
Research Article
Enhancing Photovoltaic Module Fault Diagnosis with Unmanned
Aerial Vehicles and Deep Learning-Based Image Analysis

J. Jerome Vasanth,1 S. Naveen Venkatesh ,1 V. Sugumaran ,1

and Vetri Selvi Mahamuni 2

1School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, India
2Department of Project Management, Mettu University, P.O. Box 318, Ethiopia

Correspondence should be addressed to Vetri Selvi Mahamuni; vetriselvi.m@meu.edu.et

Received 16 May 2023; Revised 6 July 2023; Accepted 14 July 2023; Published 29 July 2023

Academic Editor: Daniel T. Cotfas

Copyright © 2023 J. Jerome Vasanth et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Artificial intelligence (AI) has evolved into a powerful tool that has wide-spread application in computer vision such as computer-
aided inspection, industrial control systems, and navigation of robots. Monitoring the condition of machineries and mechanical
components for the presence of faults with the aid of image-based automated analysis is one major application of computer vision.
Diagnosing machinery faults from images can be made feasible with the adoption of deep learning and machine learning
techniques. The primary objective of this study is to detect malfunctions in photovoltaic (PV) modules by utilizing a
combination of deep learning and machine learning methodologies, with the assistance of RGB images captured via unmanned
aerial vehicles. Six test conditions of PV modules such as good panel, snail trail, delamination, glass breakage, discoloration,
and burn marks were considered in the study. The overall experimentation was carried out in two phases: (i) deep learning
phase and (ii) machine learning phase. In the initial deep learning phase, the final fully connected layer of six pretrained
networks, namely, DenseNet-201, VGG19, ResNet-50, GoogLeNet, VGG16, and AlexNet, was utilized to extract PVM image
features. During the machine learning phase, feature selection from the extracted features was carried out using the J48
decision tree algorithm. Post selection of features, three families of classifiers such as tree, Bayes, and lazy were applied to
determine the best feature extractor-classifier pair. The combination of DenseNet-201 features with k-nearest neighbour
(IBK) classifier produced the overall classification accuracy of 100.00% among all other pretrained network features and
classifiers considered.

1. Introduction

Photovoltaic energy production is one of the most favourable
alternatives to conventional fossil fuels in the near future. Solar
energy is acclaimed to be a clean and ecofriendly renewable
source of energy. Pollution-free, abundant availability, and
wide accessibility are certain factors that make solar energy
more preferred over other sources of renewable energy [1].
Solar energy captured by photovoltaic modules can be widely
used in the production of sustainable energy. Globally, photo-
voltaic modules (PVM) have seen an increase in installation
over the last three decades due to the drastic drop in

manufacturing prices. Such sudden drop in prices have
grabbed the attention of capitalists, industrialists, and the sci-
entific community [2]. However, numerous challenges persist
in the PV industry, such as (i) the initial installation cost, (ii)
the reliability of the PVM, (iii) induction of various faults,
and (iv) varying climatic conditions [3]. The change in out-
door climatic conditions can lead to various faults in the oper-
ating PVM, like glass breakage, burn marks, discoloration,
snail trail, and delamination [3]. These faults hamper the life
span and reliability and reduces the power output of PVM.
According to recent reports, a loss of 18.9% in the PVM power
output exists annually due to the induction of aforementioned
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faults [4]. To elevate such scenarios, fault diagnosis is necessi-
tated to identify various faults and reduce the negative impacts
accordingly. Timely and precise PVM fault diagnosis can
extend the lifespan and improvise the power output of PVM.
Conventionally, trained professionals visually inspected faults
in PVM that consumed more time, elevated manpower and
nonfeasible for large geographical installation regions. How-
ever, with the evolution in technology, numerous nondestruc-
tive fault diagnosis techniques have come into existence that
includes electroluminescence imaging, photoluminescence
imaging, electrical measurements, and thermographic assess-
ments [5].

Unmanned aerial vehicles (UAVs) are now being used
by many industrialists and capitalists to inspect the occur-
rence of faults in PVM. Due to the technological advance-
ments, UAVs have extended their usage in several fields
like inspections on a large scale, surveillance, traffic monitor-
ing, photography, and weather monitoring. Application of
UAVs are coupled with several advantages such as reduced
human interference, reduced time consumption, and eco-
friendliness. Various applications of UAVs in fault diagnosis
are discussed in several earlier publications. Fault diagnosis
in PVM is done by equipping thermal cameras in UAVs
[6]. Due to the high speed of the UAV and the poor image
resolution of the thermal cameras, this system is restricted
in its ability to detect hotspots at higher temperatures. The
formation of hot spots can be considered a sign for the
existence of corrosion, microcracks, short circuits, partial
shading, and solder bond failure. Since thermal pictures are
made up of thermal radiation information (displayed as
pseudo-colour images), it might be difficult to identify the
above-mentioned fault occurrences from thermal images
[7]. In consideration of the shortcomings listed above,
thermal-imaging cameras are substituted by digital cameras
with high resolution such that minor faults can also be
precisely spotted. High-resolution cameras mounted on
UAVs collect true-colour images from the photovoltaic
modules that help in identifying apparent visible defects like
glass breakage, burn marks, discoloration, snail trail, and
delamination. There are several image processing methods
proposed by various authors to identify PVM faults, namely,
aerial triangulation [8], edge detection [9], extraction of
correlated textural features [10], and image mosaicking [11].
However, the efficiency of all the above-mentioned techniques
heavily depends on the quality of the UAV-acquired photos.
The collected UAV picture resolution may also be negatively
impacted by a number of additional elements such reflection,
haze, wind speed, and vehicle vibration.

