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This paper proposes a diagnosis method based on time series and support vector machine (SVM) to improve the timeliness,
accuracy, and feasibility of fault diagnosis for photovoltaic (PV) arrays. It obtains the nominal output power of the PV array
based on real-time collected data such as voltage, current, radiation, and temperature and normalizes the power values at
different time points throughout the day to form a time series. Using the time series values as input data for a “one-to-one”
multiclass classifier, we can identify and classify typical operational faults such as random shading, fixed shading, and aging
degradation of PV arrays. The developed algorithmic model is trained and tested for different fault conditions using the data
sets generated by the PV array simulation device. The experimental results show that our model has fairly good reliability and
accuracy, and to some extent, it solves the problem of classifying shading and aging faults, two of which exhibit rather similar
degradation characteristics.

1. Introduction

In recent years, the increasing energy shortages and climate
degradation have made the importance of clean energy more
urgent. Photovoltaic (PV) power generation has garnered
widespread attention as a key form of clean energy due to
its technological maturity and market scale advantages [1].
As of the end of 2022, China’s grid-connected PV capacity
had reached 392.04GW, and it is expected that the new
PV grid-connected capacity will exceed 110GW in 2023.
This has led to China ranking first in the world for ten con-
secutive years in terms of new PV installations. As a result,
PV power generation is becoming an important part of
China’s green clean energy and is one of the key means to
achieve the strategic goals of “carbon peak” and “carbon
neutrality.” However, due to the presence of unpredictable
factors, such as environmental changes, aging materials,
operation errors, and foreign body impact, PV arrays will
inevitably encounter failures or damage during their 25-
year lifespan [2]. Failure to detect and handle these issues
in a timely manner can significantly reduce the investment
income of PV power stations and, in serious cases, even

cause fires and endanger the safety of people and property.
Therefore, it is of great significance to deeply explore the
fault mechanisms and characteristics of PV arrays and estab-
lish a low-cost and highly reliable health detection method
to ensure the long-term stable operation of PV stations
and improve their economic and safety performance [3].

Currently, fault diagnosis methods for PV arrays mainly
include multisensor detection, infrared image analysis,
mathematical models, capacitance to ground, time-domain
reflection analysis, and intelligent detection [4–9]. Among
them, intelligent detection technology based on machine
learning algorithms has become the most concerning devel-
opment direction, due to its advantages in speed and accu-
racy, making it more suitable for unmanned and remote
operation.

Liu et al. proposed an artificial intelligence diagnosis
method based on feature parameters (XGBoost), which
quantifies sketches using sparse data weights, approximates
tree learning, extracts effective feature variables, and estab-
lishes a fault diagnosis model [10]. Zhu et al. proposed a
classification method based on neural network models and
unsupervised clustering to classify and diagnose fixed
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shading, short circuit, and aging faults of PV systems [11].
Liu et al. proposed a discriminating method based on neural
network models for complete shading, partial shading, and
short-circuit problems [12]. Chen et al. used the random for-
est algorithm to identify short circuit, aging degradation, and
partial shading faults of PV systems [13]. Although these
works use different algorithms, they all rely on similar elec-
trical characteristics as the basis for identification, such as
open-circuit voltage, short-circuit current, maximum power
point voltage, and maximum power point current.

Research shows that the above methods can meet the
engineering application requirements of remote fault diag-
nosis in most cases. However, when shadow shading and
aging degradation occur simultaneously, the PV array may
exhibit very similar or even identical electrical characteris-
tics, leading to a significant increase in the error rate of the
above determination method and resulting in diagnosis fail-
ure. Furthermore, existing research does not further classify
the shadow shading type, so the related algorithms may mis-
judge short-term random shading caused by clouds, birds,
etc., as fixed shading caused by foreign object shading, lead-
ing to the generation of false alarm information.

To solve the above problems, this paper proposes a
method for distinguishing PV array faults based on time
series and support vector machines. This method constructs
normalized and labeled time series data based on the output
power characteristics of PV arrays under different fault con-
ditions. This data is used as the input condition for a “one-
to-one” multiclass classifier, enabling effective classification
of panel faults such as occlusion, aging, and attenuation.
The characteristic of this method is that it fully considers
the correlation of time series and views the fault as a
dynamic process, thus better revealing the evolution of the
fault over time. At the same time, the application of support
vector machines in this method improves the ability to han-
dle faults and better handle nonlinear problems, thus achiev-
ing more accurate fault prediction and identification.

