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The present work addresses the modeling and simulation of the addition of copolymerizations of styrene and methyl methacrylate
in batch mode, and the formation of tailored vinyl acetate/acrylic acid copolymers is evaluated through stochastic optimization
procedures based on the Monte Carlo method. A kinetic model of the free-radical reaction was proposed in order to predict the
behavior of the reaction system taking into consideration the presence of the penultimate unit effect. The profiles of conversion
and copolymer composition were also evaluated considering the effect of the medium viscosity (kinetic phenomena related to
gel and glass effects) on the reaction performance. It was shown that the proposed model for chain-growth copolymerization is
able to describe strong nonlinear behaviors such as autoacceleration of the polymerization and drift of copolymer composition.
It was also shown that copolymers with homogeneous composition can be successfully synthesized through manipulation of the
monomer feed flow rate based on a stochastic optimization procedure.

1. Introduction

It is well-known that all reaction mechanism steps play
an important role for the determination of copolymeriza-
tion kinetic behavior. Despite this, the propagation step is
fundamental for the proper description of the overall propa-
gation rate coefficients, of polymer composition, and of the
sequence distribution of final copolymer, important proper-
ties that define the material polymeric application.

In chain-growth polymerizations, two propagation
models are normally used to describe the polymerization.
The first one is the well-known terminal model [1], which
assumes that the reactivity of the propagation reaction is gov-
erned only by the nature of the monomer and of the terminal
unit of the growing polymer chain. The second one is known
as the penultimate model [2], which considers the effect
of both the terminal and penultimate monomeric units
of the growing polymer chain. According to this assumption,
electronic and geometric effects or steric interactions
between the penultimate monomeric unit and reactant spe-
cies (e.g., monomers, transfer agents, and solvents) can be

incorporated into the propagation model [3, 4]. As a conse-
quence, one has to keep in mind that the penultimate model
normally leads to a considerable increase in the number of
model parameters, and for this reason, the terminal model
is the most popular propagation model and is the starting
point for most studies on polymerization kinetics.

The penultimate model is generally employed when the
terminal model (first-order Markovian model) is not able to
satisfactorily describe polymerization rates. Two types of
the penultimate model have been proposed: (i) the first one
is named the explicit penultimate model which assumes that
both the terminal and penultimate units of the radical can
affect both the reactivity and selectivity; (ii) the second one
denominated the implicit penultimate model which considers
that despite the terminal and penultimate units of the poly-
meric radical affect the reactivity, only the terminal unit
affects the selectivity [5–13].

Coote and Davis [6] presented an extensive list of mono-
meric pairs, where the terminal model is not suitable to
describe copolymerization kinetic, and the reader is referred
to this publication for more detailed information. Although
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the penultimate effect is important to describe both the com-
position and the polymerization kinetics in several polymer
systems, only few kinetic parameters for the penultimate
model are reported in the open literature. Recently, Deb
[14] calculated the penultimate model reactivity ratios from
different binary monomer mixtures employed in copolymer-
ization systems.

Typically, polymerization systems comprising styrene/a-
crylonitrile [15–20], methyl methacrylate/n-butyl acrylate
[21], ethylene/styrene [22], dimethyl itaconate/styrene [23],
ethylene/4-methyl-1-pentene [24], α-alkylstyrenes/acryloni-
trile [25], styrene/methyl methacrylate [26], p-chlorostyre-
ne/methyl acrylate [27], styrene/isobutylene [28], methyl α-
(trifluoromethyl)acrylate and α-(trifluoromethyl) acryloni-
trile with styrene, p-chlorostyrene and methyl methacrylate
[29], styrene/maleic anhydride [30], isobutyl methacrylate/-
lauryl methacrylate [31], and styrene/fumaronitrile [32, 33]
demonstrate a strong penultimate unit effect, representing
good examples of the successful implementation of the pen-
ultimate model [9, 34].

The kinetic mechanism represented by the penulti-
mate model (second-order Markovian model) is composed
of four distinct radicals that can combine with monomeric
species, generating eight distinct stages of propagation
(~M⋅

ij +Mn
kijn ~M⋅

ijn with i, j, n = 1, 2, where kijn is the

reaction rate constant that characterizes the addition of the
monomer unit n to a growing polymer chain containing
the monomeric units i and j). Given the complex nature of
polymerization systems, the introduction of additional stages
of propagation with a consequent increase in the number
of kinetic parameters is the major practical limitation of
employing the penultimate model in polymerization kinetic
models intended to be used to describe the reaction behavior.

