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In this study, a heterojunction (P+ a-SiC/i intrinsic/n-Si) solar cell has been examined and characterized using the Analysis of
Microelectronics and Photonic Structures (AMPS-1D) simulator. In this heterojunction solar cell, an intrinsic layer is imposed
to enhance the efficiency and performance. The optimum efficiency of 36.52% (Voc = 1 714V, Jsc = 27 006mA/cm2, and FF =
0 789) has been achieved with this intrinsic layer. It has also been observed the solar cell without intrinsic layer. In this case,
the maximum efficiency of 2.378% has been observed which is very poor. The heterojunction solar cell also has been
investigated with electron blocking layer (EBL) and defect layer. In this case, the simulation result shows the lower efficiency
(34.357%) than the previous. This research paper introduces an optimized model of a heterojunction solar cell enhanced with
an intrinsic layer to improve efficiency. The proposed design shows significant promise in its theoretical framework. Looking
forward, the design could be realized in laboratory settings and has the potential to be scaled up for broader applications.

1. Introduction

The world increasingly relies on renewable energy due to
fossil fuel scarcity, rising costs, and the harmful impact of
fossil fuels on the greenhouse system [1]. The relentless
quest for renewable energy solutions has highlighted solar
cells as one of the foremost contenders in the pursuit of sus-
tainable energy [2]. Globally, the increasing need for sustain-
able energy and societal development has made
environmental preservation and energy security conserva-
tion essential [3–5]. There is wide scientific consensus that
in order to prevent the worst climate effects, global net
human-caused carbon dioxide (CO2) emissions must drop
by around 45% from 2010 levels by 2030, and they must
approach net zero by 2050 [6–10]. Renewable energy sources
encompass solar, wind, hydro, geothermal, tidal, wave, and
biomass energies, derived from natural processes that are
replenished constantly. Solar energy is the best because it
offers a sustainable, abundant, and increasingly cost-
effective source of power with minimal environmental
impact [11, 12]. Solar cell efficiency is constrained by the

inherent limitations of semiconductor materials to absorb
and convert the full spectrum of sunlight and by energy
losses due to nonradiative recombination [13, 14]. Overcom-
ing these challenges requires innovative materials, improved
light management techniques, and advanced cell architec-
tures. Among the various configurations of solar cells, het-
erojunction structures have emerged as a significant topic
of investigation [15]. Silicon-based heterojunction solar cells
(Si HJSCs) offer several advantages, making them a promis-
ing choice for photovoltaic technology. Si HJSCs are thought
to as a viable and affordable alternative to address the rising
energy demand because they have demonstrated excellent
power conversion efficiency (PCE). Recent developments
in Si HJSCs have led to improved PCE, surpassing that of
traditional homojunction crystalline silicon (c-Si) solar cells
[16]. The power conversion efficiency of silicon heterojunc-
tion (SHJ) solar cells is quite high because of their effective
passivating contact arrangements [17]. Surface hybrid junc-
tion technology may become more commercially viable by
increasing device efficiency with improvements to these con-
tacts’ optoelectronic properties [18]. These configurations
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promise enhanced performance characteristics and are piv-
otal in our quest to harness solar energy more effectively.
The efficiency of these cells becomes crucial as it determines
the viability and future applicability of these energy solutions.