Convolutional neural networks (CNN) have demon-
strated superior accuracy in several defect diagnostic
applications while operating on low-resolution pictures.
CNN is regarded as a potential method for extracting and
classifying visual information in computer vision and serves
as the building blocks for deep learning (DL). Due to the bet-
ter image classification and feature extraction skills, deep
learning methods are applied in various sectors including
health care, robotics, and automation industry [12]. Deep
learning algorithms have outperformed more conventional
approaches in classification problems. Numerous studies

have shown how CNN can be applied to identify faults in
PVM. The authors in [13] used an intelligent fault pattern
identification based on deep learning to find and categorise
five test circumstances. The earlier method employed sup-
port vector machine (SVM) algorithm as a classification tool.
With the help of a label cascading autoencoder (CASAE)
architecture, metallic surface flaws were identified by the
authors in [14]. The architecture was used to segment and
locate the defect regions, while a compact CNN was used
to classify the faults into the appropriate classes. CNN was
used by Akram et al. to automatically identify flaws in
electroluminescence images. Using a publicly available
collection of images, the authors obtained a classification accu-
racy of 93.02% [15]. Deep learning techniques were used by Li
et al. to perform fault diagnostics on PVM available in large-
scale PV farms. Deep learning was used to extract features
from images of PVM and classified further [16].

According to the recent research, there are two ways to
create a CNN model architecture: building it from scratch
or utilizing pretrained models available online. Recent
research states that pretrained networks surpass models
developed from the scratch due to the following reasons:
(i) pretrained models are developed by training with large
volumes of data, (ii) ease of access in public repositories,
(iii) customized usage, (iv) extensive compatibility, and (v)
reliable result generation. Among the numerous pretrained
network models, AlexNet [17], DenseNet-201 [18], GoogLe-
Net [19], ResNet 50 [20], VGG16 [21], and VGG19 [22] are
commonly used in image classification. Nevertheless, the
size of the training dataset and the duration of the training
period affect the output of DL models. Therefore, bigger
datasets must be used to make CNN models learn the image
characteristics properly. Dataset acquisition and scarcity of
data aligned towards specific application can be a challeng-
ing scenario. One method for addressing such issues of
dataset expansion is termed as data augmentation. Many
research papers use augmentation based on generative
adversarial networks (GANs). This is done in order to
artificially increase datasets and reduce data shortages [23].
On the other hand, GAN-based algorithms include a lot of
convolutional layers that can necessitate more hardware
and training time. Techniques for rapid and easy data
augmentation might be an effective choice.

Several machine learning (ML) techniques were used to
categorise PVM defects in the literature. The observations
state that ML algorithms can deliver accurate results while
encountering numerical data with less training time and
complexity [24]. The shortcomings of individual techniques
can be reduced, and their strengths can be combined to
provide more reliable results. Such techniques termed as
ensemble methodologies are growing of more interest among
researchers. Traditionally, I-V characteristics acquired at pho-
tovoltaic plants or different analytical models were used to get
numerical data for ensemble learning models [25]. However,
greater research is needed in using ensemble learning algo-
rithms that leverage features extracted from images. Recent
years have seen the introduction of fusing ML and DL tech-
niques to achieve higher levels of accuracy. Some studies that
adopted the aforementioned scenario are provided as follows.
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Kaplan et al. detected Alzheimer’s disease from CT and MR
images with the aid of exemplar histogram-based features
and eight different classifiers [26]. The authors used neigh-
bourhood component analysis for feature selection and eight
machine learning classifiers for classification. Similarly, Baygin
et al. identified kidney stones automatically through exemplar
Darknet19 features with coronal CT images. A kNN classifier
was used to classify the exemplar features that returned an
accuracy of 99.22% [27]. In another study, Dogan et al.,
adopted an ensemble of pretrained residual networks to detect
fire scenario accurately. The model achieved 98.91% and
99.15% using the SVM classifier [28]. The aforementioned
studies provided the motivation for the current research. The
following findings were inferred based on the literature study.

(1) The use of thermal or electroluminescence images
for fault classification has been the subject of interest
in major research works. However, the use of visible
colour images was sparse and briefly considered.
PVM thermographic analyses are only capable of
identifying the existence of hot spots in PV modules

(2) Literature state that deep learning- and machine
learning-based approaches were used to detect and
categorise defects in a PVM. Additionally, the
efficiency and potential of a combination strategy
utilising deep learning and machine learning were
minimally investigated

(3) Data collection was considered a major drawback
since public sources are unavailable and datasets
are scarce

(4) Too many convolutional layers in GAN-based data
augmentation result in greater training time and hard-
ware requirements. Hence, an alternative for GAN is
necessary to artificially expand the collected dataset

(5) The literature makes it clear that just a small number
of defects were considered while classifying and
detecting faults in PVM. As a result, it is critical to
develop a fault detection strategy that employs both
deep learning and ML approaches collectively to
detect various faults

1.1. Research Gap. Based on the findings portrayed in the lit-
erature survey, the following research gaps were identified:

(i) Conventionally, thermographic and electrolumines-
cence images were widely adopted to diagnose faults
in PVM. However, RGB image-based visual fault
detection have not been attempted

(ii) Deep learning and machine learning algorithms
were used to perform classification and fault diagno-
sis tasks individually. However, combining both
machine learning and deep learning approaches is
unexplored

The abovementioned research gaps can be encountered
through the following means: (i) adopting RGB-based image

acquisition to detect visible faults in PV modules. The pro-
cess can be feasible by utilising a UAV equipped with digital
camera. (ii) The literature survey states that deep learning
techniques are excellent feature extractors, while machine
learning techniques provide accurate results over numerical
data. Thus, a fusion of techniques must be attempted.