In spite of the popularity of the terminal model, it is gen-
erally agreed that the existence of the penultimate unit effect
in important chain-growth polymerization systems seems to
be general rather than an exception, which clearly indicates
that this polymerization kinetic based on the terminal model
oversimplifies actual polymerization reaction processes [8,
14]. Initial studies on the influence of the penultimate unit
effect in free-radical copolymerizations date from 1940s.
Among then, the pioneering works of Merz et al. [2], Barb
[30], and Ham [33] must be highlighted.

The penultimate model was originally developed by Merz
et al. [2] to predict the copolymer composition and sequence
distribution of the final copolymer. This propagation model
was extensively explored by Fukuda and coworkers [5, 9,
26, 27], some years later, in order to understand the devia-
tions from the terminal model, showing that the penultimate
model provides a good description of copolymer composi-
tion, distribution sequences, and rate of propagation. Fukuda
and coworkers have distinguished the penultimate unit effect
behavior, originating two distinct models: explicit penulti-
mate and implicit penultimate models of copolymerization.
Fukuda et al. [26] also demonstrated through measurements
of average propagation rate constant from copolymerizations
of styrene/methyl methacrylate that the terminal model was
not suitable to appropriately describe the experimental data.

Li et al. [35, 36] have described the combined effect of
depropagation and penultimate unit effect kinetic on the
instantaneous copolymer composition and average copoly-
merization rate coefficients in styrene/butyl methacrylate
reactions performed at elevated temperatures. According to
the authors, when depropagation appears combined with
the penultimate unit effect, the effective propagation rate
coefficient deviates significantly from terminal model predic-
tions regarding the copolymer composition.

Recently, Nikitin and Hutchinson [37] have evaluated the
penultimate unit effect in homopolymerization of acrylates.
According to the proposed kinetic mechanism, the differ-
ences in reactivity of radicals formed by monomer addition
to midchain radicals are taking into consideration. Model
calculations have shown that deviation from the terminal
model may depend on the radical reactivity ratio si and
monomer concentrations, which generally complicates the
kinetic analysis of acrylate homopolymerizations.

In the present work, a phenomenological polymerization
model is proposed based on the kinetic mechanism that takes
into account the penultimate monomeric unit effect in chain-
growth copolymerizations and simulations are performed
based on a typical polymerization system (styrene/methyl
methacrylate) governed by the penultimate kinetic model.
Additionally, the penultimate model is also employed to
describe the experimental data of vinyl acetate/acrylic acid
suspension copolymerization carried out in a batch mode.
It is also proposed strategies for controlling the copolymer
composition based on stochastic optimization procedures
with the Monte Carlo method.

2. Kinetic Mechanism and
Polymerization Model

The kinetic mechanism proposed to describe the (e.g., bulk
or suspension) copolymerizations comprises the following
fundamental steps: initiation, propagation, transfer to mono-
mer, and termination by disproportionation and combina-
tion, as follows:

Step 1. Initiation

I
kD 2Z,

Z +M1
k1 P1,0,

Z +M2
k2 S0,1

1

Step 2. Propagation

Pi,j +M1
kP111 Pi+1,j,

Pi,j +M2
kP112 Qi,j+1,

Qi,j +M1
kP121 Ri+1,j,

Qi,j +M2
kP122 Si,j+1,
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Ri,j +M1
kP211 Pi+1,j,