However, traditional heterojunction solar cells, while
offering numerous advantages, have not fully realized their
potential, often underperforming in terms of conversion effi-
ciency. Bifacial TOPCon solar cells have a limitation effi-
ciency of 28.7%, while SHJ solar cells have a limiting
efficiency of 28.5 percent [19]. A key challenge has been in
managing the inherent properties of materials and their
interfaces. The role of an intrinsic layer, for instance, could
be paramount in this regard. Previous studies have touched
upon the theoretical advantages an intrinsic layer might pro-
vide, suggesting that its integration could notably enhance
the efficiency and performance of the heterojunction solar
cell [20, 21]. The integration of an intrinsic layer in a PIN
structure can improve the efficiency of a solar cell compared
to a PN junction [22–25]. Without the application of an
antireflection coating, the perovskite-Si solar cell with a
three-terminal heterojunction bipolar transistor design
achieves a high efficiency of up to 28.6% [26]. Nonradiative
energy transfer (NRET) improves solar cell efficiency, and
the 1-octene ligand demonstrated the highest solar cell effi-
ciency in [27]. In paper [28], the efficiency of the Si-based
heterojunction solar cell was improved from 3.39% to
3.98% using the coupled ZnO-SnO2 nanocomposite. The
efficiency of the Si-Ge-based multijunction solar cell is sim-
ulated to be 47.1% under normal sun conditions and 56.4%
under 1000 sun concentrations achieved in [29]. In the study
[30], for 100m and 50m thick Rib-Si solar cells, respectively,
the Si-based heterojunction solar cell obtained conversion
efficiencies of 20.2 percent and 19.9 percent. A 7.6% power
conversion efficiency for the manufactured heterojunction
carrier selective c-Si solar cell was investigated in [31]. The
study investigates in [32] the impact of front and back con-
tact parameters on the efficiency of p-n homojunction Si
solar cells, integrating an electron blocking layer (EBL).
Employing fluorine-doped tin oxide (FTO) and zinc (Zn)
as front and back contacts, respectively, an optimal efficiency
of 29.275% is achieved, highlighting the significance of con-
tact materials in enhancing solar cell performance. PV tech-
nology offers a sustainable solution to energy demand, while
Si heterojunction boosts the power conversion efficiency
(PCE) of c-Si solar cells. Si-based heterojunction solar cells
have achieved a power conversion efficiency (PCE) of over
26% achieved in [33]. Investigation of MoS2/AlN/Si hetero-
junction solar cells reveals enhanced power conversion effi-
ciency with the incorporation of an AlN layer. The power
conversion efficiency increases from 2.92% to 3.53%, dem-
onstrating that tunnelling of charge carriers is a superior
transport mechanism in this context [34]. This study in
[35] investigates the effect of a ZnO-BSF layer on the perfor-
mance of PEDOT:PSS/Si heterojunction solar cells using
SCAPS-1D simulation software. The results show that the
introduction of a ZnO-BSF layer can significantly improve
the efficiency of the solar cell. The optimized set of param-
eters for the solar cell with a ZnO-BSF layer leads to a
maximum power conversion efficiency of 24.26%, with

an open circuit voltage of 0.647V, short circuit current of
44.87mA/cm2, and fill factor of 83.52%. This study of
Kumari et al. [36] explores the use of ZnO as a front surface
field layer in inverted silicon/PEDOT:PSS heterojunction
solar cells to enhance their performance, achieving the high-
est power conversion efficiency (PCE) of 25.04%. However,
the limitations include the lack of exploration of ZnO as a
front surface field layer in this specific configuration. The
study addresses this gap through numerical simulation and
proposes ZnO as an effective enhancement for high-
efficiency devices. The research paper [37] investigates the
performance of heterojunction interdigitated back contact
solar cells and assesses the impact of a passivation layer in
preventing carrier recombination. The Si-based heterojunc-
tion solar cell in the study has an efficiency of 20.8% [37].
MoO3 exhibits indirect semiconductor properties with a
bandgap of 2.12 eV in PBE and 3.027 eV in HSE06, making
it a promising candidate for dual roles as an antireflection
layer and emitter layer in solar cells. The efficiency of the
MoO3/Si heterojunction solar cell is 8.8%, which is 1.24%
greater than a homojunction silicon-based solar cell [38].
However, the paper does not discuss the potential limitations
or challenges in scaling up the MoO3/Si heterojunction solar
cell for practical applications. The problem with Si-based het-
erojunction solar cells lies in their limited efficiency due to
surface recombination and the need for expensive passiv-
ation techniques [39]. One potential solution is to employ
innovative passivation materials and techniques, such as
using advanced dielectric layers or surface texturing, to
reduce surface recombination and enhance the overall effi-
ciency of these cells [40]. The efficiency of Si-based hetero-
junction solar cells can be increased by adding an intrinsic
passivation layer to the monocrystalline silicon substrate.
This passivation layer helps to reduce electron complex loss
and improve the functionality of the cell [39, 41, 42].

