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This article proposes a hybrid scheme of maximum power point tracking (MPPT) based on artificial neural network (ANN) and
ripple current correlation (RCC). ANN model is established using the data generated through RCC MPPT. Scaled conjugate
gradient ANN is applied to gauge the performance improvement. The proposed scheme is validated through simulations. For
this, the proposed system is applied to three different environmental scenarios which are standard testing condition of a PV
module, under variable irradiance condition, and variable temperature condition. It is established that the proposed system is
well capable of tracking the maximum power point under various test conditions.

1. Introduction

Solar photovoltaic (PV) energy is an important area of
interest among the energy producers. With rapid techno-
logical progress, the prices of PV modules have declined
substantially, and hence, the power generation through
PV is witnessing exponential growth [1]. The emergence
of large-scale grid-connected solar PV systems has posed
substantial challenges to power networks in terms of flexi-
bility, efficiency, and energy balance [2, 3]. The output
characteristics of PV modules are functions of irradiance
and temperature and vary nonlinearly over the range of
operating voltage. This requires algorithmic calculations to
operate the PV module at the maximum power it can gen-
erate under any given environmental condition [4, 5].
These algorithms are termed as maximum power point
tracking (MPPT) algorithms. A categorization and thor-
ough list of numerous MPPT algorithms are presented in
[6, 7]. In addition, the performance assessment of commer-
cially used MPPT techniques such as hill climbing (HC),

perturb and observe (P&O), and incremental conductance
(InC) is done in [8]. Even though these approaches are widely
used and can track maximum power point (MPP) under
steady weather conditions, each of them has its own set of
drawbacks as listed in [9-12].

Artificial intelligence control has been used in a wide
range in many fields such as machine drive control and
power electronics control. The use of fuzzy logic controllers
has been increased over the last decade because of its sim-
plicity, ability to deal with imprecise inputs, lack of need
for an accurate mathematical model, and ability to handle
nonlinearity. Due to their robustness, simple design, and
capability of dealing with uncertain weather design, artificial
intelligence-based techniques such as the fuzzy logic control-
ler (FLC), artificial neural networks (ANNs), and adaptive
neurofuzzy inference systems (ANFIS) are adopted as a con-
troller to extract the maximum power that the PV modules
produce [13-15]. Moreover, these algorithms do not require
prior knowledge of the exact model of the system [16-18].
FLC-based MPPT techniques can be evaluated by trial and
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error process. The design of FLC MPPT techniques is lim-
ited due to the long time consumed to generate the suitable
membership functions [19, 20].

Artificial neural network (ANN) is among the modern
methods to effectively track the maximum power point
[21]. Like other MPPT methods, the performance of ANN-
based MPPT system is categorized in terms of accuracy, con-
vergence speed, implementation difficulty, stability, cost, and
electronics equipment requirement [22]. The ANN system is
based on a biological network of the human brain. It is
trained and evaluated using the nonlinear characteristics of
the PV system. Thus, it learns to alter the behavior of the
solar power system based on the inputs such as current, volt-
age, and irradiance [23]. ANN has a number of advantages,
including outstanding accuracy in modeling and solving
nonlinear processes [24]. An artificial neural network
(ANN) can be employed to improve the speed and accuracy
of solar power system modeling and forecasting [25]. It has
been demonstrated to have a quicker response time and less
oscillation in the vicinity of MPP [26].

A survey of the literature reveals that little work has been
done with the Levenberg-Marquardt (LM), Bayesian regular-
ization (BR), and scaled conjugate gradient (SCG) variants of
ANN algorithms [27]. In the literature and published publi-
cations, there are some studies based on comparative exami-
nations of different MPPT variants for solar PV systems, and
there still exists a substantial research gap. To bridge this
research gap, ANN-based algorithms with the RCC method
for MPPT solar energy harvesting are proposed in this article.
A comprehensive strategy is used to analyze the performance
characteristics of the SCG-ANN algorithms using training,
validation, and analysis of real data sets of solar irradiance,
temperature, and generated voltage. A simulated model is
created using MATLAB/Simulink, which provides a clear
scenario for the deployment of ANN MPPT algorithms in
solar PV systems.

