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Kinetics of linear polymer thermal depolymerization under isothermal and dynamic TGA modes was simulated by the Monte
Carlo method. The simulation was carried out on model arrays having the same initial degree of polymerization Pn = 100 and
different width (polydispersity index, PDI = Pw/Pn = 1 ∼ 3) at three constant temperatures and five heating rates. Kinetics of the
process in both modes is described by the Avrami equation, the exponent in which decreasing as the distribution width increases.
Treatment of the model kinetic curves of degradation using the nonlinear regression method by the Avrami equation, under both
isothermal and dynamic modes, gives correct activation energy and pre-exponential factor values independently of the initial PDI.
Data obtained in the dynamic mode were also treated by two isoconversion methods, widely applied to kinetic analysis of TGA
curves (Flynn-Wall-Ozawa method and Kissinger-Akahira-Sunose (KAS) method).

1. Introduction

Thermogravimetric analysis (TGA) method is widely applied
to the investigation of various polymers and polymeric com-
posites. This is a simple and reliable method that allows
estimation of thermal resistance of various materials and
obtaining of information on kinetics and the mechanisms of
thermal degradation processes. At present, different investi-
gators are using about 20 various methods for quantitative
treatment of the TGA thermograms for determination
of thermal degradation kinetic parameters, the activation
energy, first of all.

The most general description of a single-stage thermal
degradation of a polymer under the dynamic TGA mode
looks as follows:

dα

dT
= 1

β
· A · exp

(−E
RT

)
· f (α), (1)

where α is the conversion determined from the expression
α = (m0−m)/(m0−m∞); m, m0, and m∞ are current, initial,
and final masses of the sample, respectively; β is the heating

rate; T is the absolute temperature; R is the gas constant;
A and E are the pre-exponential factor and the activation
energy of degradation, respectively. The kinetic function
f (α) depends on a particular degradation mechanism.

The majority of the methods applied to kinetic analysis
of TGA thermograms use different approximate solutions
of (1) in the form of linear approximations. TGA data may
also be treated by the method of nonlinear regression [1, 2],
(1) being solved numerically. The main kinetic functions
f (α), used for description of thermal processes in the solid
phase, are classified in [3]. Unfortunately, all these kinetic
descriptions are rather formal and can hardly be bound to the
real physicochemical processes proceeding in the polymers.

One of the frequently observed kinetic mechanisms of
thermal degradation of polymers is depolymerization in
which monomer molecules are severed one by one from the
chain ends. In accordance with the literature, degradation of
polymers, for example, as poly (methyl methacrylate) [4],
polystyrene [5], and so forth, proceeds by this mechanism.
Depolymerization of a single macromolecule having the
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initial degree of polymerization n may be described by a
sequence of elementary acts of a monomer severing;

(M)n −→ (M)n − 1 + M,

(M)n−1 −→ (M)n − 2 + M,

...,

(M)2 −→M + M.

(2)

In the simplest case, the monomer severing rate constant,
k, is independent of the chain length. Since severing proceeds
by ends only, the monomer formation rate is proportional to
the chain concentration in the system, N :

dM

dt
= k · 2N. (3)

As a consequence, the conversion α = M/P may be
written down as follows:

dα

dt
= k

P
· 2N , (4)

where P is the initial degree of polymerization. At the same
time, the chain death happens only at the latest stage, when a
dimer decays into two molecules of the monomer.

The problem is that the real polymer consists of chain
of different lengths. Total kinetic scheme, which includes
macromolecules of all possible sizes, is observed extremely
bulky. Nevertheless, is seems obvious that integral kinetics of
depolymerization shall strictly depend on PDI of the initial
polymer.

The Monte Carlo simulation method is widely applied
in the polymeric physicochemistry, to kinetics of polymer
polymerization [6–9] and degradation [10], in particular.
We have used this method for simulation of linear polymer
depolymerization kinetics under isothermal and dynamic
modes. For this purpose, 8 model arrays, 1000 chains each
having the same number average degree of polymerization is
100 and PDI of 1 to 3 were synthesized on a computer. On
these arrays, stochastic simulation of the depolymerization
process at three temperatures and five heating rates was
performed. Moreover, arrays with the highest probable PDI
equal 2 and the degree of polymerization is 200 to 500
were synthesized, on which simulation in the isothermal
mode were performed. The kinetic curves obtained were
analyzed by the nonlinear regression method. Data obtained
in the dynamic mode were also treated by two isocon-
version methods, widely applied in the literature (Flynn-
Wall-Ozawa method [11, 12] and Kissinger-Akahira-Sunose
(KAS) method [13, 14]).