In this research, we utilize the advanced capabilities of
the Analysis of Microelectronics and Photonic Structures
(AMPS-1D) simulator to delve deeply into the workings of
the P+ a-SiC/i intrinsic/n-Si heterojunction solar cell.
Through detailed characterization, we seek to understand
the impact of this intrinsic layer on overall efficiency. Simul-
taneously, we also explore configurations without this intrin-
sic layer and those with added components like the electron
blocking layer (EBL) and defect layer to comprehend their
effects on cell performance.

This study delves deep into the exploration of the hetero-
junction solar cell, specifically focusing on the impact of the
intrinsic layer on its efficiency. By drawing comparisons with
models lacking this layer and investigating other modifica-
tions, this research aspires to pinpoint the most optimal
design. Such endeavors not only bridge the gap between
theoretical knowledge and practical application but also pave
the way for the next generation of high-efficiency solar
energy solutions.

2. Simulation Model

The AMPS (Analysis of Microelectronic and Photonic Struc-
tures) software [43] employs a computational approach to
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study one-dimensional devices, breaking them down into
discrete segments through a grid of user-defined mesh
points [44]. This mesh can be adjusted with varying grid
spacing as per the user’s preference. To comprehend the
inner workings of AMPS, it is essential to recognize that this
software employs a continuum-based approach to simulate
the transport of charge carriers within semiconductor
devices. This approach is governed by three fundamental
equations: Poisson’s equation, the continuity equation for
free holes, and the continuity equation for free electrons
[44]. These equations encapsulate the physics of how charge
carriers move within the device. The challenge in analyzing
device transport characteristics lies in solving these three inter-
connected nonlinear differential equations while considering
suitable boundary conditions. This chapter’s primary focus is
on delving into these three essential equations, exploring the
corresponding boundary conditions, and discussing the
numerical techniques employed to solve them, as they form
the foundation of the AMPS simulation framework for
understanding semiconductor device behavior. Poisson’s
equation establishes a connection between the populations
of free carriers, trapped charges, and ionized dopants within
a material system and the electrostatic field within it. In a
one-dimensional space, Poisson’s equation can be expressed
as follows:

d
dx

−ε x
dΨ′
dx = q · p x − n x +N+

D x −N−
A x + pt x − nt x ,

1

where the electrostatic potential Ψ′, the concentrations of
free electrons (n), free holes (p), trapped electrons (nt),
trapped holes (pt), ionized donor-like doping (N+

D), and
ionized acceptor-like doping (N−

A) are all dependent on
the position coordinate x. It is worth noting that ε repre-
sents the permittivity, and q denotes the absolute charge
magnitude of an electron. Equation (2) is the form of Pois-
son’s equation that AMPS uses given below:

d
dx

ε x
dΨ
dx

= q · p x − n x +N+
D x −N−

A x + pt x − nt x

2

The continuity equations are mathematical expressions
that describe the behavior of conduction band electrons
and valence band holes. When the system is in a steady
state, there is no change over time in the concentrations
of free carriers. Consequently, the continuity equation rep-
resenting the free electrons in the extended states of the
conduction band can be expressed as follows:

1
q

dJn
dx

= −Gop x + R x 3

The expression describing the continuity equation for
the free holes within the widely spread states of the valence
band is as follows:

1
q

dJp
dx

=Gop x − R x , 4

where Jn and Jp are the electron and hole current densities,
respectively. The expression R x represents the overall
recombination rate, encompassing both direct band-to-
band recombination and indirect S-R-H recombination via
gap states. The expression Gop x refers to the optical gen-
eration rate influenced by external illumination and is a
function of x.

To analyze the transport characteristics of the device, the
software relies on solving three interconnected nonlinear
differential equations, taking into account the corresponding
boundary conditions, as indicated in Table 1. Within this
framework, PHIBO represents the difference between the
work function of the front contact and the electron affinity
of the semiconductor in contact, while PHIBL represents
the analogous difference for the back contact. The successful
resolution of these equations and boundary conditions,
along with the chosen numerical solution technique, enables
a comprehensive understanding of the device’s behavior and
performance.

