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In recent years, solar photovoltaic (PV) energy, as a clean energy source, has received widespread attention and experienced rapid
growth worldwide. However, the rapid growth of PV power deployment also brings important challenges to the maintenance of
PV panels, and in order to solve this problem, this paper proposes an innovative algorithm based on PA-YOLO. First, we propose
to use PA-YOLO’s asymptotic feature pyramid network (AFPN) instead of YOLOv7’s backbone network to support direct
interactions of nonadjacent layers and avoid large semantic gaps between nonadjacent layers. For the occlusion problem of
dense targets in the dataset, we introduce a repulsive loss function, which successfully reduces the occurrence of false detection
situations. Finally, we propose a customized convolutional block equipped with an EMA mechanism to enhance the perceptual
and expressive capabilities of the model. Experimental results on the dataset show that our proposed model achieves excellent
performance with an average accuracy (mAP) of 94.5%, which is 6.8% higher than YOLOv7. In addition, our algorithm also
succeeds in drastically reducing the model size from 71.3MB to 48.4MB, which well demonstrates the effectiveness of the model.

1. Introduction

With the evolution of the global energy situation, the urgent
need for renewable energy highlights the limitations of fossil
fuels and their adverse impact on the environment [1].
Therefore, it has become imperative to seek alternative
renewable energy solutions [2]. Solar photovoltaic (PV)
technology is being widely emphasized and applied as a
clean and renewable energy solution. However, the issue of
routine maintenance of photovoltaic panels has become
more prominent in the context of the dramatic expansion
of PV deployment, where photovoltaic (PV) panels are
exposed to a wide range of potential failure types and defects
during actual operation. These include, but are not limited
to, phenomena such as hot spots, fragmentation, and shad-
ing. These problems may trigger energy loss and system effi-
ciency degradation or even, in extreme cases, lead to system
failure. Therefore, it is important to use accurate and effi-
cient methods to detect defects in PV panels to ensure the
reliability and stability of the PV system. This proactive
approach enables early detection, timely intervention, and

subsequent remediation, thus ensuring the reliability and
stability of the PV system.

However, the distribution environment of large-scale
photovoltaic (PV) power stations is complex, covering a
large area, and is more cluttered by the influence of terrain,
and manual inspection requires a lot of time and energy. The
traditional methods for detecting defects in PV panels, such
as visual inspection, infrared (IR) thermography [3], Canny
and Sobel edge detection operator, and electrical testing,
have been widely used in practical applications. However,
these methods have some limitations, such as the relatively
single type of faults detected and insufficient sensitivity to
tiny or hidden defects. With the continuous development
of artificial intelligence and machine learning technologies,
automated PV panel defect detection methods have become
a hot area in research and industry. These methods utilize
computer vision, image processing, and data analysis tech-
niques to enable the detection and classification of PV panel
defects in an efficient and accurate manner at the same time.

With the development of convolutional neural networks
(CNN) and deep learning in the field of image processing,
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various deep learning methods have achieved good results in
PV panel defect detection. Zhang et al. [4] proposed an
improved deep convolutional neural network- (DCNN-)
based model. This approach first utilizes the dense cross-
stage partial Darknet (DCP-Darknet) network for efficient
feature extraction, enhanced feature reuse, and reduced
overfitting. Then, efficient fusion of features is achieved by
designing a new module that combines a cross-stage feature
fusion strategy and deep separable convolution applied to
each node of the path aggregation network (PAN). In addi-
tion, efficient channel attention (ECA) mechanism is intro-
duced to the PAN. Based on the above methods, Zhang
et al. design an efficient algorithm for surface defect detec-
tion. Lu et al. [5] proposed a dual-channel convolutional
neural network (DCCNN) for automatic diagnosis of PV
module faults that automatically extracts key features and
weighs these features for fault classification. Menghao and
Hongwei [6] integrated image preprocessing, migration
learning, and an enhanced feature extraction network into
the original faster R-CNN framework for infrared image
detection, resulting in a hot spot defect detection model.
Winston et al. [7] used feed-forward backpropagation neural
networks and support vector machines (SVMs) to identify
defects in a variety of photovoltaic (PV) modules, including
microcracks and hot spots. In contrast to these image-based
approaches, some studies have adopted data-driven methods
for PV fault detection. For instance, Madeti and Singh [8]
proposed a k-nearest neighbors (kNN) rule-based photovol-
taic (PV) system string-level fault detection and diagnosis
technique. This technique is capable of detecting and classi-
fying multiple fault types in PV systems in real time, includ-
ing disconnection faults, line-to-line (L-L) faults, partially
shaded with and without bypass diodes, and partially shaded
with reverse bypass diode faults. Chen et al. [9] introduced
an innovative modeling technique utilizing the extreme
learning machine (ELM) using current-voltage (IV) curves
collected under different operating scenarios. This novel
modeling approach characterizes the electrical properties of
PV modules, providing fast training and powerful generali-
zation capabilities. Abbas and Zhang [10] proposed an intel-
ligent system using adaptive neuro-fuzzy inference (ANFIS)
for efficient PV fault detection and classification by deploy-
ing the trained ANFIS model into the grid partition. The
deep learning-based detection technique significantly
improves the accuracy compared to traditional image pro-
cessing methods. However, the detection stability of the
method is poor under different weather conditions, and
there are challenges in detecting faults in some dense and
small targets. In addition, fault detection involves multiple
types of faults, and current research focuses on optimizing
one of the methods, which leads to industrial applications
that are still in the early stages of development.