2. The Procedure of Simulation of the Initial
Arrays of Macromolecules

The initial arrays, each containing 1000 polymeric chains,
were simulated on the basis of the lognormal distribution.
The array of the integers was separated into fractions from 1
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Figure 1: Histograms of distribution r(n) of the initial arrays of
chains. Digits in the legend show values of PDI, Pw/Pn.

to 10, 11 to 20, and so forth . . . from 10(i− 1)+1 to 10i, where
i is the integer from 1 to 1000. For each x = 10i, density of
the lognormal distribution was determined as follows:

F(x) = 1√
2πσ

· e−(log x−μ)2/2σ2
, (5)

where σ and μ—parameters of lognormal distribution.
The number of chains in each fraction, having the degree

of polymerization from x + 1 to x + 10, was calculated by the
formula:

qi = (F(x + 10)− F(x)) · 1000, (6)

and was rounded to the nearest integer. The length of each
chain within the fraction was determined as a random inte-
ger, uniformly distributed in the appropriate interval. The
first interval included chains of the degree of polymerization
from 2 to 10, that is, it is suggested that the initial polymer
contains no monomer. The values of σ and μ were selected
so that the given average degree of polymerization by the
array Pn and the required PDI would be obtained. The
described procedure is realized as the MS Excel macros. It
was used to synthesize the arrays having Pn = 100 and
the index PDI equal 1.14, 1.25, 1.5, 1.75, 2, 2.5, and 3.
Figure 1 shows distribution histograms by the degree of
polymerization for these arrays. Arrays with PDI = 2 and the
degree of polymerization equal 200, 300, 400, and 500 were
also obtained. Moreover, a monodispersity array (PDI = 1),
in which all chains had the same length equal 100, was used
in the kinetic experiments.

3. The Procedure of Depolymerization
Kinetics Simulation

For simulation of depolymerization, the Monte Carlo kinetic
method was used [15]. The time corresponded to a single
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Figure 2: Mass loss kinetic curves at 300◦C for arrays of the initial
PDI of 1.14 (1), 2 (2), and 3 (3). Points show values obtained
by simulation, and continuous lines show treatment results by the
nonlinear regression method.

step in the isothermal experiment was calculated by the
following formula:

t1 = − ln r

k ·N , (7)

where 0 < r < 1 is a random number; N is the current
number of chains in the array,

k = A0 · e−E/RT , (8)

is the rate constant of the elementary act of the monomer
severing; A0 and E are its pre-exponential factor and the
activation energy, respectively; R is the gas constant; T
is the absolute temperature, at which the experiment was
simulated. In all experiments, both isothermal and dynamic,
A0 was set equal 107 min−1, and E = 100 kJ/mol.

In dynamic experiments, the temperature step δT = Ti −
− Ti−1 was calculated by the formula:

δT = −β ln r

ki ·N , (9)

where ki constant was calculated from (8) at temperature
Ti. If δT value exceeded 1◦, the current temperature Ti was
increased by one, and the procedure was repeated.

4. Data Treatment

The results of simulation in the isothermal and the dynamic
modes were treated by the nonlinear regression method,
using Fitter software [2]. Moreover, for TGA thermograms
in the dynamic mode, two widely applied methods based on
linear approximations were used.

The Flynn-Wall-Ozawa method [11, 12] represents an
isoconversion method, which uses the following equation:

lnβ = ln
0.0048AE
g(α)R

− 1.0516
E

RT
, (10)

where g(α) is an arbitrary conversion function. The activa-
tion energy is determined by the temperature dependence, at

which the given conversion is reached, on the heating rate.
This method allows composing of a degradation profile that
is dependence of the activation energy on conversion.

The KAS (Kissinger-Akahira-Sunose) method [13, 14]
also relates to isoconversion methods. The relation between
temperature, at which the given conversion is reached, and
the heating rate is described by the following equation:

ln
β

T2
= ln

[
AR

g(α)E

]
− E

RT
. (11)

The slope of the line composed in the coordinates of (11)
gives the activation energy value.

5. Results and Discussion

Simulation of the degradation kinetics under isothermal
conditions was performed at three temperatures of 280, 300,
and 320◦C. Figure 2 shows kinetic curves of the relative mass
loss, y = 1−α, at 300◦C for three arrays with different initial
PDI. It appears that the wider the initial distribution is, the
slower degradation proceeds.