2. State of the Art of ANN and MPPT

A neural network is an information processing system [28].
Imported data is used to train ANN, which is known as
supervised learning or training. ANN, like the human brain,
is made up of a vast number of neurons [29]. During the
training phase, the consequences will be adjusted in order
to make precise predictions, and the weight quantities will
remain constant until the error surpasses the allowable value
[30]. The two-layer ANN model is demonstrated in its most
basic form as depicted in Figure 1. Corresponding to that of
the neural network on the right side, the inputs might be
merged into the network at different moments. Complete
input-output parameter data sets are separated into two
groups, one with a greater proportion of data points called
the training data set, and the other with a lower percentage
of data points called the test data set, which is used to train
a neural network. In the second group, the remaining data
points are utilised to check what the neural network has
learned, referred to as the validation data set [31]. The neu-
ral network’s input-output parameters and their training
data points are imported. This network will be conditioned
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FIGURE 1: Structure of a two-layer ANN.

until an allowed error occurs. After receiving an actual error,
by importing the input parameters from the validation data
set and predicting the corresponding output parameter
values, the qualified network is validated.

These extended validation dataset output parameter
values are linked to the genuine validation data set output
parameter values. If the difference between the real and
projected outcomes is smaller than the maximum allowed,
the qualifying neural network can be proposed as the best
prediction neural network.

3. Modeling of Photovoltaic System

A PV module is made up of PV cells that are coupled in
series and parallel. The series and parallel combination
would enhance the voltage and current of the array. A sim-
ilar electrical circuit of a solar cell comprised of a current
source, diode, and series and parallel resistances to best rep-
licate the actual characteristics of the solar cell. The series
and parallel resistances represent the leakage current losses
and contact resistance losses in a solar cell, respectively.
Figure 2 shows the single-diode model of the single solar cell.

The equation describing the relationship of the solar
irradiation with generated current is as follows:

I=1y~1I,exp (q(Vpy + IR /&K, TNy) =1, (1)
where I, is the diode saturation current and V, is the thermal
voltage whose value is aK, T/q, where T is the temperature in
kelvin, K, is the Boltzmann constant, g is the charge on the
electron and « is ideality factor.

The P-V and I-V curves for the PV system with uniform
irradiation are shown in Figure 3.

4. Ripple Correlation Control

Ripple correlation current maximum power point tracking
(RC-MPPT) is a technique used in photovoltaic (PV) sys-
tems to optimize the amount of power that can be harvested
from solar panels. In RCC, a small amplitude ripple current
is superimposed on the DC current flowing through the PV
module. The voltage response of the module to this ripple
current is then monitored and analyzed to determine the
maximum power point (MPP) of the module. The MPP is
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FIGURE 2: Single-diode model of the single solar cell.
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F1GURE 3: P-V and I-V curves under uniform irradiation.

the operating point at which the module can deliver maxi-
mum power to the load. Once the MPP is determined, the
system adjusts the operating point of the PV module to
ensure that it operates at the MPP. This is done by varying
the load or adjusting the operating voltage of the module.
The advantage of RC-MPPT over other MPPT techniques
is that it can track the MPP under rapidly changing environ-
mental conditions, such as rapidly changing solar irradiance
or shading. It is also more efficient than other techniques as
it requires a small amplitude ripple current which can be
easily generated and does not consume much power [32, 33].

A great strength of RCC is that it takes the help of inher-
ent ripples of the DC-DC converters that are present due to
the switching. To correlate the PV power with the ripple of
the inductor current, the RCC technique drives to its MPP
without external perturbation [32, 33].