1.2. Novelty and Contribution. The overall working of the
proposed methodology is presented in Figure 1. The impor-
tant technological contributions are listed below, and the
current work seeks to enhance the current technology.

(1) In the current work, PVM fault identification and
diagnosis were carried out using RGB photos
(obtained from UAVs)

(2) Along with panels in good condition, several aesthetic
flaws such delamination, snail trails, burn marks, glass
breakage, and discolouration were considered in the
study

(3) The collection of captured aerial images was expanded
using data augmentation with different transforma-
tion functions

(4) An attempt to combine ML and DL techniques was
adopted in the study. Six pretrained networks,
namely, DenseNet-201, VGG19, ResNet-50, Goo-
gLeNet, VGG16, and AlexNet, were utilized to
extract image features

(5) J48 decision tree algorithm was used as the feature
selection algorithm. Three families of classifiers such
as tree-based, lazy-based, and Bayes-based were
adopted to perform image classification

2. Experimental Studies

Detecting whether PVM is in excellent or bad condition is
the primary aim of the current study. The goal of the sug-
gested technique is to identify the kind of fault if the state
of PVM is discovered to be deficient. The first two blocks
are detailed in the part below using the suggested technique
shown in Figure 1. The study took place in a lab environ-
ment using modules that were positioned over a platform.

2.1. Experimental Setup. An UAV-based surveillance scheme
outfitted with a high-quality professional camera, a variety of
on-board processors, a centre for ground control, and sensors
makes up the experimental setup [29]. The general operation
of the monitoring platform using UAV is shown in Figure 2.
Aerial photographs of PVM were taken in the laboratorial
condition using a DJI Mavic 2 Zoom drone with an RGB pro-
fessional camera that was remotely piloted using a handheld
remote controller. The acquired photos were transmitted
(wireless) to the ground control station which is further saved
in a storage container. Acquired photos are then subjected to
further offline processing using deep learning and ML tech-
niques, as well as the analysis of the classification results.
Table 1 displays a complete specification of the UAV utilised
for the study. The modules were positioned at six different
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locations across the facility for image collection. Five flawed
and one flawless test modules were examined for UAV image
acquisition. The modules were placed at six different locations
across the facility for purpose of image collection.

The drone was made to fly between a height range of 1 to 5
meters above the PVM during data collection to collect image
data. For the purpose of obtaining PVM images, the drone was
operated twice for around 14minutes with an interval between
each session. For the purpose of collecting image data, each
PVM test condition, namely, snail trails, glass breakage,
delamination, discoloration, good panels, and burn marks,
was set up at various locations across the facility. In around

2.3 minutes, 100 photos were taken for eachmodule condition
and saved into separate folders. The PVM utilized in the
experimental investigation was produced by Udhaya Semi-
conductors Ltd. The comprehensive description of the PVM
employed is described in Table 2, while a sample of the
acquired images is presented in Figure 3. The measured values
were determined under typical test circumstances comprising
of temperature of 25°C, irradiance of 1000W/m2, and AM1.5.

2.2. Experimental Procedure. The complete experiment was
carried out in four stages: (1) dataset construction and
acquisition, (2) feature extraction based on CNN, (3) feature

Photovoltaic modules

UAV based image data
acquisition

Feature extraction
(pre-trained network)

Densenet-201

VGG19

Googlenet

Alexnet

VGG16

Resnet-50
Feature selection
(J48 algorithm)

Feature classification
(tree, lazy and bayes)

Figure 1: The overall workflow of the proposed methodology.
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Figure 2: PVM monitoring platform using UAV.
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selection based on the J48 algorithm, and (4) usage of
various classifiers for feature classification. In the current
research, an UAV was used to collect image data from differ-
ent PVM test conditions, namely, discoloration, glass break-
age, snail trail, burn marks, delamination, and good panel.
Figure 4 depicts the complete picture of the data collection
apparatus. As shown in Figure 4, the controller held in hand
was employed to direct the UAV’s flight and includes fea-
tures for temporarily storing the PVM images that are cap-
tured. By using data cables or memory cards, these images
were subsequently uploaded to storage systems. For the pur-
pose of the experiment, a total of 600 images (100 images for
each test condition) were gathered and divided into several
classes. Deep learning-based models, on the other hand,
may underperform with small amount of datasets. Hence,
huge datasets are essential for training the model, thereby
enhancing the classification accuracy through the proper
retrieval of characteristics with greater significance.

Acquiring image dataset is considered a stimulating task
while employing CNN. The difficulties encountered during
dataset creation can be resolved by data augmentation tech-
niques. With the use of data augmentation approach, the
number of images acquired was artificially boosted from
600 to 3150 (a homogenous dataset including 525 images

for each condition). The images were subjected to a series
of transformations such as blur, flip, rotation, noise, shift,
zoom, and warp to expand the image data collected.
Table 3 lists the settings that were utilised to modify the
images. The J48 decision tree (DT) algorithm was used to
identify features from the extracted features that are highly
significant and contribute towards classification. The PVM
test situations are then classified into their appropriate clas-
ses using various classifiers based on the chosen features.

2.3. Visual Faults in PVM. Faults in PVM can be induced
due to the delicate circumstances brought on by varying
climatic conditions, high environmental uncertainties, and
thermal loads. Such scenarios can impact PVM perfor-
mance, dependability, and operational lifespan. The most
frequent visual fault occurrences in a PVM are described
as follows, and a brief outline is provided in Table 4.

