, R. Davies, and
D. Thomas, “Performance assessment of an energy manage-
ment system for a home microgrid with PV generation,” Ener-
gies, vol. 13, no. 13, p. 3436, 2020.

[27] F. Haroon, M. Aamir, and A. Waqar, “Second-order rotating
sliding mode control with composite reaching law for two level
single phase voltage source inverters,” IEEE Access, vol. 10,
pp. 60177–60188, 2022.

[28] D. K. Jain, S. Neelakandan, T. Veeramani, S. Bhatia, and F. H.
Memon, “Design of fuzzy logic based energy management and
traffic predictive model for cyber physical systems,” Computers
and Electrical Engineering, vol. 102, article 108135, 2022.

[29] H. Aziz, M. Tabrizian, M. Ansarian, and A. Ahmarinejad, “A
three-stage multi-objective optimization framework for day-
ahead interaction between microgrids in active distribution
networks considering flexible loads and energy storage sys-
tems,” Journal of Energy Storage, vol. 52, article 104739, 2022.

[30] A. Jani, H. Karimi, and S. Jadid, “Multi-time scale energy man-
agement of multi-microgrid systems considering energy storage
systems: a multi-objective two-stage optimization framework,”
Journal of Energy Storage, vol. 51, article 104554, 2022.

[31] A. M. Jasim, B. H. Jasim, B. N. Alhasnawi, A. Flah, and
H. Kraiem, “Coordinated control and load shifting-based
demand management of a smart microgrid adopting energy
internet,” International Transactions on Electrical Energy Sys-
tems, vol. 2023, Article ID 6615150, 33 pages, 2023.

[32] T. H. Yang, Y. H. Wen, C. K. Chiu et al., “A pre-charge track-
ing technique in the 40 MHz high-speed switching 48-to-5 V
GaN-based DC-DC buck converter for reducing large self-
commutation loss and achieving a high efficiency of 95.4%,”
IEEE Journal of Solid-State Circuits, vol. 57, no. 7, pp. 2045–
2053, 2022.

[33] X. Sun, J. Qiu, Y. Tao, Y. Ma, and J. Zhao, “Amulti-mode data-
driven Volt/Var control strategy with conservation voltage
reduction in active distribution networks,” IEEE Transactions
on Sustainable Energy, vol. 13, no. 2, pp. 1073–1085, 2022.

[34] K. Lu, Z. Liu, Y. Wang, C. P. Chen, and Y. Zhang, “Adaptive
neural design of consensus controllers for nonlinear multia-
gent systems under switching topologies,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 53, no. 1,
pp. 309–320, 2023.

[35] H. Kang, S. Jung, M. Lee, and T. Hong, “How to better share
energy towards a carbon-neutral city? A review on application
strategies of battery energy storage system in city,” Renewable
and Sustainable Energy Reviews, vol. 157, article 112113, 2022.

[36] A. Golshani and A. Ramezanzad, “Estimation of tensile strength
for granitic rocks by using discrete element approach,” Interna-
tional Journal of Geotechnical and Geological Engineering,
vol. 13, no. 8, pp. 553–557, 2019.

[37] S. F. Zandrazavi, C. P. Guzman, A. T. Pozos, J. Quiros-Tortos,
and J. F. Franco, “Stochastic multi-objective optimal energy
management of grid-connected unbalanced microgrids with
renewable energy generation and plug-in electric vehicles,”
Energy, vol. 241, article 122884, 2022.

[38] B. Singh and P. K. Dubey, “Distributed power generation
planning for distribution networks using electric vehicles: sys-
tematic attention to challenges and opportunities,” Journal of
Energy Storage, vol. 48, article 104030, 2022.

15International Journal of Photoenergy


	Energy Management System for Smart Grid in the Presence of Energy Storage and Photovoltaic Systems
	1. Introduction
	2. Energy Management Optimization for a Grid Connected to the Grid
	2.1. Cost Function
	2.2. Limitations
	2.3. Rule-Based Energy Management Strategy
	2.4. Application of the Bellman Algorithm in Microgrid Energy Management Connected to the Grid

	3. Optimal Microgrid Management
	4. Conclusion
	Abbreviations
	Data Availability
	Conflicts of Interest