Ri,j +M2
kP212 Qi,j+1,

Si,j +M1
kP221 Ri+1,j,

Si,j +M2
kP222 Si,j+1

2

Step 3. Transfer to monomer

Pi,j +M1
ktrM111 Θi,j + P1,0,

Pi,j +M2
ktrM112 Θi,j + S0,1,

Qi,j +M1
ktrM121 Θi,j + P1,0,

Qi,j +M2
ktrM122 Θi,j + S0,1,

Ri,j +M1
ktrM211 Θi,j + P1,0,

Ri,j +M2
ktrM212 Θi,j + S0,1,

Si,j +M1
ktrM221 Θi,j + P1,0,

Si,j +M2
ktrM222 Θi,j + S0,1

3

Step 4. Termination by disproportionation

Pi,j + Pm,n
kTD11 Θi,j +Θm,n,

Pi,j +Qm,n
kTD12 Θi,j +Θm,n,

Pi,j + Rm,n
kTD13 Θi,j +Θm,n,

Pi,j + Sm,n
kTD14 Θi,j +Θm,n,

Qi,j +Qm,n
kTD22 Θi,j +Θm,n,

Qi,j + Rm,n
kTD23 Θi,j +Θm,n,

Qi,j + Sm,n
kTD24 Θi,j +Θm,n,

Ri,j + Rm,n
kTD33 Θi,j +Θm,n,

Ri,j + Sm,n
kTD34 Θi,j +Θm,n,

Si,j + Sm,n
kTD44 Θi,j +Θm,n

4

Step 5. Termination by combination

Pi,j + Pm,n
kTC11 Θi+m,j+n,

Pi,j +Qm,n
kTC12 Θi+m,j+n,

Pi,j + Rm,n
kTC13 Θi+m,j+n,

Pi,j + Sm,n
kTC14 Θi+m,j+n,

Qi,j +Qm,n
kTC22 Θi+m,j+n,

Qi,j + Rm,n
kTC23 Θi+m,j+n,

Qi,j + Sm,n
kTC24 Θi+m,j+n,

Ri,j + Rm,n
kTC33 Θi+m,j+n,

Ri,j + Sm,n
kTC34 Θi+m,j+n,

Si,j + Sm,n
kTC44 Θi+m,j+n,

P = 〠
∞

i=1
〠
∞

j=0
Pi,j,

Q = 〠
∞

i=0
〠
∞

j=1
Qi,j,

R = 〠
∞

i=1
〠
∞

j=0
Ri,j,

S = 〠
∞

i=0
〠
∞

j=1
Si,j,

5

where I is the concentration of the initiator; kD is the
kinetic constant for initiator decomposition; Z is the con-
centration of free radical of the initiator; Mi is the concen-
tration of monomer i; ki is the kinetic constant for the
formation of the first polymeric radical i; P1,0 is the first
polymeric radical containing 1 mer of species 1; Q0,1 is
the first polymeric radical containing 1 mer of species 2;
kPijl

is the kinetic constant for the propagation of polymeric

radical containing the monomeric units i (penultimate) and
j (terminal) with monomer unit l; Pi,j is the growing poly-
meric chain containing the meric units i and j and species 1
at the active site (polymeric radical 1— P = ∼M1M1 ⋅ ); Qi,j
is the growing polymeric chain containing the meric units i
and j and species 2 at the active site (polymer radical
2— Q = ∼M1M2 ⋅ ); Ri,j is the growing polymeric chain con-
taining the meric units i and j and species 1 at the active site
( R = ∼M2M1 ⋅ ); Si,j is the growing polymeric chain contain-
ing the meric units i and j and species 2 at the active site
( S = ∼M2M2 ⋅ ); Θi,j is the dead polymer chain containing
mer units i and j; ktrMijl

is the kinetic constant of transfer of
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polymeric radical containing the monomeric units i and j
to monomer l; kTDij

and kTCij
are the kinetic constants for

termination by disproportionation and combination of
growing polymeric radicals i and j, respectively; P, Q, R,
and S represent the total concentration of growing polymeric
radicals; kTij

is the kinetic constant that characterizes the

combined contribution of the termination by both dispro-
portionation and combination (kTij

= kTDij
+ kTCij

); and f is

the initiator efficiency.

According to the proposed kinetic mechanism and
assuming that the long-chain and quasi-steady-state hypoth-
eses are valid for the polymer radicals and admitting that the
propagation terms are much larger than the initiation,
chain transfer, and termination terms, it is possible to write
the following set of mass balance equations for the copoly-
merization process:

dI
dt

= −kDI,

dM1
dt

= − kP111P 1 +Ω 1
r11

+
r12
r11

M2
M1

+
M2

r11M1
M1,

dM2
dt

= − kP111P
1
r11

+Ω r12
r11

+
r22r12
r11

M2
M1

+
M2

r21r11M1
M2,

d℘1
dt

= kP111P 1 +Ω 1
r11

+
r12
r11

M2
M1

+
M2

r11M1
M1,

d℘2
dt

= kP111P
1
r11

+Ω r12
r11

+
r22r12
r11

M2
M1

+
M2

r21r11M1
M2,

6

where

Ω =
M2 + 1/r21 M2

2/M1
M1 + r12M2

,

 rii =
kPiii
kPii j

, rij =
kPij j

kPiji

, si =
kPjii

kPiii

, i = 1, 2 i ≠ j ,

kP111
P = 2f kDI

1
ψ11

+
1
ψ22

Ω r12
s2r11

2
+

1
ψ33

M2
s1r11M1

2

+
1
ψ44

Ω r12r22M2
r11M1

2
+

2Ωζ12
ψ11ψ22

r12
s2r11

+
2ζ13
ψ11ψ33

M2
s1r11M1

+
2Ωζ14
ψ11ψ44

r12r22M2
r11M1

+
2Ωζ23
ψ22ψ33

r12M2
s1s2r

2
11M1

+
2Ω2ζ24
ψ22ψ44

r212r22M2
s2r

2
11M1

+
2Ωζ34
ψ33ψ44

r12r22
s1r

2
11

M2
M1

2 −1 1/2

,

ζij =
kTij

kTii
kT jj

, i = 1, 2, j = 2, 4 i ≠ j ,

ψii =
kPiii

2

kTii

, i = 1, 2 i ≠ j ,

ψjj =
kPiii

2

kT jj

, i = 1, 2, j = 3, 4,

7

where rij is the reactivity ratio monomers i and j, si is the
radical reactivity ratios for growing polymer chain i, ζij is
the cross-termination constant between polymer radicals i
and j, and ℘i is the moles of monomer i incorporated into
polymer chains.

3. Results and Discussion

3.1. Styrene/Methyl Methacrylate Copolymerization. Figure 1
shows the simulation result for the styrene (S)/methyl
methacrylate (MMA) system, which is considered a typical
polymerization where the penultimate effect has to be taken
into account. All model parameters (see equations (6) and
(7) and Table 1) used for simulations were obtained from
Schmidt and Ray [38], Kalfas et al. [39], and Burke et al.
[34], and the reader is referred to these works for more
detailed information. Copolymerization model equations
were implemented in FORTRAN and solved numerically
with the integration package DDASSL [40]. A maximum
reaction conversion of approximately 92% at the end of the
reaction with a molar fraction of styrene in the copolymer
equal to 17%, which is kept almost constant along the reaction
time (Figure 1(b)) and reaction conversion (Figure 1(a)),
is observed.

It is generally agreed that viscosity effects play a funda-
mental role in free-radical polymerization reactions, leading
to strong diffusion limitations in the reaction medium. This
particular and relevant nonlinear kinetic phenomenon is
characterized by the glass and gel effects.

Additionally, for simulations of polymerization systems
where glass and gel effects play a significant role, it is very
important to consider correlations adopted to correct the

propagation kf vPiii
= kPiiigPi T and termination kf vTiii

= kTiii

gTi
T constant deviations due to the diffusion limitations

of both the monomer and growth polymer chain species. In
this scenario, correlations based on the free volume theory
are of fundamental importance [41].

It is widely adopted that the free volume of the poly-
merization system vf can be expressed as the sum of the
individual contribution of each species vf i , as follows [38]:

vf =〠
i

vf iϕi 8
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The free volume contribution of methyl methacrylate
(vfMMA

) and its homopolymer (vf PMMA
) is proposed by

Schmidt and Ray [38] in the following form:

vfMMA
= 0 025 + 0 0010 T − 167 15 ,

vf PMMA
= 0 025 + 0 00048 T − 387 15 ,

ϕi =
ρi/mi

∑iρi/mi
,

9

where ρi is the pure density of species i and mi is the
mass of species i. It is also assumed that gTMMA

T can be
expressed as [38, 39, 42]

0 25 50 75 100 125 150 175 200 225
0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
yr

en
e m

ol
ar

 fr
ac

tio
n

0.35

0.40

Polymer composition
Conversion

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Reaction conversion (%
)

(a)

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

St
yr

en
e m

ol
ar

 fr
ac

tio
n

0.30

0.35

0.40

Reaction conversion (%)

(b)

Figure 1: Conversion and copolymer composition profiles. I = 0 17 mol, M1 = 1 54 mol, M2 = 5 00 mol, T = 85°C, r11 = 0 472, r12 = 0 454,
r21 = 0 472, r22 = 0 454, s1 = 0 412, and s2 = 0 170 [34].

gTMMA
T =

0 10575 exp 17 15vf − 0 01715 T − 273 15 , for vf > vTf c ,

2 3 ⋅ 10−6 exp 75vf , for vf ≤ vTf c ,
10

Table 1: Model parameters used for simulation of styrene/methyl methacrylate system.