2.3.1. Glass Breakage. Glass breakage in PV modules prevails
due to the influence of several factors like harsh climatic
conditions, improper installation, poor packing, road shocks
during transportation, thermal stresses, and sudden impacts.
The front glass cover of a PVM is supported by a tempered
glass which, on complete breakage, does not affect the PVM
working. However, glass breakage fails to deliver the
standard power output since it paves the way for moisture
penetration that assists oxide formation and corrodes the
PVM interconnects.

2.3.2. Burn Marks. Burn marks in a PV module can be
induced due to failed solder bons, ribbon tear in PV cells,
and localized heating. The presence of burn marks can be
a concern for safety and reliability in PV modules.

2.3.3. Delamination. Delamination occurs in a PVM due to
the loss in adhesive properties between the PV cell and
EVA encapsulant that worsens over changing climatic con-
ditions. The phenomenon of delamination can be observed
predominantly at corners and edges of PVM that can incur
water penetration, minimized radiation, increased reflection,
electrical issues, and power loss. Increased exposure to mois-
ture and heat can elevate the series resistance and salinity
inside PVM, thereby accelerating the degradation of EVA.

2.3.4. Discoloration. Discoloration is the appearance of
browning or yellowing in PV cells that signifies degradation
phenomenon. The change in color of the encapsulant mate-
rial was induced by the photothermal (UV ray exposure)
and thermal (heat exposure) mechanisms. The change in
color can differentiate the transmittance of light that can
reduce sunlight absorption and lead to output power loss.
The primary reason for the occurrence of discoloration is
the chemical reaction inside the encapsulant material due
to water and UV ray penetration at high temperatures.

2.3.5. Snail Trail. Snail trails are a significant representation
of the presence of microcracks inside a PVM. In general,
snail trails originate from the corners of a PV cell and grad-
ually expand due to the thermal stresses imposed. The
occurrence of snail trails is enhanced due to the interference

Table 1: Specifications of UAV adopted.

Specification Values

Maximum resolution 4000 × 3000
Cruise endurance 0.28-0.70 hour

Altitude from ground 20-30m

Weight of the drone 1.6 kg

Wing span 0.354m

Operational range 5 km

Length of the drone 322mm

Picture sensor size 6:18mm× 4:50mm
Propulsion Electric power

Flight speed 10-20m/s

Model name DJI Mavic 2 zoom

Table 2: Specifications of PVM.

Parameter Value

Name of the model USP-36

Efficiency 9–10%

Maximum power point current (Impp) 2.1

Maximum power 36W

Number of cells 36

Efficiency 9–10%

Type Monocrystalline

Voltage (Voc) 20.6 V

Aspects and dimensions 1011 × 435 × 36mm
Weight 3.5 kg

Current (Isc) 2.25 A
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of UV radiation and high-temperature application. The rate
of snail trail formation accelerates during the summer due to
an increase in thermal stress applied on PVM. Additionally,
studies state that the selection of back cover and EVA mate-
rials can also play a major role in the formation of snail
trails. Microcracks in a PV cell, in combination with UV
radiations, mechanical load, and freezing facilitate the prev-
alence of snail trails in PVM. Pale grey or black color repre-
sentation in silver interconnects can also be a significance for
snail trail occurrence. The panels with snail trail appearance
must be replaced, and the phenomenon is irreversible.

3. Feature Extraction Based on CNN

The present section details the extraction of features
followed by the selection of features utilised in the current

research, as well as a brief overview of CNN. Several networks,
including AlexNet, DenseNet-201, Resnet-50, GoogLeNet,
VGG16, and VGG19, were used for feature extraction. The
most significant characteristics were identified using the
decision tree—J48 algorithm. Also, brief explanations of vari-
ous adopted classification samples are given below.

3.1. A General Summary of Convoluted Neural Network.
Deep learning has recently emerged as a powerful technol-
ogy that has been utilised across a wide spectrum of machine
vision and computer intelligence activities. Deep learning
algorithms are conceived and implemented using nonlinear
convolutional neural networks (CNN). CNN are widely rec-
ommended feature extraction tools due to their remarkable
capacity to extract high-level visual features and compatibility
with low-resolution pictures [35]. In addition to multiple
hyperparameters and special layers, the CNN architecture
includes the pooling layer, convolutional layer, and fully
connected layer. A brief description of the CNN layers is
presented in Table 5.

Throughout the training process, the convolutional and
pooling layers continuously learn the patterns generated by
the images. In CNN models, the error backpropagation
approach is used to automatically modify the filters/weights,
thereby minimising the occurrence of errors. In general,
CNN models are built in such a way that they absorb

Figure 3: Image samples obtained from the drone (UAV).

Photovoltaic modules

Unmanned aerial vehicle

Remote controller

Data transfer

Data storage & processing

Figure 4: UAV-assisted aerial image data collection.

Table 3: Image transformations used for data augmentation.

Transform operation Value

Warp 40

Flip angle 90°

Rotation angle 0°-180°

Noise Random

Blur Gaussian
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important characteristics from image input and contribute
favourably to classification performance. To train and
develop a CNN architecture from scratch, massive amounts
of correctly labelled data are required. On the other hand,
creating such vast datasets takes more time, needs high levels
of human intellect, and makes extensive use of data analyt-

ics. Despite the difficulties outlined above, some researchers
have successfully approved and confirmed the use of pre-
trained networks for unique applications. Since pretrained
networks have been trained on millions of pictures, they
offer a remarkable feature extraction abilities. Several pre-
trained networks like VGG19, VGG16, AlexNet, Resnet-50,

Table 4: Various PVM visual faults.

S. no Visual faults in PVM Reason for occurrence of fault Effect on modules Images

1 Delamination [30]
Loss of adhesion between the glass,

encapsulant, and rear cover.
Corrosion caused by
moisture intrusion.