For monodispersion distribution, conversion of 0.7 is
reached during 137 hours, and for the widest distribution of
Pw/Pn=3 for 357 hours. Meanwhile, the initial degradation
rate is the same for all arrays, because it depends on the initial
number of chains only.

For each array, the curves at three temperatures were
treated by the nonlinear regression method, using common
models of the solid phase kinetics [3]. It has been found that
the best description is given by the Avrami equation [16],
which we used in the following form:

y = exp
[−(k · t)q]. (12)

This form of record is somewhat different from the
traditional one, in which only time t has the exponent q,
and the effective constant k is factorized. However, such
presentation seems to be more correct [17], because in this
case, dimensionality of the rate constant equals to the reverse
time, independently of the exponent value.

Figure 2 and Tables 1 and 2 show treatment results
of the depolymerization isothermal kinetics by the Avrami
(continuous lines) and estimates of kinetic parameters,
respectively. The activation energy of depolymerization is
virtually independent of the PDI of the initial array and
the initial degree of polymerization, and correlates well with
the value given during simulation. The frequency factor
k0, obtained during the treatment, is bound to the pre-
exponential factor of the elementary act of the monomer
severing A0 by the following expression:

k0 = A0

Pn
. (13)

This expression yields from (4). Values of A0 calculated
from this expression are also shown in Tables 1 and 2.
Generally, these values are close to that of 10−7, given during
simulation, although observed some trend growth A0 when
the PDI of the initial array is rising.
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Table 1: Estimations of the Avrami equation parameters for arrays
with the initial degree of polymerization equal 100 at isothermal
depolymerization.

Pw/Pn log(k0), A0∗10−7, E, kJ/mol q

min−1 min−1

1 5.21± 0.06 1.61 99.9± 0.7 1.534± 0.016

1.14 5.19± 0.03 1.54 100.0± 0.3 1.348± 0.006

1.25 5.15± 0.02 1.42 99.9± 0.2 1.246± 0.003

1.5 5.09± 0.01 1.23 99.8± 0.1 1.108± 0.001

1.75 5.04± 0.01 1.08 99.7± 0.2 1.014± 0.002

2 5.05± 0.02 1.13 100.5± 0.2 0.950± 0.002

2.5 4.91± 0.02 0.81 99.8± 0.2 0.874± 0.002

3 4.81± 0.02 0.65 99.6± 0.2 0.832± 0.001

Table 2: Estimations of the Avrami equation parameters for arrays
with the initial PDI equal 2 at isothermal depolymerization.

Pn Log(k0), A0∗10−7, E, kJ/mol q

min−1 min−1

200 4.70± 0.01 1.00 100.2± 0.1 0.950± 0.002

300 4.51± 0.01 0.98 99.9± 0.1 0.957± 0.001

400 4.38± 0.01 0.97 100.0± 0.1 0.953± 0.001

500 4.27± 0.01 0.94 99.8± 0.1 0.961± 0.001

The exponent q is independent of the initial degree
of polymerization, but monotone decreases, as the initial
sequence distribution increases.

Simulation under the dynamic mode was performed at
5 heating rates: 2, 5, 10, 20, and 40◦C/min. Figure 3 shows
model TGA thermograms for arrays with the initial PDI of
1, 1.5, and 3. In this case, the same situation is observed, as
it is for the isothermal degradation: the process decelerates
with the distribution width increase. As transited from the
narrowest distribution to a wide one, temperature, at which
conversion reaches 0.5, increases by 38◦C.

Series of the curves modeled for each array at 5 heating
rates were treated by the nonlinear regression, by the
following model:

dy

dt
= −g · kg · tg−1 · y

k = k0 · e−E/RT

T = T0 + β · t

(14)

representing differential form of the Avrami equation (12),
Figure 3 shows the treatment results (continuous lines), and
Table 3 shows estimates of parameters.

Thus, the Avrami equation describes well kinetics of
depolymerization in both isothermal and dynamic modes.
Activation energy estimates obtained from model thermo-
grams are rather close to the value of 100 kJ/mol, given at
simulation. The values of other parameters obtained in both
isothermal and dynamic modes also correlate well.

Note that the Avrami equation was for many times
applied by different investigators to kinetic analysis of the
TGA data [18–21]. This equation was deduced for the
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Figure 3: TGA thermograms at the heating rate of 10◦/min for
arrays of the initial PDI of 1.14 (1), 2 (2), and 3 (3). Points show
values obtained by simulation, and continuous lines show treatment
results by the nonlinear regression method.