In order to improve detection accuracy, one-stage target
detection models, especially the YOLO series, were devel-
oped. Among them, YOLOv7 excels in the field of target
detection. It adopts multiscale feature fusion and convolu-
tional neural network structure to achieve excellent target
localization and recognition. The end-to-end design and
optimized loss function further enhance target detection effi-

ciency and accuracy. Therefore, YOLOv7 is suitable to be
used as a research benchmark as a single-stage target detec-
tion model with fewer parameters and higher performance
[11]. However, for the current dataset, the native YOLOv7
suffers from the problems of large model size and low accu-
racy for target detection such as dense hot spots. Therefore,
this paper proposes a more efficient single-level target detec-
tion model: the PA-YOLO (the name PA-YOLO is derived
from the letters P and A in the asymptotic feature pyramid
network (AFPN) and EMA mechanism).

The main contributions of this study are as follows:

(1) Introducing asymptotic feature pyramid network
(AFPN) to enhance the direct interaction of nonad-
jacent layers, we adopt an improved asymptotic fea-
ture pyramid network (AFPN) to replace the original
feature fusion network in YOLOv7. This improve-
ment helps to avoid the problem of large semantic
differences between different levels and the loss or
degradation of feature information

(2) Customized convolution equipped with EMA (effi-
cient multiscale attention) mechanism is proposed,
which automatically learns and selects key features
in the image to enhance the model’s ability to per-
ceive and recognize defects in PV panels. Compared
to the traditional attention mechanism, this
approach avoids introducing more network com-
plexity, thus ensuring the efficiency and practicality
of the model

(3) Replacing the traditional CIOU loss function with
the repulsion loss function significantly improves
the detection accuracy in the case of occlusion. By
using the repulsion loss function, the leakage rate
of dense targets in the dataset is reduced and the per-
formance of target detection is further improved

(4) Balanced training is introduced, and the trained PA-
YOLO model achieves 94.5% mAP on the PV panel
dataset; meanwhile, the network structure is com-
pressed from 104 layers to 70 layers, which greatly
simplifies the complexity of the model structure,
and the comprehensive performance is better than
that of other target detection networks

2. PA-YOLO Algorithm

2.1. YOLOv7 Structure. YOLOv7, as an outstanding repre-
sentative of the YOLO series of target detection models,
introduces a new label assignment method called “coarse-
to-fine guided label assignment” [12]. The emergence of this
method solves the key problem faced in dynamic label
assignment, i.e., how to assign dynamic target labels to the
outputs of different branches. Second, in YOLOv7, the
model reparameterization technique effectively merges mul-
tiple computational modules into a single entity during the
inference phase. This approach not only helps to build a
more streamlined and efficient inference model but also
reduces the computational burden while still maintaining
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the high accuracy of the model. By cleverly applying repara-
meterized modules, YOLOv7 is able to leverage its optimized
performance across different architectures and adapt to
diverse application scenarios. The strategy of combining
module-level and model-level aggregation further enhances
YOLOv7’s robust performance and accuracy in target detec-
tion tasks.