PHIBO and PHIBL represent crucial parameters in
semiconductor analysis, delineating the energy disparities
between the work function of the front and back contacts,
respectively, and the electron affinity of the semiconductor
they are in contact with. These disparities play a pivotal role
in determining the band bending and charge carrier behav-
ior at the semiconductor interfaces within electronic and
photonic devices, offering insights into device performance
and behavior by quantifying the energy level differences gov-
erning charge transport and electron dynamics in the
material.

3. Simulation Parameters

Surface recombination speeds refer to the rate at which
charge carriers (e.g., electrons and holes) recombine at the
surface of a semiconductor material, typically causing a loss
of electrical performance. Faster surface recombination can
reduce the efficiency of electronic devices like solar cells
and transistors. Speeds of surface recombination are as
follows:

(i) SNO = SNO = electrons at x = 0 interface (cms-1)

(ii) SPO = SPO = holes at x = 0 interface(cms-1)

Table 1: Boundary conditions of the front and back contacts of
AMPS.

Contact parameters Description

PHIBO =Φbo (front contact) Ec − Ef in at x = 0 (eV)

PHIBL =ΦbL (back contact) Ec − Ef in at x = L (eV)

3International Journal of Photoenergy



(iii) SNL = SNL = electrons at x = L interface (cms-1)

(iv) SPL = SPL = holes at x = L interface (cms-1)

The reflection coefficient for light impinging on the front
surface of a material is determined by the Fresnel equations
and represents the ratio of the reflected light intensity to the
incident light intensity at the interface. In contrast, the
reflection coefficient for light impinging on the back surface
of a material is typically lower than the front surface due to
multiple internal reflections within the material, resulting in
reduced light reflection at the back surface. Reflection coeffi-
cient for light impinging on front and back surfaces

(i) RF = RF = reflection coefficient at x = 0 (front
surface)

(ii) RB = RB = reflection coefficient at x = L (back surface
reflection)

To obtain simulation results using the AMPS-D soft-
ware, the temperature was set to 300°K. In this simulation,
we utilized AM 1.5 illuminations, where “AM” stands for
air mass. The air mass coefficient, denoted as “AM,” quan-
tifies the direct optical path length of sunlight through
Earth’s atmosphere in relation to the path length when the
sunlight is directly overhead, or at the zenith [45]. An AM
value of 1.5 signifies that the sunlight’s path through the
atmosphere is 1.5 times longer than it would be when the
sun is directly above, providing a standardized condition
for simulating the effects of solar radiation on various mate-
rials or systems.

With the impact of increased thickness or carrier con-
centration on the recombination profile, it is important to
analyze how these parameters affect the recombination rate
within the solar cell. The recombination rate (Rrecombination)
can be described by the Shockley-Read-Hall (SRH) recombi-
nation equation [46–48]:

Rrecombination =
np − n2i
τSRH

, 5

where n and p represent the electron and hole concentra-
tions, respectively; ni is the intrinsic carrier concentration;
and τSRH is the SRH lifetime.

When thickness or carrier concentration is increased, it
affects n and p within the solar cell, subsequently altering
Rrecombination . Higher thickness allows for more light absorp-
tion, increasing carrier generation (n and p), but it also
increases the recombination rate. Similarly, higher carrier
concentration (n or p) increases carrier generation but may
also lead to higher recombination.

Analyzing the recombination profile involves calculating
carrier concentrations and their respective lifetimes, which
can be obtained from simulation results. By comparing these
values for different thicknesses or carrier concentrations, we
can gain insights into their impact on recombination and
overall cell performance.

4. Proposed Solar Cell Structure with
Material Properties

4.1. Structures. Figure 1 shows the structure of heterojunc-
tion solar cell. Figure 1(a) is P+ a-SiC/i intrinsic/n-Si hetero-
junction solar cell in which the key layer is the intrinsic
layer. The Figure 2(a) is P+ a-SiC/n-Si heterojunction solar
cell. Figure 3(a) is EBL/defects/P+ a-SiC/i intrinsic/n-Si het-
erojunction solar cell. Each solar cell has a front contact of
transparent conducting oxide (TCO) and a back contact of
metal.