Parameter Unit Reference

ρ1 = 0 9193 − 6 65 ⋅ 10−4 T − 273 15 g/cm3 [39]

ρ2 = 0 9654 − 1 09 ⋅ 10−3 T − 273 15 − 0 970 ⋅ 10−6 T − 273 15 2 g/cm3 [39]

ρ3 = 0 9926 − 2 65 ⋅ 10−4 T − 273 15 g/cm3 [39]

ρ4 = 1 18 − 0 10 ⋅ 10−2 T − 273 15 g/cm3 [39]

kP111 = 1 090 × 107 exp −7051/RT L/(mol·s) [34]

kT111
= 1 703 × 109 exp −2268/RT L/(mol·s) [34]

kP222 = 5 366 × 105 exp −4353/RT L/(mol·s) [34]

kT222
= 9 800 × 107 exp −701/RT L/(mol·s) [34]

kD = 1 7 × 1014 exp −30000/RT s-1 [39]

f = 0 80 — [48]

Subscript 1 for styrene and 2 for methyl methacrylate; subscripts 3 and 4 for the homopolymers based on styrene and methyl methacrylate, respectively.
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where the critical free volume for termination is given by

vTf c = 0 1856 − 0 2965 ⋅ 10−3 T − 273 15 11

In order to correct the propagation constant, gPMMA
T is

expressed in the following form [38, 39, 42]:

gPMMA
T =

1, for vf > 0 05,

7 1 ⋅ 10−5 exp 171 53vf , for vf ≤ 0 05
12

For the styrene species, the gel effect correlation is
expressed as a function of the styrene conversion (xS), as
follows [39]:

gTS
T = exp −0 4404xS − 6 362xS2 − 0 1704xS3 ,

gPS
T = 1 0

13

Figure 2 illustrates the simulation results for the
S/MMA system. The copolymerization behavior is strongly
affected when glass and gel effects are considered, exhibit-
ing autoacceleration of the polymerization and copolymer
composition drift. According to Figure 2(a), a maximum
conversion limit equal to 98% is achieved and the molar
fraction of styrene in the copolymer is lying in the interval
from 17% to 22%. It is also observed that the copolymer
composition slightly changes at the beginning of the reac-
tion when the conversion is below 40% and the viscosity
effects are not pronounced.

Figure 3 illustrates the effect of the reaction temperature
and the initiator concentration on the global conversion
behavior. According to Figure 3(a) the conversion is

significantly affected by the temperature, exhibiting a strong
gel effect as the medium temperature is increased from
70°C to 90°C. Simulations presented in Figure 3(b) were per-
formed at 80°C and show that the global conversion is
slightly affected by the initiator (benzoyl peroxide (BPO))
concentration, lying in the range from 85% to 91% when
the BPO concentration is increased from 0.10mol to 0.2mol.

Figure 4 illustrates the ability of the penultimate model to
predict the experimental data of the bulk copolymerization of
styrene and methyl methacrylate as provided by Jalili et al.
[43]. According to Figure 4, the reaction conversion profile
is satisfactory predicted by the penultimate model, which is
able to represent typical monomer mass-transfer limitation
that is responsible for a strong nonlinear kinetic behavior
closely related to gel and glass effects.

3.2. Vinyl Acetate/Acrylic Acid Copolymerization. The
effect of the penultimate monomeric unit of the growing
polymer chains might also be important in vinyl acetate
(VAc)/acrylic acid (AA) copolymerizations performed in
dispersed medium such as suspension polymerization pro-
cess. In a series of articles, Silva and coworkers [44–46]
evaluated the suspension copolymerization of VAc/AA.
According to the authors, the role of the penultimate effect
in the kinetic mechanism of VAc/AA must be considered.