ELAN plays a key role in YOLOv7 by optimizing the
gradient paths of deeper networks, thereby significantly
enhancing the learning and convergence capabilities of the
model. Through an innovative approach, ELAN extends,
reorganizes, and merges the channels and computational
blocks of the network, which not only enhances the learning
ability of the network but also maintains the integrity of the
original gradient paths. In addition, ELAN ensures that the
model is able to learn a more diverse set of features by effec-
tively steering individual sets of computational blocks, which
directly improves the overall accuracy and robustness of the
model. ELAN skillfully finds a balance between expanding
the number of computational blocks and maintaining the
stability of the network, allowing the network to maintain
good scalability without sacrificing performance. With this
innovation, YOLOv7 significantly improves the detection
accuracy of the model, enabling it to outperform many other
object detectors on the COCO dataset, including YOLOR,
YOLOX, Scaled-YOLOv4, YOLOv5, DETR, and Deformable
DETR. Meanwhile, this new label assignment method allows
YOLOv7 to better understand and handle targets of different
scales, shapes, and locations, which improves the accuracy
and stability of the detection, as shown in Figure 1 for the
model structure of YOLOv7.

YOLOv7 receives input images of solar panels taken by
infrared cameras that contain various types of defects,
followed by a backbone network that uses a deep convolu-
tional neural network to extract key features from the input
images. It operates in a layered fashion, starting with basic
textures and edges in the early layers and moving to more
complex patterns that represent potential defects in the solar
panel. The network is trained to recognize subtle differences
between normal panel features and anomalies. The neck acts
as an intermediary to enhance and consolidate the features
extracted by the backbone network. It uses techniques such
as feature pyramid networks to combine high-resolution
details with high-level semantic information to ensure that
subsequent detection heads have rich feature representations
at different scales. This step is crucial for detecting defects of
different sizes and severities. The detector head part is
responsible for the final defect detection and classification.
It consists of multiple detection heads that operate at differ-
ent scales to accommodate the various sizes of defects that
may exist on the solar panel. Each detection head predicts
the bounding box and associated confidence score, indicates
the presence and location of the defect, and classifies the
defect type.

Although YOLOv7 has made significant strides in the
technological advancement of object detection, its complex
104-layer network structure still includes numerous convo-
lutional operations. This design may cause the network to
lose some valuable data while processing the information,

especially in the case of photovoltaic panel fault detection
where the capture of details and overall features appears to
be insufficient. This loss of information particularly affects
fault types that are similar in shape, color, and size, such as
the “hot spot” fault shown in Figure 2(b), which consists of
multiple hot spots in close proximity and is visually very
similar to the “battery string” fault. The key to distinguishing
between these two faults lies in their location: the “battery
string” fault is generally located at the edge of the panel, as
shown in Figure 2(a), covering about one-third of the panel
area, while the “hot spot” is usually distributed more ran-
domly. Therefore, in order to effectively distinguish the
“hot spot” faults in Figure 2(b), we need to take into account
the information around the faults and the characteristics of
the whole panel for a comprehensive evaluation, which is
important for reducing the misdetection between similar
faults.

2.2. AFPN. In the PA-YOLO framework (e.g., Figure 3), the
asymptotic feature pyramid network (AFPN) adeptly inte-
grates features across various levels [13], specifically target-
ing low-level, high-level, and top-level features. The
structure of AFPN, depicted in Figure 4, utilizes black
arrows to signify convolution processes and blue arrows to
indicate adaptive spatial fusion. The initial phase of feature
fusion involves extracting the last layer of features from each
level of the backbone network, culminating in a diverse set of
features at different scales, identified as C2, C3, C4, and C5.

The design of the AFPN in the PA-YOLO framework is
strategically tailored to bridge the semantic gap between
nonadjacent layers, a prevalent challenge in object detection
methods that rely on feature pyramid networks. The fusion
process commences with the integration of the lower layer
features, C2 and C3, into the feature pyramid network. This
foundational step is pivotal, setting the stage for the subse-
quent integration of features. The methodology then pro-
gressively incorporates higher-level features, with C4 being
added next, followed by the inclusion of the topmost layer,
C5. This methodical layer-by-layer integration is key to
diminishing the semantic gap, thereby enhancing the effi-
cacy of the feature fusion.

In essence, the AFPN in PA-YOLO begins by merging
the foundational bottom layer features (C2 and C3), then
progressively integrates the more complex layer feature
(C4), and culminates with the fusion of the highest layer fea-
ture (C5), representing the most abstract level of features.
This incremental fusion process is instrumental in harmoni-
zing the semantic content of features across different layers
in the AFPN, effectively addressing the challenges posed by
direct fusion of semantically disparate layers.