4.2. Proposed Material Parameters for Simulation. The simu-
lation parameters for the heterojunction solar cell in AMPS-
1D are detailed in Tables 2 and 3. The default illumination
conditions for this simulation are set at AM 1.5 and a tem-
perature of 300K. In heterojunction solar cells, the “intrinsic
layer,” typically made of amorphous silicon (a-Si), is a cru-
cial component situated between the P+ (P-type) and n-Si
(N-type) layers, designed to reduce charge carrier recombi-
nation at the P+/i and i/n interfaces [49]. The intrinsic layer
earns its name because it is intentionally dopant-free, main-
taining electrical neutrality to minimize recombination
losses and enhance solar cell efficiency, enabling a greater
contribution of generated charge carriers to the electrical
output [50].

5. Simulated Results and Discussion

5.1. Si-Based Heterojunction with Intrinsic Layer. A silicon
(Si)- based heterojunction with an intrinsic thin layer (often
abbreviated as HIT) represents a unique solar cell design.
Traditional solar cells often suffer from surface recombina-
tion, which hampers their efficiency. In the HIT design, the
intrinsic (undoped) thin layer of amorphous silicon (a-
Si:H) is introduced between the crystalline silicon (c-Si)
wafer and the doped amorphous silicon layer. This intrinsic
layer serves as a passivation layer, reducing the surface
recombination velocity. As a result, HIT cells typically have
higher open circuit voltages and overall efficiencies com-
pared to standard c-Si solar cells. The HIT structure signifi-
cantly optimizes the performance of silicon-based
photovoltaic devices.

5.1.1. Effect of Bandgap of Intrinsic Layer. Figure 2 shows the
Voc and Jsc curve w.r.t. bandgap of intrinsic layer. It has
been observed that with the increasing of bandgap from
2.4 eV, both the open circuit voltage (Voc) and Jsc increase.
Beyond 2.7 eV, both the open circuit voltage (1.714V) and
Jsc (27.006mA/cm2) are almost constant. At the bandgap
of 2.4 eV, 2.7, and 2.9 eV, the open circuit voltages (Voc)
are 1.557V, 1.714V, and 1.714V, respectively, as well as
open circuit current densities (Jsc) are 26.872mA/cm2,
27.006mA/cm2, and 27.008mA/cm2, respectively.

Figure 3 shows the FF and efficiency curve w.r.t. bandgap
of intrinsic layer. In this figure, the FF and efficiency increase
with the increasing bandgap of intrinsic layer. Beyond
2.7 eV, the FF (0.789) and efficiency (36.52%) are almost
constant. At the bandgap of 2.4 eV, 2.7, and 2.9 eV, the FF
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which are 0.745, 0.789, and 0.791, respectively, as well as the
efficiencies which are 31.188%, 36.52%, and 36.607%,
respectively, have been observed. From the above discussion,
it has been observed that 2.7 eV is the optimum bandgap of
intrinsic layer.

5.1.2. Effect of Bandgap of P+ a-SiC Layer. Figure 4 shows
that FF and efficiency curve w.r.t. bandgap of P+ a-SiC layer.
It has been noticed that the efficiency has a tremendous
effect on bandgap of P+ a-SiC layer. As the bandgap
increases, the efficiency increases and FF decreases. At
2.20 eV, the efficiency is the maximum. Beyond 2.20 eV,

the efficiency sharply decreases. At 2.0 eV, 2.20 eV, and
2.4 eV, the FF are 0.803, 0.789, and 0.722, respectively, as
well as the efficiencies are 32.951%, 36.52%, and 33.581%,
respectively.

Figure 5 shows the Voc and Jsc curve w.r.t. bandgap of
P+ a-SiC layer. Both the Jsc and open circuit voltage (Voc)
are maximum at 2.2 eV. At 2.0 eV, 2.20 eV, and 2.4 eV, the
open circuit voltages (Voc) are 1.526V, 1.714V, and
1.726V, respectively, as well as the Jsc are 26.893mA/cm2,
27.006mA/cm2, and 26.946mA/cm2, respectively. From
the result, it has been observed that the optimum bandgap
of P+ a-SiC layer is 2.2 eV.