2. Fault Classification Model

2.1. Basic Principles of Support Vector Machines. Support
vector machine (SVM) is a binary classification model that
seeks to identify the maximum interval hyperplane in a
given feature space in order to achieve linear classification
of data sets [14], as shown below:

max 1
ω

, s t ,yi ωTxi + b ≥ 1, i = 1, 2, ⋯ , n 1

In equation (1), the parameter matrix is denoted as ω,
the i-th input vector group is represented as xi, and the func-
tion constraint is denoted as s t It is noteworthy that the
function interval in equation (1) is assumed to be 1 for con-
venience of derivation and optimization, and this assump-
tion has no bearing on the optimization outcome of the
objective function [15].

When tackling multiclassification problems using SVM,
a multiclass classifier needs to be constructed. There are
two common methods for this: the first involves solving

the parameters of multiple classifiers and combining them,
while the second involves combining multiple binary classi-
fiers [16]. Due to the complicated calculation process and
challenging engineering implementation of the first method,
the “one-versus-one” multiclass classifier is constructed
using the second method. k k − 1 /2 SVM classification
learners are designed for sample sets with k categories, such
that there is an SVM between any two samples, and the tar-
get sample is classified into the category that receives the
most votes.

In practical applications, SVM needs to map data to a
high-dimensional space in order to solve nonlinear classifi-
cation problems and increase the computational power of
the linear learner [17]. Therefore, its objective function is
modified as follows:

f x = 〠
l

i=1
αiyi ϕ x ⋅ ϕ xi + b 2

To simplify the calculation process of equation (2), SVM
introduces a kernel function, which allows direct computa-
tion of ϕ x ⋅ ϕ xi by establishing a nonlinear learner
[18]. Commonly used kernel functions include linear kernel
function, polynomial kernel function, and radial basis func-
tion (RBF). Here, ϕ x⟶ F represents the mapping from
the input space to a feature space, and ϕ x ⋅ ϕ xi repre-
sents the characteristic dual form. In this paper, the RBF ker-
nel function is adopted [19]:

K x, xi = ϕ x ⋅ ϕ xi = exp −
x − xi

2

2σ2 , 3

where K is the kernel function and σ is the width of the ker-
nel function [20].

2.2. Construction of Output Power Time Series. The real-time
output power is first calculated based on the output voltage
and current of the DC side of the PV array. Solar radiation
and battery temperature compensation are then performed
according to Equation (4) to obtain the conversion power
under standard test conditions (1.5 atmospheric mass, irra-
diation 1000W/m2, and temperature 25°C):

Pstc =
Pout + α∗ T − 25 ∗ P0 ∗ 1000

G
4

Here, Pstc represents the conversion power of the PV
array, Pout represents the output power of the PV array, α
represents the PV module power temperature coefficient, T
represents the temperature of the PV module, P0 represents
the rated power of the PV array, and G represents the solar
radiation intensity.

To form a one-dimensional time series as shown in
Equation (5), uniformly select n time points during a specific
time period of a day and extract their system conversion
power values.

Pt = P1P2P3 ⋯ Pn 5
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Here, Pt represents the time series with n sampling time
points, where P1, P2, P3 ⋯ Pn represent the system conver-
sion power values at different time points calculated using
Equation (4). To speed up the operation of the SVM classi-
fication model, the above time series are normalized accord-
ing to formula (6), and a fault type label is added to form a
time series that can be used as the model’s input [21].

X∗ = X − X
σ

, 6

where X is the mean value of the sequence and σ is the stan-
dard deviation of the sequence.

We repeat Equations (4)–(6) to obtain the data sample
sets, and these sample sets compose the multiple time series,
which is shown as follows:

Pm
t =

P1
1 P1

2 P1
3 P1

n

P2
1 P2

2 P2
3 P2

n

⋯ ⋯ ⋯ ⋯

Pm
1 Pm

2 Pm
3 Pm

n

7

Here, n represents the number of sampling points in the
time series, and m represents the number of samples in the
time series. The samples in the data set were randomly

selected to constitute the training data set and the test data
set based on a 7 : 3 ratio. During the training process, data
with different labels were divided into two groups, and the
independent SVM classifier was used to train each group.
In the diagnosis phase, the output result was determined
by selecting the most voted label.