In the process of multilevel feature fusion, ASFF is uti-
lized to assign different spatial weights to features of differ-
ent levels, which effectively enhances the importance of key
levels.

Presented in Figure 5 is an illustration of feature fusion
at three different levels, fusing 3 levels of features with
xn⟶l
ij denoting the feature vector at the position of level n

to level l. The resultant vector denoted as ylij is obtained by
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adaptive spatial fusion of features at multiple levels with a
linear combination of the feature vectors x1⟶l

ij , x2⟶l
ij , and

x3⟶l
ij as in

ylij = αli j ⋅ x
1⟶l
ij + βl

ij ⋅ x
2⟶l
ij + γlij ⋅ x

3⟶l
ij , 1

where αlij, β
l
ij, and γlij denote the feature space weights of the

three classes, subject to the constraints of αli j + βl
i j + γli j = 1.

The adaptiveness of the AFPN is achieved through the
assignment of spatial weights (αlij, β

l
ij, and γli j) to features

at different levels, ensuring that shallow and deep features
contribute optimally to the final fused feature vector ylij.
These weights are learned during the training process and
are constrained such that the sum of weights at any given
position (i, j) for a level l equals to 1, i.e., αlij + βl

ij + γlij = 1.

For instance, consider a scenario where shallow features
need to be emphasized due to their fine-grained spatial
information. In this case, the network might learn to assign
higher weights to αlij, compared to βl

i j and γlij, which corre-
spond to deeper features. Conversely, if the context provided
by deeper features is more critical, βl

ij and γlij might receive
higher weights. The specific values of these parameters are
dynamically adjusted during the training process based on
the loss function and the backpropagation signals, reflecting
the importance of each feature level for the detection task at
hand.

Regarding parameter learning attenuation, the network
relies on the adaptive nature of the learning process itself
to fine-tune these parameters. The optimization process
inherently adjusts the contribution of each feature level
over time as it minimizes the loss, without a predefined
decay schedule. The stage-specific implementation of
adaptive spatial fusion modules allows for a flexible and
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tailored approach to feature fusion, catering to the unique
requirements of different stages in the network. This
design choice is made to ensure that the network can
effectively learn and adapt the contribution of each feature
level without the need for an explicit attenuation
mechanism.

2.3. Loss Function. The choice of loss function in an object
detection network plays a key role in determining its detec-
tion accuracy, as it directly affects the training and optimiza-
tion process of the model. An effective loss function can
enhance the model’s ability to fit training data, thereby
improving detection accuracy. In the YOLO model family,
commonly used bounding box regression losses include
IoU, GIoU, CIoU, and DIoU losses [14]. These loss func-
tions quantify the difference between the predicted and tar-
get boxes by taking into account factors such as overlap,
centroid distance, and aspect ratio. Take the CIoU loss func-
tion used by default in YOLOv7 as an example:

CIOU = IOU −
ρ2 b, bgt

c2
+ αv ,

v =
4
π2 tan−1

wgt

hgt
− tan−1

w
h

2
,

α =
v

1 − IOU + v

2

The CIOU loss function has a high sensitivity to the
bounding box, when there are outliers in the sample may
lead to the model in the training process does not converge
or oscillation phenomenon, and secondly, the CIOU loss of
the parameter accuracy requirements are high; otherwise, it
will not only lead to the network training speed being slow
but also increase the computational cost of the network.

Traditional loss functions (e.g., CIoU), while effective in
many cases, exhibit limitations when dealing with datasets
containing poor-quality instances or dense objects. These
limitations manifest themselves in higher sensitivity to out-
liers, which can lead to training challenges such as noncon-
vergence or oscillations. In addition, the accuracy
requirements of CIoU can lead to slower network training
and increased computational costs. We introduce a repul-
sion loss function in the PA-YOLO model specifically to
address these limitations. The repulsion loss function con-
tains both attraction and repulsion terms and is designed
to handle dense target scenes more efficiently. This function
not only minimizes the distance between the predicted
frame and the actual target to improve the accuracy of target
detection but also maintains the distance between the pre-
dicted frame and other objects or predicted frames. This
dual approach is crucial in datasets with dense target occlu-
sion, where traditional loss functions (e.g., CIoU) are diffi-
cult to function. Therefore, the repulsion loss function
provides a more robust solution for object detection in com-
plex scenes, overcoming the challenges posed by traditional
loss functions. By incorporating this function, our PA-

YOLO model improves the detection accuracy and training
efficiency, especially in object-dense scenes, which are com-
mon in real-world applications.