TCO

Metal

P+ a-SiC (15-20 nm)

Intrinsic layer
(8000 nm)

n-Si (15-100 nm)

(a)

TCO

Metal

P+ a-SiC (1000 nm)

n-Si (1000 nm)

(b)

Metal

EBL (50 nm)

TCO

n-Si (15-100 nm)

Intrinsic layer
(8000 nm)

P+ a-SiC (15-20 nm)

Defects (50 nm)

(c)

Figure 1: Structure of heterojunction solar cell: (a) heterojunction with intrinsic layer; (b) heterojunction without intrinsic layer;
(c) heterojunction with intrinsic layer, defects, and EBL.
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5.1.3. Effect of Thickness of Intrinsic Layer. Figure 6 displays
the FF and efficiency curve thickness of intrinsic layer. From
the curve, it is depicted that the efficiency increases with
increasing of thickness of intrinsic layer up to 8000 nm.
Beyond 8000nm of thickness, the efficiency decreases with
increasing of thickness of intrinsic layer. That is why
8000 nm is the optimum thickness of intrinsic layer. Increase
in thickness means more light absorption in this layer which
leads to higher efficiency. It has been observed that the FF
decreases with the increasing of thickness of intrinsic
layer. At 6000 nm, 8000 nm, and 10000nm of thickness
of intrinsic layer, the fill factors are 0.819, 0.789, and
0.775, respectively, as well as the efficiencies are 36.217%,
36.52%, and 36.382%, respectively.

The Voc and Jsc curve w.r.t. thickness of intrinsic layer is
shown in Figure 7. The Jsc increases with the increase of the
thickness of intrinsic layer because more area surface and
thickness means more short circuit current density. But the
open circuit voltage (Voc) is constant (1.714V). At
6000 nm, 8000 nm, and 10000 nm of thickness of intrinsic

Table 2: Electronic properties used in simulation.

Electronic properties
P+ a-SiC
[51]

N+/i intrinsic
[52–56]

n-Si
[57]

Defects
[58]

EBL
[59]

Thickness (nm) 15-20 8000 15-100 50 nm 50 nm

Relative permittivity, ɛr 11.9 11.9 11.9 11.9 11.9

Electron mobility, μn (cm2/v-s) 10.0 1350.0 40.0 20.0 40.0

Hole mobility, μp (cm2/v-s) 1.0 450.0 4.0 2.0 4.0

Acceptor and donor concentration (cm-3) NA = 1 0 × 1021 — ND = 1 0 × 1019 — NA = 1 0 × 1018

Bandgap (eV) 2.20 2.70 1.12 1.82 2.10

Effective density of states in conduction band (cm-3) 2 5 × 1020 2 5 × 1020 2 8 × 1019 2 5 × 1020 2 5 × 1020

Effective density of states in valence band (cm-3) 2 5 × 1020 2 5 × 1020 1 04 × 1019 2 5 × 1020 2 5 × 1020

Electron affinity (eV) 3.70 3.80 4.05 3.80 3.85
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Figure 4: FF and efficiency curve w.r.t. bandgap of P+ a-SiC layer.

Table 3: Front contact and back contact parameters.

Front contact Back contact

PHIBO = 1 60 eV PHIBL = 0 30 eV
SNO = 1 0 × 107 cm/s SNL = 1 0 × 107 cm/s

SPO = 1 0 × 107 cm/s SPL = 1 0 × 107 cm/s

RF = 0 00 RB = 1 00
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layer, the short circuit currents (Jsc) are 25.816mA/cm2,
27.006mA/cm2, and 27.379mA/cm2, respectively. From
the above result and discussion, it has been observed that
the optimum thickness of intrinsic layer is 8000 nm.

5.1.4. Effect of Thickness of P+ a-SiC Layer. Figure 8 shows
the FF and efficiency curve w.r.t. thickness of P+ a-SiC layer.

At 15-20 nm of thickness, the efficiency is almost constant.
Beyond that, the efficiency sharply decreases as the figure
shows that. The fill factor decreases with increasing the
thickness of P+ a-SiC layer. At 15 nm, 50nm, and 100nm
thickness of P+ a-SiC, the fill factors are 0.789, 0.783, and
0.781, respectively, as well as efficiencies are 36.52%,
35.219%, and 33.819%, respectively.
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Figure 9: Voc and Jsc curve w.r.t. thickness of P+ a-SiC layer.
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Figure 12: FF and efficiency curve w.r.t. carrier concentration.
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Figure 9 shows the Voc and Jsc curve w.r.t. thickness of P+

a-SiC layer. The short circuit current density decreases with
increasing the thickness of P+ a-SiC layer, but the open circuit
voltage increases up to 50nm. Beyond that, it decreases with
increasing the thickness which has been observed in the simu-

lation. At 15nm of thickness, the open circuit voltage (Voc) is
1.714V and the Jsc is 27.006mA/cm2.