In order to evaluate the ability of equations (6) and (7) to
predict the kinetic behavior of VAc/AA, copolymerization is
fundamental to describe the partition of AA between the
organic phase and the aqueous phase. For this reason, the
AA partition coefficient must be included into the copoly-
merization model to determine the AA concentration
throughout the reaction. Equations (14) and (15) represent
the solubility of AA in water. It is very important to keep in
mind that the amount of AA available for polymerization
inside the organic droplets (dispersed into the aqueous
phase) is different from the total amount of monomer added
into the reactor (M2 =M2

aqueous +M2
organic). The amounts of

0 20 40 60 80 100 120 140 160 180

0.05

0.10

0.15

0.20

0.25

0.30

St
yr

en
e m

ol
ar

 fr
ac

tio
n

0.35

0.40

Polymer composition
Conversion

Time (min)

0

10

20

30

40

50

60

70

80

90

100

Reaction conversion (%
)

(a)

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

St
yr

en
e m

ol
ar

 fr
ac

tio
n

0.20

0.25

0.30

0.35

0.40

Reaction conversion (%)

(b)

Figure 2: Conversion and composition profiles: gel and glass effects. I = 0 17 mol, M1 = 1 54 mol, M2 = 5 00 mol, T = 85°C, r11 = 0 472,
r12 = 0 454, r21 = 0 472, r22 = 0 454, s1 = 0 412, and s2 = 0 170 [34].
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AA in the organic (M2
organic) and aqueous (M2

aqueous) phases
is given as follows [46]:

M2
organic =

M2
1 + K

,

M2
aqueous =

K
1 + K

M2,
14

where

K = α
Vaqueous

Vorganic , 15

where Vorganic is the volume of the organic phase and Vaqueous

corresponds to the volume of the aqueous phase.
The partition coefficient of AA considering the system in

the system AA/VAc/water is represented as a function of
both the aqueous AA composition and temperature in the
following form [46]:

α T , M2
II = A + B M2

II +
C

M2
II 2

−1

, 16

where coefficients A, B, and C are temperature-dependent
adjustable parameters, expressed as follows [46]:

A = −16 67 + 0 455 T − 273 15 − 2 92 ⋅ 10−3 T − 273 15 2,

B = 23 02 − 0 594 T − 273 15 + 3 96 ⋅ 10−3 T − 273 15 2,

C = 0 317 − 9 02 ⋅ 10−3 T − 273 15 + 6 04 ⋅ 10−5 T − 273 15 2

17

Table 2 presents the model parameters, and Figure 5
shows the prediction of the penultimate model (equations
(6) and (7)) in comparison to experimental data provided
by Silva et al. [45]. As depicted in Figure 5, the proposed
model is able to describe experimental data of conversion
and AA composition. Figure 6 illustrates the effect of the
initiator amount on the kinetic behavior, when BPO inside
the organic phase was varied from 0.004mol to 0.021mol.
The copolymerization conversion is significantly affected by
the BPO concentration. According to simulation results, this
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Figure 4: Penultimate model prediction of the styrene/methyl
methacrylate bulk copolymerization carried out with BPO [43].
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Figure 3: Effect of (a) temperature and (b) initiator concentration on the conversion profiles. M1 = 2 4 mol, M2 = 9 25 mol, T = 80°C,
r11 = 0 472, r12 = 0 454, r21 = 0 472, r22 = 0 454, s1 = 0 412, and s2 = 0 170 [34].
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kind of reaction is characterized by presenting an autoacce-
leration of the polymerization and significant drift of copoly-
mer composition.

The synthesis of copolymer materials presenting homo-
geneous chemical composition throughout the reaction
may be regarded as an important challenge in the polymeri-
zation field mainly when the copolymerization is carried out
with from monomers that present very different reactivities.
In order to avoid composition drift control, composition
strategies should be implemented. In the particular case of
VAc/AA copolymerization because of the complete solubility

of AA in the aqueous phase (AA is partitioned between the
organic and the aqueous phases during the reaction course),
semibatch operation mode can be successfully performed, as
the aqueous phase can be used as a reservoir, supplying AA
for the organic phase.

Based on the previous assumptions, semibatch copo-
lymerization can be performed to keep the copolymer com-
position constant at the desired setpoint (yAA

d) value
throughout reaction through manipulation of the feed flow
rate of AA (FAA). AA feed rate profiles required to maintain
AA molar fraction constant into the copolymer chains were

Table 2: Model parameters used for simulation of vinyl acetate/acrylic acid system.