Consequently, in this paper, the repulsion loss function
[15] is adopted to focus on coping with the dense target
occlusion problem. Specifically, the paper proposes two
types of repulsion loss, namely, RepGT loss and RepBox
loss.RepGT loss penalizes the prediction frames directly
and prevents them from transferring to other ground-truth
objects, while RepBox loss requires each prediction frame
to keep a certain distance from other prediction frames of
different targets, so as to reduce the dependence of detection
results on nonmaximum suppression (NMS) and effectively
deal with the dense occlusion problem. Repulsion loss is
defined as in

L = LAttr + α ∗ LRepGT + β ∗ LRepBox, 3

LAttr =
∑P∈P+SmoothL1 BP,GP

Attr
P+ , 4

LRepGT =
∑P∈P+Smoothln IoG BP ,Gp

Rep

P+ , 5

LRepBox =
∑i≠jSmoothln IoU BPi , BPj

∑i≠j1 IoU BPi , BPj > 0 + ε
, 6

IoG BP ,GP
Rep =

area BP ∩GP
Rep

area GP
Rep

, 7

where LAttr is an attraction term that requires the prediction
box to be close to its designated target and LRepGT and
LRepBox are the repulsion terms that require the prediction
box to be far away from other real objects around it and
other prediction boxes with different designated targets,
respectively. The coefficients α and β are weights to balance
the auxiliary losses. For LAttr, the SmoothL1 distance is cho-
sen as a measure of the attraction term as in Equation (4).
In calculating the attraction term loss, first for each candi-
date frame P ∈ P + (P + denotes the set of candidate
frames), it is assigned to the actual target frame with which
it has the maximum intersection-to-union (IoU) ratio,
which is considered as its assigned target frame, i.e., GP

Attr
= arg maxG∈GIoU G, P . Subsequently, the attractor loss
can be computed by comparing the prediction frame BPs
of the candidate frames with their assigned target frames.
The goal of this loss is to improve the performance and
accuracy of target detection by minimizing the attractor loss
to induce the predictor frame to locate the target object more
precisely. This approach helps to minimize the distance
between the prediction frame and the actual target, leading
to better target matching. The meanings represented by the
other parameters in the formula are as follows: GP

Attr:
ground-truth box assigned as the designated target for
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proposal P; Smoothln: a smooth L1 distance metric used for
measuring the difference between the predicted box BP and
its designated ground-truth box GP

Attr; IoG: intersection over
ground-truth, measuring the overlap between the predicted
box BP and the repulsion ground-truth object GP

Rep; G
P
Rep:

ground-truth object that has the largest IoU region with pro-
posal P, excluding its designated target; BPi , BPj : predicted
boxes for different proposals; 1 IoU BPi , BPj > 0 : an indica-
tor function that is active only when there is an overlap
between the predicted boxes; ε: a small constant to prevent
division by zero; area BP ∩GP

Rep : the intersection area
between BP and GP

Rep; and area GP
Rep : the area of the

ground-truth box.

2.4. Custom Convolution with EMA Mechanism. The data-
sets used in this study are from different power stations,
and the datasets involve the influence of different weather,
geographic environment, shooting height, and other factors
in the process of collection, so there are various differences
in the manifestation of the same fault type on different
power stations, for example, the infrared camera, when
shooting; because of the influence of the ground tempera-
ture, the picture will show a red or purple color difference,
and these differences in color will give the model to bring
a certain degree of misdetection, or the different flight alti-
tude of the UAV when collecting data will lead to the same
fault type; there is a difference in scale. The “reweight” oper-
ation in the EMA mechanism can enhance those features
that are more important for the task at hand (e.g., defect
detection). For example, when detecting small defects or
irregular color differences, the model can pay more attention
to small changes in those features. The “reweight” operation
effectively fuses features at different scales to enhance or
suppress certain features by applying the attention map
derived from the input feature map to the original feature
map. This reweighting step is crucial in the attention mech-
anism as it allows the network to focus its attention on the
more relevant parts of the input data, which in the case of
the EMA module involves channel information and spatial
information. Essentially, the “reweighting” here is the appli-
cation of the learned attentional map to the original input
features, enhancing the sensitivity of the model to modulate
them for subsequent processing.