5.1.5. Effect of Thickness of n-Si Layer. Figure 10 shows the
FF and efficiency curve w.r.t. thickness of n-Si layer. From
the figure, it is depicted that the efficiency is almost constant
at 15-100 nm of thickness of n-Si. Beyond 30nm, the effi-
ciency sharply decreases. So, the optimized thickness for n-
Si layer is 15-30 nm at 15nm of thickness, the FF is 0.789,
and efficiency is 36.52%. The x-axis is in log10 scale.

Figure 11 shows the Voc and Jsc curve w.r.t. thickness of
n-Si layer. The Voc is almost same at 15-1000 nm, and after
that, Jsc decreases sharply. The Jsc decreases with increasing
the thickness of n-Si layer. The x-axis is in log10 scale. From
the simulation result, it has been noticed that the optimum
thickness of n-Si layer is 15-100 nm.

5.1.6. Effect of Carrier Concentration. The carrier concentra-
tion has a great influence in the performance on HIT solar
cell. Figure 12 shows FF and efficiency curve w.r.t. carrier
concentration of P+ a-SiC layer curve. From the simulation,
it has been observed that the efficiency is the maximum at
the carrier concentration of 1e21 cm-3. So, the optimized car-
rier concentration is 1e21 cm-3. But the fill factor (FF) is the
maximum at the carrier concentration of 1e19 cm-3. At 1e18

cm-3, 1e21 cm-3, and 1e22 cm-3 of carrier concentration, the
fill factors are 0.742, 0.789, and 0.724, respectively, as well
as efficiencies are 22.408%, 36.52%, and 35.799%, respec-
tively. Here, the x-axis is in log10 scale.
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Figure 13: Voc and Jsc curve w.r.t. carrier concentration.
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Figure 16: J-V and P-V curve of proposed HIT model.

Table 4: Simulation result of heterojunction solar cell without
intrinsic layer.

Thickness (nm) Jsc (mA/cm2) Voc (V) FF Efficiency (%)

15 0.906 0.407 0.656 0.242%

100 1.623 0.671 0.806 0.879%

1000 3.759 0.758 0.835 2.378%

5000 3.496 0.798 0.844 2.356%

10000 2.746 0.809 0.849 1.887%
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Figure 13 shows the Voc and Jsc curve w.r.t. carrier con-
centration of P+ a-SiC layer curve. Both the open circuit
voltage and short circuit current increase with the increase
of the carrier concentration of P+ a-SiC layer. The short cir-
cuit current density is almost constant after 1e21 cm-3 of car-
rier concentration. At 1e21 of carrier concentration, the open
circuit voltage (Voc) is 1.714V and the Jsc is 27.006mA/
cm2. Here, the x-axis is in log10 scale. It has been observed
that the optimum carrier concentration is 1e21 cm-3 as it
shows the maximum efficiency.

5.1.7. Effect of Temperature. The temperature has a tremen-
dous effect on HIT solar cell performance. Figure 14 shows
the FF and efficiency curve w.r.t. temperature. It is depicted
from the figure that the FF increases with increasing the
temperature, but the efficiency increases sharply up to
330K due to more breaks of bonding which helps to escape
more electron, and after that, it is almost constant. At 270K,
300K, and 340K of temperature, the fill factors are 0.765,
0.789, and 0.842, respectively, as well as the efficiencies are
33.609%, 36.52%, and 38.330%, respectively.

The short circuit current density and open circuit voltage
also respond to the temperature variation. Figure 15 shows
the Voc and Jsc curve w.r.t. temperature. It is clear from
the figure that the open circuit voltage (Voc) decreases with
increasing temperature due to decreasing Rsh, but the Jsc
increases with increasing the temperature due to decreasing
the series resistance (Rs). At 270K, 300K, and 340K of tem-
perature, the open circuit voltages are 1.725V, 1.714V, and
1.659V, respectively, as well as the short circuit current den-
sities are 25.461mA/cm2, 27.006mA/cm2, and 27.435mA/
cm2, respectively.