Figure 4 shows the PV array power and inductor average
current curve of a boost converter. In this graph, the maxi-
mum power corresponds to P, and I, is the inductor

current on which the maximum power is achieved. With
the help of the RCC method, the ripple components of the
I; and those of PV power can be correlated. The same can
be achieved using the correlation of ripple in the PV voltage
and the PV power to decide about the point of operation of
the MPP.

Since there is one peak in the P-I and P-V curves during
uniform irradiance, hence, the P-V curve will be divided
into two regions around the MPP point. The region which
is at the left of the MPP contains the point where the rip-
ple of both parameters is in phase, whereas the right

0 T T T
0 10 20

Voltage (V)

— P-V curve

160 - - oo
140 1
120 A
100
80 A
60 1
40
20 A :
0 T T T T T T T T !
0 1 2 3 5
Current (A)

w)

Power (

Iy (mpp)

— P-I curve

F1GURE 4: P-V and P-I curves of the module.

region of the MPP is the region where both the parame-
ters are out of phase. The functionality of RCC is based
on this principle.

This implies that the product of the time derivative of I}
and the time derivative of power (P) is positive in region 1
and negative in region 2. This is shown in Equations (2)
and (3) which leads to the primary form of the RCC control
law.

dl, dp
2
dt dt >0, @)
dl, dp
3
dt dt <0 G)

The value of I; can be adjusted by changing the duty
cycle “d” of the switch in DC-DC converter. The inductor
current increases and decreases with the duty cycle. The duty
cycle can be expressed as shown in Equation (4), where k is a
positive constant gain.

@@

Equations (2) and (3) can vary widely due to the varia-
tion in the ripple of I;. The other limitation associated with
correlating the PV power ripple with the inductor current
ripple is that it can work under low frequency. To avoid such
variation and to ensure work under a high-frequency range,
one can use the voltage variation in the PV panel to correlate
with PV power instead of inductor current ripple. Another
variant is the signum function of the time derivative. Taking
the time derivative as input to the signum function means
that the sign information of the derivative can be used. This
will be a lot easier to implement since the sign function can
eliminate the noise caused by the differentiation. The
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FiGURrk 5: The block diagram of the overall system.

signum function is shown in Equation (5), and the modified
control RCC law is shown in Equation (6).

-1 Whenx<0,

sign (x)=q 0 Whenx=0, ()

1 Whenx >0,

, dp\ . [/dv
d= kJ- sign (E) sign (E) dt. (6)

5. Proposed MPPT Algorithm

The suggested artificial neural network is built on the RCC
principle, where the duty cycle depends on the control law
given in the following:

@ o

Inputs to the ANN system are the correlation of the time
derivative of the voltage ripple across the inductor and the
power of the PV system. Data is collected as the environ-
mental condition changes. A comparator in the ANN MPPT
subsystem compares the ANN’s output voltage V 4\ with
the inductor voltage V;. The inductor voltage V,, acts as a
reference voltage to the comparator. The duty cycle is gener-
ated via a proportional-integral-derivative (PID) controller
based on the voltage difference between V , and V. The
gate signal is applied to the pulse width modulated (PWM)
generator which drives the dc-dc boost converter.

The ANN algorithm’s optimum correlation between the
goal and training value guarantees a consistent duty cycle
value, thus smoothing the switching of the dc-dc converter.
For multidimensional problems, a multilayer feed-forward
network is required; therefore, a feed-forward back propaga-
tion ANN with three hidden layers with logsig, purelin, and
purelin activation functions is employed in this study. There
are four neurons in the first, ten in the second, and four in

TaBLE 1: Specification of PV module at STC 1000 W/ m?, air mass
(AM) 1.5, 25°C.

Symbols Variables Values
PV module

Py, Maximum power point 40W

Voc Open circuit voltage 21V

Iy Short circuit current 2.57 A
Ve Voltage at MPP 17V

Iyp Current at MPP 2.35A
Ny No. of series connected cells 60

the third. An output neuron with a poslin activation func-
tion makes up the output layer as shown in Figure 1. On a
heuristic basis, the ideal number of neurons in the hidden
layers is found such that the prediction accuracy is
acceptable.