The specific flow chart is shown in Figure 1. First,
multiple data such as maximum operating point current,
voltage, temperature, and irradiation are collected under
different fault conditions for a PV power station and con-
verted into peak power under STC conditions to construct
a time series data set together with time. In order to make
the data analysis results more comparable and operable,
the time series data were normalized, and tags were added
to different categories of fault data for subsequent classifi-
cation and identification. Next, the entire data set is ran-
domly sampled and divided into a training data set and
a testing data set in a ratio of 7 : 3. For each pair of fault
data with different category labels, an SVM classifier is
trained to ultimately construct an SVM model with multi-
category classification capabilities. Finally, the test data or
real-time data is input into the trained SVM multiclass
classifier for performance testing. If the accuracy of the
diagnosis result is low, the relevant parameters of the
SVM multiclass classifier are adjusted and retrained to
optimize the performance of the classifier and improve
the diagnosis accuracy.

START
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STC
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Normalized data
and added fault
category labels

SVM1

Fail to pass

pass

END

Validation
of model

SVM multi-class
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Figure 1: Fault classification flowchart of photovoltaic array.
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3. Experiment and Analysis

3.1. Simulation Experimental Device. In order to train and
test the SVM classifier, a large amount of operating data of
the PV array under different fault conditions needs to be col-
lected. Due to the high cost and time-consuming nature of
directly simulating and collecting data on outdoor PV sys-

tems, as well as the potential for catastrophic damage to
the power generation system, computer simulation or exper-
imental modeling is typically used to obtain data samples
during research [22]. However, literature research has
shown that existing simulation and experimental schemes
cannot reflect the impact of the irradiance intensity of
the solar light source on the output characteristics of the
PV array at different times [23]. Therefore, this paper
designs a PV array simulation device that can simulate
the electrical characteristics of an actual PV power station,
allowing for the conduct of faulty photovoltaic power sta-
tion experiments, as shown in Figure 2. This device uses
an LED array instead of a solar light source and controls
its light intensity by varying the current of the LED array,
thus simulating the irradiation changes of the solar light
source during the day.

The experimental device comprises a LED lamp array, a
solar cell array, and a system control panel. As shown in
Figure 3, the LED light array consists of 144 circular beads
arranged in a 12 × 12 square matrix. The round lamp beads
have a color temperature of 5200 and are rated for a current
of 700mA and a voltage of 3.7V. The solar array consists of
two groups in series-parallel, each of which contains three
solar cells. The selected solar cell has an open-circuit voltage
of 7.2V, a short-circuit current of 121mA, and a maximum
power of 0.7W. The system control board consists of four
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Figure 2: Schematic diagram of PV system simulator.

Figure 3: LED light array arrangement diagram.
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parts: a LED lamp control module, an acquisition module, a
storage module, and a display alarm module.

During the test, 12 columns of LED lights were divided
into six groups for control. By adjusting the voltage of the
DC constant current source, the current through the LED
array was changed to simulate changes in irradiation inten-
sity. The change in the combination of light-on time was
used to simulate the change in the irradiation intensity of
the solar light source at 13 different times from morning to
evening throughout the day. It is worth noting that during
this process, the stability of the output voltage of the con-
stant current source needs to be ensured every time the volt-
age is adjusted. The adjustable voltage range is 0.8-3.6V.
When the voltage is greater than 3.6V, the irradiation inten-
sity is equivalent to 1000W/m2 in daily use. Similarly, the
lower limit of the adjustable voltage corresponds to the limit
of zero irradiation intensity. The recorded data curve is
shown in Figure 4. The simulated light source and the solar
light source exhibit similar changes in irradiance intensity
over the course of a day, both exhibiting a Gaussian distribu-
tion. This indicates that the simulation device can accurately
reflect the characteristics of solar irradiance at different time
points.