2 Glass breakage [31]
Physical harm caused during

installation and transit, thermal stresses.
Lower radiance, corrosion,
and invasion of moisture

3 Snail trail [32] Microcracks along edges caused by stress. Quicker degradation

4 Discoloration [33]
Increased exposure to heat,
humidity, and UV radiation.

Power loss, physical colour changes
in modules (yellowing or browning).

5 Burn marks [34]
Failure of the solder bond,

ribbon tearing, and localised heating.
Risks to safety and

decrease in performance.

Table 5: Brief summary about various layers in CNN architecture.

Layer Description

Convolutional layer
The primary feature extraction or learning layer, which is made up of various filters and learnable

kernels, develops an ideal feature map based on the input data and formulates distinct patterns for each
of the data provided as input.

Pooling layer
The layer is layered with the convolutional layer, which is recognised as a downsampling layer since

it focuses largely on lowering dimensional complexity.

Fully connected layers
A deep learning algorithm penultimate layer which is in charge of generating vectors of picture matrices.

For multiclass issues, fully linked layers with softmax activation functions execute the classification
operation (sigmoid activation for binary class problems)
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DenseNet-201, and GoogleNet have been explored in vari-
ous literatures, and their pretrained versions are accessible
freely on the internet.

3.2. Extraction of Features Using Pretrained Networks. The
feature extraction procedure compresses the number of var-
iables to interpret and explain a substantially bigger amount
of data. To aid classification, CNN develops features to
differentiate between every class automatically based on the
dataset labels. Transfer learning has grown into an efficient
approach for extracting and categorising unique image
datasets by incorporating only a few changes to the final
few layers. A brief description of the pretrained networks
adopted is presented in Table 6. In the current study, multi-
ple pretrained networks such as VGG19, VGG16, AlexNet,
ResNet50, DenseNet 201, and GoogleNet were used to
extract features from PVM aerial images. The features from
every network were derived from the final layer (fully con-
nected) that consists of 1000 features. The collected features
were stored as a data file in “.csv” format that was used for
further processing.

4. J48 Algorithm for Feature Selection

Feature selection involves identification and selection of the
most relevant features that can effectively aid in predicting
targeted classes. The addition of irrelevant data might
degrade the classifier performance and considerably increase
the computing complexity. As a result, the feature selection
procedure eliminates less significant features in order to
increase the performance of the classification algorithm.
Decision tree (DT) algorithms are commonly employed in
feature selection since they can effectively and consistently
capture relevant information. DT is a graphical representa-
tion that appears like a tree and is used to generate classifica-
tion rules. A tree is made up of roots, nodes, leaves, and
branches. The characteristics of classification are depicted
as the nodes that are connected through branches from root
to leaf. In a DT, the leaves represent the unique labels of dif-
ferent classes, while the nodes represent the classes that are
to be categorized. The branches identify and reflect the com-
munal decisions that result in the leaves [36]. Feature selec-
tion in decision trees begins at the root and descends via the

nodes till a pure leaf is successfully located. At the decision
node, highly relevant and contributing attributes that
influence categorization are identified through appropriate
criteria of estimation. Among the known DT algorithms,
J48 is frequently adopted for the process of feature selection.
For the current study, feature selection was conducted with
the J48 DT algorithm on the extracted features of all
networks (VGG16, AlexNet, ResNet50, DenseNet 201, and
GoogleNet). The features displayed in the decision tree were
recorded, and an analysis was performed to determine the
optimal number of features necessary for feature classifica-
tion. Further experimentation was performed to identify
the optimal number of features from the represented deci-
sion tree features. The experiment consisted of removing
the least significant features and recording the classification
accuracy to determine the optimal number of features. Thus,
the impact of features based on the variations in feature
combinations for every network can be observed from
Figures 5(a)–5(f). The features (among 1000 features) that
were selected in the J48 decision tree are presented in
Table 7. The features portrayed in Table 7 are depicted in
order of significance, i.e., from high to low.

To understand the process of feature selection, for instance
considering the feature selection process for the GoogLeNet
pretrained network. Figure 5(c) shows the impact on classifi-
cation accuracy for varying counts of features. According to
Figure 5(c), the classification accuracy varies between 63.23%
and 96.54%. Notably, a high classification accuracy of
96.12% was obtained using only 23 selected features. Selecting
23 features can be considered an optimal factor since more
quantity of features can demand sophisticated computational
devices. Additionally, the model complexity in computation
increases which results in larger consumption of time and
money. The same process was repeated for all the pre-
trained networks.

5. Feature Classification

Feature classification is the procedure for categorising
instances once they have been identified based on their fea-
tures. The features are ranked in the order of decreasing
importance with the most significant features listed first
and the least significant ones listed last. During tree

Table 6: Specification of pretrained network considered.

Pretrained
network

Number of
layers

Number of learnable
parameters

Size of
network

Input
image size

Key features

VGG19 19 138 million 549MB 224 × 224 Deep architecture with small 3×3 convolutional filters

VGG16 16 138 million 528MB 224 × 224 Deep architecture with small 3×3 convolutional filters

AlexNet 8 60 million 233MB 227 × 227 Use of ReLU activation functions and dropout
regularization

ResNet50 50 25.6 million 102MB 224 × 224 Introduction of residual connections to solve the
vanishing gradient problem

DenseNet 201 201 20 million 80MB 224 × 224 Densely connected convolutional neural network with
efficient memory usage

GoogleNet 22 6.8 million 27MB 224 × 224 Use of inception modules for efficient use of
computational resources
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visualization, the features of lesser relevance and value are
ignored. In this study, there are three types of classifiers,
namely, (i) tree-based (ii) Bayes-based, and (iii) lazy-based

classifiers. The selected features were separated into training
data and testing data. The data were then tested on various
classifiers for training accuracy, validation accuracy, and
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Figure 5: Optimal feature selection process.
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testing accuracy, out of which, the best classifiers are
selected. A short summary of the adopted classifiers is pre-
sented in Table 8.