6. Simulation

The proposed ANN-based RCC method is validated in
Matlab/Simulink using an array of Soltech ISTH-215-P solar
panel as shown in Figure 5. The proposed method can be
implemented on various kinds of dc-dc converters like the
one reported in [34-36], but for this work, a dc-dc boost
converter is adopted as shown in the block diagram. The
dc-dc boost converter interfaces a 2x2 PV array with a
resistive load. The converter has an input capacitor C,, =
1000 pF, inductor = 50 uH, and output capacitor C_, =47
F; load resistance is 140 , while the switching frequency
is kept at 20 kHz. The array is equipped with blocking diodes
which block any localized current circulation due to string
mismatch. The specification of this PV module is given in
Table 1. The proposed hybrid MPPT system is trained by
varying the temperature and irradiance. To validate the pro-
posed hybrid MPPT scheme, the PV array is subject to stan-
dard testing condition (1000 W/m? at 25°C cell temperature)
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FIGURE 6: Regression plot for SCG algorithm.

and two variable environmental conditions with irradiance
and temperature variation (as shown in the corresponding
figures). The effectiveness of each hybrid MPPT algorithm
is verified using one among the power, voltage, current,
and duty cycle waveforms.

6.1. Scaled Conjugate Gradient (SCG). This variant of ANN
is based on the conjugate directions, but unlike other conju-
gate gradient algorithms, it does not perform a line search on
each iteration. The regression plot for this algorithm is
depicted in Figure 6, which is smaller than LM and BR
algorithms.

The error histogram plot for the SCG algorithm is shown
in Figure 7. With this approach, the total error range is from
-1.548 to 0.7268. At 150 samples, the mean bin has a near-
zero error of 0.00856, which is higher than the mean bin
of the LM and BR ANN algorithms.
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FIGURE 7: Error histogram plot for SCG algorithm.
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FIGURE 10: Test 2: performance of proposed SCG-ANN-based RCC
algorithm under variable irradiance condition.

The performance plot for the SCG algorithm is shown in
Figure 8. According to the simulation result, the best perfor-
mance of the training data set is with MSE equal to 0.086604
at 1000 epochs.

The SCG-ANN is also trained at STC condition as
shown in Figure 9. The algorithm tracking speed is slower
than both the LM and BR variants of the ANN RCC algo-
rithm. However, the target is achieved satisfactorily with this
ANN variant.
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algorithm under variable temperature condition.

The RCC based on SCG-ANN MPPT is subjected to a
test under variable irradiance condition as shown in
Figure 10. Because irradiation changes the MPP, the RCC-
based SCG algorithm keeps a close check on the new MPP.
It does, however, follow the new MPP more slowly than
the BR and LM algorithms.

The system is trained with variable temperature and
constant irradiance condition as shown in Figure 11. The
corresponding performance showcases the tracking of MPP
with negligible undershooting.

7. Discussion

The proposed system works best under the small and
medium-scale PV systems. The proposed scheme adopts
the ANN-based scheme, and therefore, for all large-scale
applications, it demands high-speed computing systems
which limits its use to only the small- and medium-scale
PV plants. It is seen in the simulation that the proposed sys-
tem treats the PV array as a two-port network and that it is
able to track the maximum power out of the available power.
This implies that the variations in PV panel characteristics
and mismatch have no impact on the performance of the
proposed algorithm.

8. Conclusion

In this paper, three hybrid RCC MPPT methods are pre-
sented using three different variants of ANN. The ANN var-
iants applied on the proposed hybrid scheme are the LM,
BR, and SCG. All the methods yielded acceptable results,
with the LM method having the best performance, yielding
an efliciency of 99.875% and tracking time of just 6.88 ms.
The presented methods and their results form the bottom
line for the future work on the RCC algorithm.

Data Availability

Data will be available upon request.
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