Kurimoto R. et al.

1 Supporting information

2	Combinational Effect of Cell Adhesion Biomolecules and Their Immobilized Polymer
3	Property to Enhance Cell-selective Adhesion
4	
5	Rio Kurimoto, ^{1, 2} Kei Kanie, ³ Naokazu Idota, ⁴ Mitsuo Hara, ⁵ Shusaku Nagano, ⁶ Takehiko
6	Tsukahara, ⁷ Yuji Narita, ⁸ Hiroyuki Honda, ⁹ Masanobu Naito, ^{1, 10} Mitsuhiro Ebara, ² and Ryuji
7	Kato ³
8	
9	¹ Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai,
10	Tsukuba, Ibaraki 305-8577, Japan
11	² Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA),
12	National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
13	³ Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences,
14	Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
15	⁴ Kagami Memorial Research Institute for Materials Science and Technology, Waseda
16	University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo, 169-0051, Japan
17	⁵ Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya
18	University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan

Kurimoto R. et al.

1	⁶ Nagoya University Venture Business Laboratory, Nagoya University, Furo-cho, Chikusa-ku,
2	Nagoya, Aichi, 464-8603, Japan
3	⁷ Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama,
4	Meguro-ku, Tokyo, 152-8550, Japan
5	⁸ Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65
6	Turumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
7	⁹ Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho,
8	Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
9	¹⁰ Structural Materials Unit, Research Center for Strategic Materials, National Institute for
10	Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
11	
12	
13	Keywords: Cell adhesion; Peptide; Extracellular Matrix (ECM); Smart polymer
14	
15	Correspondence to: Ryuji Kato (Fax number: +81-52-747-6813, E-mail address: kato-
16	r@ps.nagoya-u.ac.jp)
17	Running title: Cell-selective adhesion by biomolecule-polymer combination

 $\mathbf{2}$

Kurimoto R. et al.

FIGURE S1: Temperature-dependent transmittance changes for free poly(NIPAAm-coCIPAAm) in a PBS buffer. (open squares) poly(NIPAAm-co-CIPAAm) from 40 °C to 15 °C,
(open circles) poly(NIPAAm-co-CIPAAmBz) from 40 °C to 15 °C, (closed squares)
poly(NIPAAm-co-CIPAAm) from 15 °C to 40 °C, and (closed circles) poly(NIPAAm-coCIPAAmBz) from 15 °C to 40 °C.
Lower critical solution temperature (LCST) was measured by the temperature-dependent

Lower critical solution temperature (LCST) was measured by the temperature-dependent
transmittance changes of the free polymer. Transmittance of the polymer in PBS at 500 nm was
continuously monitored at a heating and a cooling rate of 0.5 °C min⁻¹ using a UV-visible
spectrometer (V-550, JASCO International Co, Ltd, Tokyo, Japan).

1 TABLE S1: Adsorption of fibronectin and collagen type IV on the cell assay platform at 37 °C

2 and 20 °C.

3

Average intensity (-)		Blank	RGDS	mono-Arg	tri-Arg	mono-lle	tri-lle	Background
F 3 (37°C	0.086 ± 0.005	0.087 ± 0.010	0.095 ± 0.002	0.098 ± 0.007	0.090 ± 0.003	0.107 ± 0.006	0.086 ± 0.005
Fibronectin	20°C	0.082 ± 0.005	0.082 ± 0.003	0.088 ± 0.003	0.090 ± 0.006	0.088 ± 0.005	0.104 ± 0.006	0.079 ± 0.004
	37°C	0.097 ± 0.011	0.101 ± 0.003	0.110 ± 0.003	0.107 ± 0.002	0.110 ± 0.003	0.111 ± 0.004	0.106 ± 0.005
Collagen type IV	20°C	0.080 ± 0.002	0.079 ± 0.002	0.078 ± 0.005	0.079 ± 0.006	0.077 ± 0.003	0.078 ± 0.004	0.076 ± 0.003

Adsorption of fibronectin and collagen type IV was measured with fluorescently labeled 4 $\mathbf{5}$ fibronectin and collagen by Fluoroskan Ascent (type 374; Labsystems, Helsinki, Finland) at 646-nm excitation and 678-nm emission. The fluorescently labeled fibronectin or collagen was 6 $\mathbf{7}$ dissolved in PBS (67 mg/L). The solution was dropped onto fabricated substrates. Substrates 8 were incubated for 15 min at 37 °C, washed once with PBS at 37 °C, and the fluorescence 9 intensity of the substrates was immediately measured using Fluoroskan Ascent. For the 10 protein adsorption assay in hydrophilic conditions, the substrates were transferred into PBS at 20 °C and incubated for 15 min. Then the fluorescence intensity of the substrates was 11 12measured.