3.2. PV Array Fault State Simulation. Faults on the DC side
of a PV array can be roughly divided into two types: recov-
erable faults and nonrecoverable faults [24]. Recoverable
faults mainly refer to power loss or cluster mismatch caused
by shadow shading, including random shading caused by

clouds and fixed shading caused by foreign bodies such as
bird droppings, leaves, and dirt. These types of PV array fail-
ures return to normal when the shading disappears or is
cleared [25]. On the other hand, nonrecoverable faults
mainly include irreversible damages such as short circuits,
open circuits, and aging degradation. The performance of
the PV array can only be restored by replacing the damaged
parts. Due to the obvious electrical characteristics of short
circuits and open circuits, the diagnosis technology for these
faults is relatively mature [26, 27]. This paper mainly focuses
on faults caused by random shading, fixed shading, and
aging degradation, as shown in Figure 5. In the aging degra-
dation experiment, a series resistor is added to the output of
the array. The cloud shading experiment collects data by
randomly introducing shading objects above the array. In
the fixed shading experiment, the shading objects were ran-
domly placed on the array surface.

As we know, aging degradation will directly affect the
output power of PV modules, with a relatively small impact
on short-circuit current and open-circuit voltage. Fixed
shading will cause power losses in photovoltaic power plants
for a long time, with a regular temporal pattern, while ran-
dom shading will cause power losses in PV power plants
for a short time, with instantaneous characteristics. In order
to verify the reliability of the accelerated simulation device
for PV power plants, we conducted experiments and mea-
sured the IV curves under different fault conditions as
shown in Figure 6. The aging degradation 1, 2, and 3 corre-
spond to PV arrays with resistors of 12Ω, 24Ω, and 36Ω in
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Figure 4: Comparison diagram of simulated light curve and solar light curve.
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series, respectively. It can be seen that as the resistance
increases and the aging state deepens, the peak power of
the simulated PV system continues to decrease, and the
short-circuit current and open-circuit voltage remain basi-
cally unchanged. Fixed shading 1 and 2 correspond to artifi-
cially created shadows of larger and smaller areas,
respectively. As can be seen from the figure, there is a clear
“hump” effect. It can be seen that the VI characteristic curves
of the PV array under different fault conditions obtained
based on the simulation device are basically consistent with
the output characteristics of the actual PV power station
and therefore suitable for training and testing of classifica-

tion models. Among them, the voltage-ampere curves for
random cloud shading and fixed shading caused by foreign
objects have similar shapes, showing a “hump” effect, and
the position of the “hump” is related to the shading area
and position. It can be seen that it is challenging to distin-
guish the type of shading based solely on the morphology
characteristics of the voltage-current curves of the PV array.

3.3. Sample Data Set Acquisition. Based on the experimental
device described above, different combinations of lights were
used to simulate seven time points between 9:00 and 15:00 in
a day. Key data, such as output voltage, output current, cell
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Figure 5: Different operation states of PV array: (a) normal, (b) aging degradation, (c) random shading, and (d) fixed shading.
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temperature, and illumination intensity of the PV array,
were collected. The aforementioned test was repeated under
various fault states of the PV array, and a time series matrix
was constructed according to equations (4)~(7) as the input
data for the classification model. Table 1 presents the data
classification labels and sample information for different
fault types, where D0 represents normal operation, D1 rep-
resents fixed shading, D2 represents random shading, D3
represents aging degradation, classification represents the

classification of faults, feature represents different working
states, quantity represents the number of samples, and the
proportion represents the proportion of the number of sam-
ples in this category in the total number. The power-time
curves of the PV array under different failure states are
depicted in Figure 7. Upon comparing with Figure 6, it is evi-
dent that although the PV array may exhibit the same or sim-
ilar electrical characteristics, such as the output power at the
maximum power point, under different fault conditions, the
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Figure 6: IV curves obtained from simulator for PV arrays under different fault states.

Table 1: Fault classification labels and sample data.