6. Results and Discussions

In this section, the performance of multiple classifiers is
evaluated using the features selected through the J48 deci-
sion tree algorithm for each pretrained network examined
in the study. Snail trails, glass breakage, delamination, dis-
coloration, good panels, and burn marks were the six condi-
tions of PVM considered. The image dataset was built with
3150 images comprising 525 images per condition, using
the data augmentation technique. A train-test split ratio of
80%-20% was adopted in the study, i.e., 420 images for train-
ing and 105 images for testing. A tenfold cross-validation
approach was utilized to determine the validation accuracy
of the classifiers. The performance of tree-, lazy-, and
Bayes-based classifiers for the features extracted and selected
from pretrained networks is evaluated in this section.

6.1. Performance Evaluation of Tree-Based Classifiers. In the
present study, 17 tree-based classifiers were utilized to per-
form classification on the selected features obtained from
the pretrained networks considered. The tree-based classi-
fiers considered in the study are best first tree, cost-
sensitive forest, decision stump, extra trees, forest penalizing
attribute, functional tree, hoeffding tree, J48, J48graft, least
absolute deviation tree, logistic model tree, Naïve Bayes tree,
random forest, optimized forest, random tree, reduced error
pruning tree, and simple cart. The training, validation, and
test accuracies of the adopted tree-based classifiers for every
pretrained network are presented in Tables 9(a)–9(c).

To compare the results obtained, two parameters,
namely, test accuracy and computational time, were taken
into consideration. Based on the test accuracies obtained
from Table 9(c), one can infer the following. The random
forest classifier performed well for all the pretrained network
features by producing a classification accuracy above 99%
(approx.). The pretrained network VGG-19 pretrained

network with random forest produced a classification accu-
racy of 99.84% in a computational time of 0.74 s followed
by DenseNet-201 (99.84% in 0.94 s, random forest), VGG-
16 (99.68% in 0.63 s, random forest), ResNet-50 (99.68% in
15.24 s, random forest), GoogleNet (99.23% in 0.71 s, ran-
dom forest), and AlexNet (99.52% in 0.02 s, random forest),
respectively. The confusion matrix in Figure 6 shows the
resulting classification accuracy of VGG-19 with the random
forest algorithm. The diagonal components of the confusion
matrix indicate cases that were correctly identified, whereas
the areas around the diagonal matrix represent cases that
were incorrectly classified. The test circumstances in a cer-
tain research are represented by the column and row labels
in the confusion matrix. From Figure 6, one can observe that
only one instance among 630 instances was misclassified
while considering random forest classifier with VGG19 fea-
tures. Overall, the random forest algorithm portrays the best
result for all pretrained networks.

6.2. Performance Evaluation of Bayes-Based Classifiers. Bayes
classifiers are probability-based classifiers that work on the
Bayes theorem and found effective on large datasets. In the
present study, four different Bayes classifiers, namely, Naïve
Bayes updateable, Naïve Bayes multinomial, Naïve Bayes,
and Bayes net, were considered. The performance of Bayes
classifiers for different pretrained networks is presented in
Tables 10(a)–10(c).

Based on the testing accuracy obtained fromTable 10(c), it
can be inferred that the pretrained network AlexNet gives the
best results compared to the other pretrained networks with a
classification accuracy of 94.60% and a computational time of
0.18 s with Bayes net classifier which is followed by DenseNet-
201 (94.13% in 0.04 s, Bayes Net), ResNet-50 (93.65% in 0.05 s,
Bayes net), VGG-19 (89.84% in 0.01 s, Bayes net), GoogleNet
(89.33% in 0.02 s, Bayes net), and VGG-16 (87.30% in 0.03 s,
Bayes Net), respectively. The confusion matrix in Figure 7
shows the derived classification accuracy of AlexNet using
the Bayes net classifier. Overall, utilising AlexNet with Bayes
net classifier, 539 instances of the 630 instances in the test
set were correctly categorised, whereas 91 occurrences were

Table 7: Pretrained network features selected in decision tree.

Pretrained network DenseNet-201 ResNet-50 GoogleNet AlexNet VGG16 VGG19

No. of selected features 33 30 23 31 28 37

Table 8: Brief summary about various types of classifiers.

Classifier Description

Tree-based classifiers
Tree-based classification models are a form of supervised machine learning method that divides

training data into subsets using a sequence of conditional statements. Each consecutive split increases
the model’s complexity, which may then be utilised to generate predictions.

Bayes-based classifiers
A statistical method of inference known as Bayesian classification uses probability to convey
uncertainty about the connection being learned and is founded on a distinctive concept of

what it means to learn from data.

Lazy-based classifiers
Lazy-based classifier models collect cases during training and do no meaningful work until
classification. The training sample is distinguished from the test sample by using a lower

Euclidean distance in which the equivalent condition is assumed to be the training samples [37].
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Table 9: Training (a), validation (b), and test (c) accuracies of tree-based classifiers for various pretrained networks.