The EMA mechanism [16] is a novel and efficient multi-
scale attention module. Its main goal is to maintain the
integrity of information from different channels without sig-
nificantly increasing the computational overhead. This is
achieved by reshaping certain channels into batch dimen-
sions and organizing the channel dimensions into multiple
subfeatures. This reconstruction ensures that spatial seman-
tic features are evenly distributed within each feature group.
The overall structure of the EMA model is shown in
Figure 6. To ensure the efficiency of the model without add-
ing unnecessary complexity, we seamlessly integrate the
EMA mechanism into the 1 × 1 convolution layer, creating
a custom convolution block with attention function. This
custom convolution block (which we call Conv-ATT) is
shown in Figure 7.

EMA divides any given feature input X ∈ RC×H×W into G
subfeatures across the channel dimension directions in order
to learn different semantics. EMA employs three parallel
pathways to extract attention weight descriptors from the
grouped feature graph. Two of these pathways are part of
the 1 × 1 branching, while the third belongs to the 3 × 3
branching. This design is aimed at capturing channel depen-
dencies and reducing computational demands effectively. To
achieve this, two 1D global average pooling operations are
utilized within the 1 × 1 branch. These pooling operations
encode channel information along both spatial directions
independently. Conversely, in the 3 × 3 branch, only a single
3 × 3 kernel is employed to capture multiscale feature repre-
sentations. This strategic configuration optimizes the bal-
ance between capturing essential channel dependencies and
managing computational resources. After two 1D global
average pooling operations, a similar processing method to
the CA mechanism is applied, and finally, the original inter-
mediate feature maps are aggregated using the learned atten-
tion map weights of the two parallel routes as the final
output [17]. Then, the global spatial information is encoded
in the output of the 1 × 1 branch using 2D global average
pooling, and the output of the smallest branch is directly
converted to the shape R1×C//G

1 × RC//G×HW
3 , and 2D global

pooling operation of the corresponding dimension before
the joint activation mechanism of the channel features as
follows [18]:

zc =
1

H ×W
〠
H

j

〠
W

i

xc i, j 8

To improve computational efficiency, we applied a Soft-
max function for linear transformation adaptation on the
output of 2D global average pooling [19]. By combining
the output of parallel processing with matrix dot product
operations, we generated the first spatial attention map. At
the same time, we also encoded the global spatial informa-
tion of the 3 × 3 branches using 2D global average pooling
to obtain the second spatial attention map. Finally, we fused
the set of spatial attention weight values computed from the
output feature maps in each group from the two generated
spatial attention maps using the sigmoid function. This
approach helps to capture pixel-level pairwise relationships
and highlights the global context. Through cross-spatial
information aggregation, we are able to capture long-range
dependencies and embed precise location information into
the EMA. In this way, the fusion of contextual information
at different scales allows the CNN to better focus on the
pixel-level details of high-level feature maps.

3. Experimental Results and Analysis

3.1. Experimental Environment. In our experiments, we used
the PyTorch framework for the study under the following
conditions: Ubuntu 20.04 operating system, Python 3.8,
PyTorch version 1.10.0, and RTX A5000 GPU with 24GB
of graphics memory and 30G of RAM. Trained using SGD
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optimizer, input image is 640 × 640, learning rate is 0.01,
batch size is 32, and epochs are 100.

3.2. Datasets. In this study, we utilized infrared photovoltaic
panel images acquired by our group using a drone. These
images were obtained from 13 large power stations, forming
a dataset of about 8,900 infrared images (image resolution
information is 640 × 512). Given that temperature variations
lead to changes in PV panel color [20], we carefully selected
2,549 images from the original dataset as the basis of our
study with the aim of improving detection accuracy. During
the annotation process, we manually labeled these images
using the LabelImg tool. Specifically, we categorized and
labeled four types of faults: breaks, hot spots, plant shadows,
and battery strings. The shatter and string categories were
defined based on the size of the PV module, while plant
shadows and hot spots were labeled based on the size and
location of the fault point. It is worth noting that we pur-

posely excluded positive samples with unclear pixels [21]
to prevent overfitting of the neural network. The final data-
set is in YOLO format and contains a total of 25,017 labels.
Figure 8 gives an example of the distribution of labels in the
dataset.