Parameter Unit Reference

ρ1 = 0 9584 − 1 3276 ⋅ 10−3 T − 273 15 g/cm3 [48]

ρ2 = 1 0821 − 1 1969 ⋅ 10−3 T − 273 15 g/cm3 [45]

ρ3 = 1 211 − 8 496 ⋅ 10−4 T − 273 15 g/cm3 [48]

ρ4 = 1 22 g/cm3 [49]

ρw = 1 00066 − 7 35 ⋅ 10−5 T − 273 15 − 3 5 ⋅ 10−6 T − 273 15 g/cm3 [50]

kP11 = 3 2 × 107 exp −6300/RT L/(mol·s) [48]

kT11
= 3 7 × 109 exp −3200/RT L/(mol·s) [48]

kP22 = 8 4 ⋅ 102 L/(mol·s) In this work

kT22
= 3 2 ⋅ 107 L/(mol·s) In this work

kD = 1 7 × 1014 exp −30000/RT s-1 [51]

f = 0 8 — [48]

Subscript 1 is reserved for vinyl acetate, and subscript 2 is for acrylic acid. Subscripts 3 and 4 for the homopolymers based on vinyl acetate and acrylic acid,
respectively.

0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

Silva et al. (2004)
Penultimate model

A
A

 m
ol

ar
 fr

ac
tio

n

Time (min)

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

Time (min)

Co
nv

er
sio

n 
(%

)

Figure 5: Penultimate model prediction for the vinyl acetate/acrylic
acid copolymerization. M1 = 1 67 mol, M2 = 0 50 mol, T = 70°C,
r11 = 0 054, r12 = 2 927, r21 = 0 032, r22 = 1 902, s1 = 0 412, and
s2 = 1 0 [52].
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Figure 6: Effect of the initiator amount on the conversion and
composition profiles. M1 = 1 67 mol, M2 = 0 50 mol, T = 70°C,
r11 = 0 054, r12 = 2 927, r21 = 0 032, r22 = 1 902, s1 = 0 412, and
s2 = 1 0 [52].
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determined for discretized time intervals of 10 minutes. The
optimization problem can be defined as follows:

min
FAA

 f = 〠
ND

i=1
yi − ydi

2
,

subject to li ≤ xi ≤ ui, i = 1, 2,… ,m,

18

where yi corresponds to the cumulative copolymer composi-
tion at each discretized sampling time i, yi

d is the desired
copolymer composition at each discretized sampling time i,
ND is the number of discretized sampling times in the con-
trol window of 10 minutes, xi is the manipulated variable at
each discretized sampling time i, f is the objective function

that must be minimized, ui is the upper limit of the con-
straints, and li is the lower limit of the constraints.

AA feed rate profiles were estimated based on stochastic
optimization procedures with the Monte Carlo method
[47]. Optimum candidates were estimated by generating ran-
dom numbers in the following form:

xi,j = xi,j−1 + ri,j Δi,j, i = 1,… , ND, j = 1,… , NITER, 19

where ri,j are pseudorandom numbers uniformly distributed
in the interval (-1,1) and Δi,j defines a search interval for var-
iable i at iteration j. Dynamic trajectories of conversion and
copolymer composition were computed after the generation
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Figure 7: Dynamic behavior of vinyl acetate/acrylic acid suspension copolymerizations in semibatch operation mode. AA feed flow rate and
AA copolymer composition profile for yAA = 30 mol% (a) and yAA = 60 mol% (b) and conversion profiles (c).
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of the candidate optimum solutions at iteration j, and the
objective function was minimized.

Figure 7 shows the optimum AA feed rate profiles gener-
ated to keep the AA copolymer composition equal to
30mol% and 60mol% as well as global conversions predicted
by the penultimate polymerization model. According to
Figures 6(a) and 6(b), copolymers with homogeneous chem-
ical composition at the desired setpoint values are easily
obtained based on the proposed optimization procedure.
The copolymer composition is kept within the upper control
(UCL) and lower control (LCL) limits considering a 95%
confidence interval and standard deviation equal to 1%
related to the setpoint value of the AA molar fraction. It is
important to note that because of the high consumption rates
of the AA, the conversion trajectories are not affected by fluc-
tuation of the AA feed operation, as shown in Figure 7(c).

4. Conclusion

A kinetic model of free-radical copolymerization of styrene
and methyl methacrylate was proposed, taking into account
the penultimate unit effect. It was shown that the addition
copolymerization reactions can be properly simulated by
using the proposed penultimate polymerization model,
being suitable to evaluate strong nonlinear behavior that
takes place due to the presence of viscosity effects related
to important kinetic phenomena such as autoacceleration
of the polymerization, copolymer composition drift, diffu-
sion, and heat-transfer limitations. Copolymer with homoge-
neous composition along the whole polymerization time can
be successfully obtained through manipulation of the AA
feed flow rate based on stochastic optimization procedures.
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