(a) Training accuracy of tree-based classifiers for various pretrained networks

Classifier
Training accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

BF tree 99.20 98.76 98.41 98.41 98.45 98.13

CS forest 99.01 99.52 99.44 99.28 99.52 99.88

Decision stump 32.14 33.09 31.42 31.98 29.84 32.65

Extra tree 100.00 100.00 100.00 100.00 100.00 100.00

Forest PA 99.72 99.88 99.84 99.84 99.48 99.68

FT 99.92 99.96 99.76 99.88 99.48 99.92

Hoeffding tree 93.05 80.91 31.90 90.59 72.06 51.38

J48 99.28 99.20 98.96 99.00 98.92 99.08

J48graft 99.28 99.20 98.96 99.00 98.92 99.08

LAD tree 89.16 91.50 86.74 89.40 86.26 89.60

LMT 99.56 100.00 99.96 99.80 99.92 99.72

NB tree 99.88 100.00 99.96 100.00 99.84 99.96

Optimized forest 100.00 100.00 100.00 100.00 100.00 100.00

Random forest 100.00 100.00 100.00 100.00 100.00 100.00

Random tree 100.00 100.00 100.00 100.00 100.00 100.00

REP tree 95.59 97.14 95.11 95.83 95.19 96.82

Simple cart 99.24 98.92 98.05 98.25 98.45 98.92

(b) Validation accuracy of tree-based classifiers for various pretrained networks

Classifier
Validation accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

BF tree 93.88 94.84 93.21 93.88 93.13 94.08

CS forest 95.79 97.30 95.63 95.55 96.03 96.66

Decision stump 32.10 33.05 31.42 31.78 30.07 32.53

Extra tree 91.78 91.58 91.54 91.70 91.15 91.34

Forest PA 97.93 98.69 97.26 98.49 97.69 97.38

FT 98.37 99.13 97.73 98.57 97.42 98.38

Hoeffding tree 92.50 91.11 88.49 90.03 83.92 89.84

J48 94.44 95.39 93.61 93.84 94.20 94.20

J48graft 94.24 94.23 93.84 93.73 93.92 96.65

LAD tree 88.01 89.48 87.06 87.34 83.76 87.97

LMT 98.69 99.48 97.93 98.69 97.50 98.37

NB tree 93.01 93.49 94.66 92.38 88.41 89.88

Optimized forest 99.16 99.64 98.69 99.32 98.69 99.96

Random forest 99.08 99.68 98.76 99.36 98.73 99.28

Random tree 93.01 94.84 93.25 98.05 93.21 92.81

REP tree 92.81 93.45 91.82 91.36 91.86 91.78

Simple cart 94.28 95.31 93.45 93.69 93.25 94.44

(c) Test accuracy of tree-based classifiers for various pretrained networks

Classifier
Test accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

BF tree 95.55 95.23 93.33 93.96 94.12 93.17

CS forest 96.66 97.77 96.19 95.39 96.19 97.62

Decision stump 32.69 33.17 37.52 31.90 29.36 32.69

11International Journal of Photoenergy



incorrectly classified. In addition, the Bayes net classifier,
among other Bayes-based classifiers, can be used for real-
time defect detection in a photovoltaic module.

6.3. Performance Evaluation of Lazy-Based Classifiers. k-
nearest neighbour (IBK), K-star, and locally weighted learning
(LWL) were the lazy classifiers considered in the present study.
The adopted classifiers’ classification performance for the pre-
trained networks considered is presented in Tables 11(a)–11(c).

Based on the test accuracies obtained from Table 11(c), it
can infer that the pretrained network DenseNet-201 gives
the best results compared to the other pretrained networks
with a classification accuracy of 100.00% and a computa-

tional time of 0.01 s with the IBK classifier which is followed
by AlexNet (99.84% in 0.01 s, IBK), VGG-19 (99.84% in
0.05 s, IBK), GoogleNet (99.80% in 0.03 s, IBK), ResNet-50
(99.68% in 0.02 s, IBK), and VGG-16 (99.52% in 0.02 s,
IBK), respectively. The confusion matrix in Figure 8 shows
the obtained classification accuracy of DenseNet-201 with
the IBK algorithm. The confusion matrix presented in
Figure 8 states that there were no misclassified instances
for the IBK algorithm for DenseNet-201 features.

6.4. Evaluation of Best Classifier for every Pretrained Network
Considered. The current study conducted a comprehensive
analysis of the pre-trained networks feature extraction

Table 9: Continued.

Classifier
Test accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

Extra tree 93.17 91.74 90.85 91.26 92.69 92.53

Forest PA 98.09 98.57 97.71 98.73 97.69 97.93

FT 98.41 99.2 97.90 99.04 97.3 98.41

Hoeffding tree 93.01 80.31 19.42 89.84 70.79 49.68

J48 95.23 95.07 94.66 94.13 94.76 94.44

J48graft 95.71 95.23 95.80 93.96 93.96 94.28

LAD tree 89.52 90.15 84.57 86.98 83.33 86.82

LMT 99.20 99.74 98.28 99.36 98.25 98.41

NB tree 94.44 95.55 95.42 96.19 93.17 93.33

Optimized forest 99.04 99.80 99.03 99.68 99.36 99.80

Random forest 99.52 99.84 99.23 99.68 99.68 99.84

Random tree 94.44 94.12 90.47 90.31 93.53 94.60

REP tree 92.69 95.39 90.85 91.74 92.16 93.49

Simple cart 95.55 95.07 93.33 94.12 94.28 94.12

Boldface entries represent the highest values obtained.
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Figure 6: Confusion matrix of pretrained VGG19 features with random forest classifier.
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ability and the effectiveness of ML classifiers in identifying
PVM faults. Based on the results obtained in Sections 6.1–
6.3, one can infer that random forest (tree-based), Bayes

net (Bayes-based), and k-nearest neighbour (lazy-based)
were the top-performing classifier. The obtained results
can be consolidated and presented in Table 12.