Figure 9 illustrates the characteristics of the four fault
types mentioned above. Figure 9(a) is the fragmentation,
which is characterized by a large number of densely distrib-
uted, irregular hot spots. Figure 9(b) is the hot spot, which
manifests itself as small, bright hot spots with sharp, usually
square edges. Figure 9(c) is the vegetation shading, which
sometimes shades only one PV panel and sometimes shades
multiple PV panels due to irregular vegetation growth.
Figure 9(d) is the cell strings, usually rectangular distribu-
tion, accounting for 1/3 or 2/3 of the whole module. Consid-
ering the for case of images and labels, we divide the dataset
into three parts according to 7 : 2 : 1, with 70% for training,
20% for validation, and 10% for testing.

3.3. Evaluation Indicators. In order to assess the performance
difference of the network model for various types of faulty
images under the same experimental conditions as well as
the false and missed detections, we used three evaluation met-
rics, AP, recall, and mAP, to measure the comprehensive
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Figure 6: EMA model structure.
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performance of the network. The formulas for these metrics
are as follows:

Precision = TP
TP + FP

,

Recall =
TP

TP + FN
,

AP =
1

0
precision recall d recall ,

mAP =
1
N
〠
N

i=1
APi

9

In the formula, precision indicates the total number of
positive samples identified correctly over the total number of
samples identified as positive samples; recall is the total num-
ber of positive samples identified correctly over the total num-
ber of samples identified as positive samples; TP is the number
of positive samples predicted to be positive samples; FN indi-
cates the number of positive samples predicted to be negative
samples; FP is the number of negative samples predicted to be
positive samples; TN is the number of negative samples pre-
dicted to be negative samples; AP is the average precision,
which is the area circumscribed by PR curves and the axes of

each category; and mAP is the averaging of the AP values for
all categories.

3.4. Test Results and Analysis

3.4.1. Comparison with Other Algorithms. In order to vali-
date the state-of-the-art of the algorithms proposed in this
paper, we selected Liteourg-YOLOv5, YOLOv5-s, YOLOX-
m [22], and YOLOv7 for comparison experiments. These
experiments used the same equipment, dataset, and data
augmentation methods, while keeping the training and test
sets in equal proportions. The experiments were performed
for 100 iterations, and the best results were selected for test-
ing. Table 1 lists the mAP, recall (recall), and AP values for
each fault type for the different algorithms.

As can be seen from Table 1, under the same experimen-
tal conditions, the algorithm PA-YOLO proposed in this
paper has a significantly higher mean accuracy (mAP) value
of 94.5% compared with other models such as Liteourg-
YOLOv5 (83.1%), YOLOv5-s (83.4%), YOLOX-m (85%),
and the standard YOLOv7 (87.7%). This significant differ-
ence in mAP proves the excellent performance of PA-
YOLO. This significant difference in mAP demonstrates
the excellent performance of PA-YOLO. In addition, PA-
YOLO’s recall increased by 11.9% compared to YOLOv7.
The higher recall indicates that PA-YOLO is better able to
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capture the target objects in the image, which reduces missed
detections and lowers the risk of missing important informa-
tion [23]. To visualize the performance improvement,
Figure 10 shows a comparison of the network mAP curves
before and after the improvement. It is clear that the PA-
YOLO network outperforms the original YOLOv7 network
on this dataset, showing higher stability and detection capa-
bilities. In conclusion, PA-YOLO is an efficient algorithm
with significant mAP values and higher recall that outper-
forms other models including YOLOv7 in a given experi-
mental setting.

In order to visualize the superiority of the proposed algo-
rithms in this paper, Figure 11 shows some comparative
results of YOLOv5, YOLOX, and YOLOv7 algorithms with
the algorithms in this paper on the test set. As can be seen
from the bottom of Figure 11(a), there is only one kind of
defect “hot spot” on the photovoltaic panel, while there are
different degrees of misdetection and omission in
Figures 11(b) and 11(c), and there are also two misdetections
in Figure 11(d), which misdetect the hot spot as “battery
string,” as shown in the enlarged image in the red curve
box in Figure 11(d). Second, there are a large number of

missed detections in the detection diagrams in the middle
of Figures 11(b) and 11(c). In the middle picture of
Figure 11(d), YOLOv7 detects one plant shade as multiple
ones and misses one plant shade and misdetects the “hot
spot” as “broken,” as shown in the blue box, and misdetected
“hot spot” as “cracked,” as shown in the blue box. The top
images in Figures 11(b)–11(d) have missed detections of
“battery strings.” The above YOLOv7 network in the detec-
tion of various errors in this paper’s algorithm PA-YOLO
has been effectively resolved, greatly reflecting the superior-
ity of this paper’s algorithm.