Label Classification Feature Quantity Proportion

D0

Normal operation 1 Irradiation 600W/m2 20 4.6%

Normal operation 2 Irradiation 800W/m2 20 4.6%

Normal operation 3 Irradiation 1000W/m2 30 6.8%

D1
Fixed shading 1 Small area shading 60 13.6%

Fixed shading 2 Large area shading 60 13.6%

D2

Random shading 1 Morning shadows 50 11.4%

Random shading 2 Noon shadow 50 11.4%

Random shading 3 Afternoon shadow 60 13.6%

D3

Aging degradation 1 Slight aging (12Ω) 30 6.8%

Aging degradation 2 Moderate aging (24Ω) 30 6.8%

Aging degradation 3 Severe aging (36Ω) 30 6.8%
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temporal characteristics of the output power differences are
still apparent. Therefore, utilizing the temporal characteristics
of the output power for fault classification can enhance the
accuracy of the diagnosis model.

To enhance the diversity of the sample data, we varied
environmental parameters such as light intensity and cell

temperature during the simulation of PV array failure. Addi-
tionally, we considered shading in two ways: fixed shading
based on shading area size and random shading based on
shading duration, as well as aging degradation, which con-
sidered the change in resistance of the resistor series. A total
of 440 sets of data were generated, including four typical
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Figure 7: Power-time curves of PV arrays under different fault states.
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fault types, according to Table 1. Among them, 308 sets of
data were used for model training and the remainder was
used for testing.

3.4. Analysis of Experimental Results. Based on the above
data sample set, this article conducted an automatic param-
eter tuning experiment on the radial basis kernel function of
the SVM classification model, with the penalty coefficient
and gamma parameter automatically tuned within the
ranges of 0.1-100 and 1-100, respectively, to optimize the
classification performance of PV array faults. Figure 8 shows
the classification results of the trained SVM algorithm
model. The different color regions represent the four operat-
ing states of the PV array, while the different color dots rep-
resent the test data under the corresponding operating
states. Green indicates normal operation, red indicates fixed
shading, blue indicates random shading, and orange indi-
cates aging degradation. The optimization process of the
classifier in Figure 8(a) is based on known fault characteris-
tics, meaning that the training data contains all the fault
characteristics of the test data. Despite a few misclassifica-
tion points in the classification diagram, the accuracy of
the classifier in classifying 132 groups of test data has
reached 99.5%.

In practical engineering applications, it is often challeng-
ing to include all fault characteristics in the training sample
sets. Therefore, effectively classifying faults with unknown
characteristics is crucial [28]. Figure 8(b) displays the classi-
fication diagram of the SVM algorithm model after adding
fault characteristics that were not included in the training
sample sets. The figure shows that the presence of unknown
characteristics not only separates the fixed shading area
(red) from the random shading area (blue) but also causes
a morphological change in the aging degradation area
(orange).

This paper tested 42 groups of fault data with unknown
characteristics using the classifier, and the results are pre-
sented in Table 2.

Table 2 shows that out of the entire randomized experi-
mental test data set, two data points in the fixed shading cat-
egory were not correctly classified. One was classified as
aging degradation, and the other was classified as random
shading, resulting in an overall test data accuracy of 95.2%.
However, when the test data set was added to the training
data set for retraining modeling, the accuracy rate improved
to 99.5%. Therefore, it is evident that including more diverse
situations in the training data set can improve the classifica-
tion accuracy, leading to more precise fault classification of
PV arrays. Nonetheless, the proposed fault diagnosis method

based on time series and SVM achieved 95.2% accuracy for
test data without training.

In summary, the fault diagnosis method proposed in this
paper using time series and SVM exhibits a high fault classi-
fication accuracy and fast convergence rate, which can effec-
tively diagnose fixed shading and random shading caused by
fixed objects. This provides a strong basis for the assessment
of PV arrays and later operation and maintenance.

4. Conclusion

This paper presents a theoretical and experimental study on
the automatic classification of common faults in PV arrays,
including aging degradation, random shading, and fixed
shading. The output power of PV arrays varies significantly
under different fault states, which provides the basis for the
proposed fault diagnosis method based on support vector
machines and time series. The paper uses the output power
at different times of the day to build a time series and estab-
lish a fault classification model based on one-versus-one
multiclassifiers. The model is tested and validated through
simulation experiments, with results indicating an accuracy
rate of 99.5% for faults with known characteristics and
95.2% for faults with unknown characteristics.
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