Table 10: Training (a), validation (b), and test (c) accuracies of Bayes-based classifiers for various pretrained networks.

(a) Training accuracy of Bayes-based classifiers for various pretrained networks

Classifier
Training accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

Bayes net 96.38 96.58 93.25 96.15 92.18 94.04

Naïve Bayes 93.01 91.15 89.24 90.63 84.48 90.35

Naïve Bayes multinomial text 16.66 16.66 16.66 16.66 16.66 16.66

Naïve Bayes updateable 93.01 91.15 89.24 90.63 84.48 90.35

(b) Validation accuracy of Bayes-based classifiers for various pretrained networks

Classifier
Validation accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

Bayes net 93.01 93.13 89.88 92.77 88.53 90.31

Naïve Bayes 92.50 91.15 88.49 90.07 83.92 89.80

Naïve Bayes multinomial text 16.66 16.66 16.66 16.66 16.66 16.66

Naïve Bayes updateable 92.50 91.15 88.49 90.07 83.92 89.80

(c) Test accuracy of Bayes-based classifiers for various pretrained networks

Classifier
Test accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

Bayes net 94.60 94.13 89.33 93.65 87.30 89.84

Naïve Bayes 93.01 91.42 88.09 89.84 83.96 88.09

Naïve Bayes multinomial text 16.66 16.66 20.00 16.66 16.66 16.66

Naïve Bayes updateable 93.01 91.42 89.19 89.84 83.96 88.09

Boldface entries represent the highest values obtained.
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The results portrayed in Table 12 infer that IBK classifier
displays the highest classification accuracy for all pretrained
network features except VGG16. Random forest achieved
the highest classification accuracy for VGG16 feature. Addi-
tionally, both IBK and random forest portrayed a similar
performance for ResNet-50 and VGG19 features. However,

considering the computational time consumed by both the
classifiers, IBK (0.02 s for ResNet-50 and 0.05 s for VGG19)
consumed lesser time than random forest (15.24 s for
ResNet-50 and 0.74 s for VGG19). Thus, one can conclude
that DenseNet-201 features with IBK classifier can produce
accurate and precise classification accuracy.

Table 11: Training (a), validation (b), and test (c) accuracies of lazy-based classifiers for various pretrained networks.

(a) Training accuracy of lazy-based classifiers for various pretrained networks

Classifier
Training accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

IBK 100.00 100.00 100.00 100.00 100.00 100.00

K-star 100.00 100.00 100.00 100.00 100.00 100.00

LWL 73.57 81.07 82.97 83.33 81.15 82.93

(b) Validation accuracy of lazy-based classifiers for various pretrained networks

Classifier
Validation accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

IBK 99.24 99.84 99.44 99.68 99.20 99.28

K-star 99.24 99.64 99.13 99.48 98.96 98.80

LWL 73.17 80.31 16.66 82.57 79.92 82.34

(c) Test accuracy of lazy-based classifiers for various pre-trained networks

Classifier
Test accuracy (%)

AlexNet DenseNet-201 GoogleNet ResNet-50 VGG16 VGG19

IBK 99.84 100.00 99.80 99.68 99.52 99.84

K-star 99.52 100.00 99.04 99.52 99.52 99.36

LWL 76.03 80.00 82.85 82.22 77.77 80.63

Boldface entries represent the highest values obtained.
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Figure 8: Confusion matrix of pretrained DenseNet-201 features with the IBK classifier.

14 International Journal of Photoenergy



6.5. State-of-the-Art Performance Comparison. The perfor-
mance of the proposed methodology can be assessed with
the aid of results delivered in various state-of-the-art tech-
niques. Table 13 displays the state-of-the-art techniques
adopted for classifying PVM fault conditions. The results
portrayed prove that the present methodology outclasses
state-of-the-art results.

7. Conclusion

The current study established the application of various
types of classifiers to differentiate between different PVM
test conditions using aerial images. Several deep learning
pretrained network models were utilised to extract aerial
image features, and the most noteworthy features were
selected using the DT (J48) algorithm. Three types of classi-
fiers were used in the present study, namely, tree-based,
Bayes-based, and lazy-based classifiers. Feature selection
was performed using the J48 decision tree algorithm. The
selected data was analysed with the classifier performance
using training accuracy, validation accuracy, and testing
accuracy. The results obtained help in identifying the best
pretrained network feature and classifier pair to detect real-
time defects in a PVM. DenseNet-201 features along with
k-nearest neighbour (IBK) classifier produced the maximum
classification accuracy of 100.00%. The obtained accuracy
value states that there were no misclassified instances, mak-
ing the solution more feasible for real-time deployment. This
research will result in enhanced energy output in PV power

generation by decreasing system failure and downtime. The
presented methodology can be deployed into real-time mon-
itoring systems for instantaneous results. As a future scope,
the computational effective solutions can be developed to
provide cost benefits for the investors. Apart from the
numerous advantages stated in the study, certain limitations
do persist that are listed as follows.

(i) The developed model works effectively with the data
acquired in this study. However, the adaptability of
the model for different dataset was not examined yet

(ii) Prior knowledge of UAV operation is necessary to
control the flight operation

(iii) Acquisition of fault panels can be a challenging task.
Additionally, natural fault occurrences can consume
more time to generate for a new product. Further-
more, fault simulations are questionable in the case
of PVM

(iv) Data acquisition is considered the prime challenge,
accompanied by computational resources and capi-
tal, while developing deep learning models

(v) The present work is oriented towards the detection
of visual faults alone
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