3.4.2. Ablation Experiment. In order to fully verify the per-
formance of each module in the PA-YOLO algorithm, abla-
tion experiments are conducted on repulsion loss,
asymptotic feature pyramid network (AFPN), and convolu-
tional block with EMA mechanism under the same hyper-
parameters and experimental environments, and the results
of the experiments are shown in Table 2.

From the experimental results, it can be seen that the
mAP value and recall (R) of each module are improved
when the ablation experiments of individual modules are
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Figure 10: Comparison of mAP curves.

Table 1: Comparison of different network models.

Algorithm mAP R Fracture Hot spot Plant PV panel string FPS

Liteourg-YOLOv5 83.1 77.1 86.8 68.4 80.7 96.6 65

YOLOv5-s 83.4 77.3 96.1 60.7 83.7 93 62

YOLOX-m 85 79.5 75 80 93 92 78

YOLOv7 87.7 79.9 98.7 70.3 89.9 91.9 80

PA-YOLO 94.5 91.8 99.4 88.6 92.7 97.3 83

Note: data in the table are expressed as percentages except FPS. The unit of FPS is frames per second. “Battery string” and “PV panel string” in Table 1
represent the same meaning.
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performed, and the mAP value of the fused PA-YOLO is
improved by 6.8% compared to YOLOv7, which is a signifi-
cant improvement over the original model. The experimen-
tal results show that replacing the original feature fusion
network of YOLOv7 with the asymptotic feature pyramid
(AFPN) structure greatly compresses the size of the model
while improving the network recall, indicating that the
introduction of the new feature fusion network is imperative
for improving the network detection accuracy. The addition
of the repulsion loss greatly improves the detection accuracy
of the occlusion faults, e.g., Figure 11(d). For example, in the

(a) Original figure (b) YOLOv5-s inspection chart (c) YOLOX-m inspection chart

(d) YOLOv7 inspection chart (e) PA-YOLO inspection chart

Figure 11: Comparison of test results.

Table 2: Effectiveness of different modules on model detection.

Repulsion
loss

AFPN
Conv-
ATT

R
(%)

Model size
(M)

mAP
(%)

79.8 71.3 87.7

√ 87.9 71.3 91.1

√ 88.2 48.4 92.4

√ 85.0 71.8 92.2

√ √ √ 91.8 48.4 94.5
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middle YOLOv7 detection map, there is a “fracture” defect
that is partially obscured by the “plant,” which leads to the
omission of the YOLOv7 network, while the “fracture” fault
type is successfully detected in the PA-YOLO network.
“Meanwhile, the inclusion of repulsion loss is essential to
improve the detection accuracy of dense small targets in
the dataset. The introduction of convolutional blocks with
EMA mechanism can make the network pay better attention
to the global features and prevent the network from misde-
tecting the features outside the PV panels as a certain fault
type, which can effectively reduce the misdetection rate of
the network [24].

4. Conclusion

To address the challenge of PV panel fault detection, we
reconfigure the YOLOv7 network to include an asymptotic
feature pyramid network (AFPN) as the backbone for fea-
ture fusion. In addition, we propose a novel convolutional
block with an attention mechanism, which can be seen from
the data derived from the ablation experiments to greatly
enhance the network’s attention to global features. The
introduction of repulsion loss (RL) plays a key role in
improving the detection accuracy of occluded targets and
accelerating network convergence. Experimental results
show that our model achieves the highest mean average pre-
cision (mAP) under consistent experimental conditions,
while the model size is significantly reduced. This reduction
not only helps to improve detection performance but also
facilitates deployment in embedded systems. In the future,
we will aim to further compress the model size and contin-
uously optimize it to ensure superior detection accuracy
even in distributed PV panel application scenarios.

Data Availability

The data of this study is taken from the field photography of
the cooperating enterprises and labeled manually by the
researchers of the group. Due to the reason of data nondis-
closure, the data of this study cannot be open-sourced, but
it can be obtained from the corresponding author upon rea-
sonable request.
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