5.1.8. J-V and P-V Curve of Proposed HIT Model. Figure 16
shows the J-V and P-V curve of heterojunction with intrinsic
layer (HIT). It has been observed that the optimum effi-
ciency of 36.52% with open circuit voltage (Voc) is
1.714V, FF is 0.789, and Jsc is 27.006mA/cm2. The maxi-
mum power that has been observed is 36.52mW/cm2.

5.2. Si-Based Heterojunction without Intrinsic Layer. The Si-
based homojunction without intrinsic layer has a poor per-
formance as well as efficiency. This is due to the less light
absorption in the only P+ a-SiC layer and n-type Si layer.
The simulation result without the intrinsic layer by varying
thickness is given in Table 4.

The poor performance of the device without the intrinsic
layer compared to the one with it (>36%) is primarily due to
the intrinsic layer’s crucial role in a heterojunction solar cell.
It mitigates carrier recombination, decreases the energy bar-
rier for electron-hole separation, and reduces losses by
improving the fill factor. These functions enhance charge
separation, reduce recombination, and optimize electrical
characteristics, significantly boosting efficiency compared
to the reference device.

5.3. Heterojunction with Intrinsic, EBL, and Defects. In this
simulation, the heterojunction solar cell with intrinsic layer,
EBL, and defects has been simulated. It has been observed that
Si-based heterojunction with EBL and defects has the effi-
ciency less than the efficiency of Si-based heterojunction with
and without EBL. The simulation result is Voc = 1 723V, Jsc
= 24 899mA/cm2, FF = 0 801, and efficiency = 34 357%.

5.4. Comparison with Another Heterojunction Solar Cell. The
comparison of heterojunction solar cell with other prepub-
lished research work is given in Table 5.

6. Conclusion

In summary, this research is aimed at simulating the perfor-
mance of a heterojunction with intrinsic thin layer (HIT)
solar cell, and it has yielded promising results. The study
identified optimal parameters for this HIT cell configura-
tion, with key findings indicating that the ideal thicknesses
for the P+ a-SiC layer, N+/I intrinsic layer, and n-Si layer
are 15nm, 8000 nm, and 15nm, respectively. Additionally,
the optimal bandgap values were determined to be 2.20 eV,
2.70 eV, and 1.12 eV for the P+ a-SiC, N+/I intrinsic layer,
and n-Si layers, respectively. These optimizations led to

Table 5: Comparison with another prepublished heterojunction solar cell.

References/solar cell Jsc (mA/cm2) Voc (V) FF Efficiency (%)

[37] — 0.619 0.746 20.8%

[60] 40.5 0.729 0.80 23.6%

[61] 43.27 0.764 0.855 28.27%

[62] 40.2 0.751 0.797 24.06%

[63] 37.50 0.716 0.740 19.86%

[64] 42.04 0.755 0.798 25.35%

[65] 39.2 0.723 0.798 22.64%

[66] 34.82 0.711 0.796 19.72%

[67] 19.12 1.886 0.753 27.13%

Proposed heterojunction with intrinsic 27.006 1.714 0.789 36.52%

Proposed heterojunction with intrinsic and EBL 25.804 1.724 0.803 35.703%

Proposed heterojunction with intrinsic, defects, and EBL 24.899 1.723 0.801 34.357%

Heterojunction without intrinsic 3.759 0.758 0.835 2.378%
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an impressive peak efficiency of 36.52%, accompanied by
an open circuit voltage (Voc) of 1.714V, fill factor (FF)
of 0.789, and short circuit current density (Jsc) of
27.006mA/cm2. It is worth noting that further enhancements
in efficiency may be achievable through careful control of
band tail and band state parameters. These results lay the
foundation for the potential fabrication and real-world imple-
mentation of such HIT solar cells in laboratory settings, aim-
ing to validate and enhance the simulated performance for
practical, high-efficiency photovoltaic applications.
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