Table 3: Estimations of the Avrami equation parameters for
arrays with different initial PDI under dynamic TGA mode of
depolymerization.

Pw/Pn Log(k0), A0∗10−7, E, kJ/mol q

min−1 min−1

1 4.89± 0.02 0.78 99.4± 0.3 1.525± 0.013

1.14 4.91± 0.02 0.81 99.0± 0.2 1.354± 0.005

1.25 4.97± 0.01 0.93 99.5± 0.1 1.248± 0.002

1.5 5.00± 0.01 1.00 99.6± 0.1 1.105± 0.001

1.75 5.04± 0.01 1.08 99.9± 0.1 1.016± 0.002

2 5.06± 0.02 1.15 100.1± 0.1 0.950± 0.002

2.5 5.09± 0.02 1.23 100.7± 0.1 0.874± 0.002

3 5.02± 0.02 1.05 100.2± 0.1 0.837± 0.001

purpose of describing the crystallization process [16], and
is considered to be one of the models of the solid phase
kinetics [3]. The mechanism of the processes described by
the Avrami equation is often denoted as “nucleation and
growth.” In the present work, we simulated the most usual
kinetics, following the law of acting masses; no features of
the reaction in the solid phase were taken into consideration.
In this case, the specific shape of kinetic curves is stipulated
by the mechanism of depolymerization itself, representing
a series of consecutive acts of the monomer severing from
macromolecule ends. In these processes, the chain ends
represent active centers, and they die only at the last act of
dimer decomposition.

Of course, the Avrami equation gives just an approxi-
mate description of depolymerization. The accuracy of this
description increases with the distribution width. Obviously,
exponent decrease with the increase of sequence distribution
width in the Avrami equation is related to an increase of
a contribution of longer macromolecules into the general
process. Thermograms show this as an increase of thermal
resistance, although, truly, kinetic parameters of elementary
act of the monomer severing do not change. Values of
q parameter may change with respect to particular shape
of the sequence distribution. Nevertheless, we suggest that
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Figure 4: Degradation profiles for the array with Pw/Pn = 2
calculated by the Flynn-Wall-Ozawa (1) and the KAS (2) methods.
Continuous horizontal line shows E value given at the simulation.

Table 4: Estimations of activation energy, obtained by isoconver-
sion methods for arrays with different initial PDI.

Pw/Pn
E, kJ/mol

Flynn-Wall-Ozawa KAS

1 108,2 99,7

1,14 104,2 95,7

1,25 112,1 103,7

1,5 107,6 98,9

1,75 108,1 99,3

2 107,6 98,8

2,5 107,7 98,7

3 108,4 99,3

the tendency of q decrease with the increase of PDI of
the initial polymer shall be preserved. Figure 4 shows
examples of the degradation profiles calculated by data,
which were obtained in the dynamic mode by two isocon-
version methods. Obviously, the Flynn-Wall-Ozawa method
gives a noticeably overestimated activation energy, which
also increases with the conversion. Calculation by the KAS
method allows obtaining of E value, which is more reliable
and independent of the conversion. Table 4 shows activation
energy estimates for arrays with different initial PDI. These
estimates represent the average values in the conversion
range of 0.05 to 0.9.

Both isoconversion methods give the activation energy
values independent of the sequence distribution width.
However, estimates obtained by the KAS method are,
nevertheless, closer to the true value of 100 kJ/mol, compared
with the value obtained by the Flynn-Wall-Ozawa method.

6. Conclusion

The data obtained by stochastic simulation show that the
kinetics of thermal polymerization is strictly affected by the
sequence distribution width. The increase in PDI causes a
seeming increase of thermal stability by the following indices:
time of reaching the given conversion in the isothermal
mode, or temperature of reaching the given conversion in
the dynamic TGA mode, although the activation energy of
the process remains unchanged.

The best kinetic model for depolymerization of a linear
polymer in both isothermal and dynamic modes is the
Avrami equation. Treatment of the kinetic curves for this
model by the method of nonlinear regression, under both
modes, gives the true activation energy irrespective of
the initial PDI. The exponent, q, in the Avrami equation
regularly decreases with increasing width of the sequence
distribution.

Among two widely used isoconversion methods of TGA
data treatment based on linear approximations, at thermal
degradation by the depolymerization mechanism, the best
results are shown by the KAS method. Treatment by the
Flynn-Wall-Ozawa method gives somewhat overestimated
activation energies compared with the value set out for
simulation.
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