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During the last decade, stimuli-responsible polymers based on poly(N-isopropylacrylamide) having conformational transition in
the range of physiological temperature have been discussed as novel drug delivery nanosystems. A star-like copolymer with a
dextran core and grafted poly(N-isopropylacrylamide) arms (D-g-PNIPAM) was synthesized, characterized, and used as a
matrix for silver sol preparation. The comparative study of the behavior of individual D-g-PNIPAM and the nanohybrid system
D-g-PNIPAM/silver nanoparticles has been done in the temperature range near the lower critical solution temperature (LCST).
The methods of Dynamic Light Scattering, small angle X-ray scattering, and UV-VIS absorption spectroscopy have been
used. The existence of single nanoparticles and aggregated nanoparticles located in a limited polymer macromolecular
volume was established. The increase of the temperature leads to slight aggregation of the silver nanoparticles at the LCST
transition. Single nanoparticles do not aggregate with the temperature increase. The thermally induced collapse of end-grafted
poly(N-isopropylacrylamide) chains above the LCST do not affect significantly the size characteristics of silver nanoparticles

incorporated into the polymer matrix.

1. Introduction

The growing progress in nanotechnology and the life sciences
demonstrates an urgent need for novel advanced hybrid
materials composed of biocompatible polymers and inor-
ganic components [1-3]. The development of nanometer-
sized materials that can perform a desired action upon a
local or external stimulus is one major goal of bionano-
technology [4]. Temperature-sensitive polymers allow the
creation of locally controlled actuators that can have various
applications [4-7].

In recent years, the poly(N-isopropylacrylamide)
(PNIPAM) polymer became a subject of study as a promising
base for fabrication of nanocomposites for biomedical appli-
cation [8-10]. Linear PNIPAM is a thermoresponsive poly-
mer widely known for its lower critical solution temperature

(LCST) phenomenon at 32°C in aqueous solutions. PNIPAM
has coil-to-globule transition at LCST and applies a pore
opening and closing mechanism to the porous particles [11].
This mechanism helps in the temperature-triggered release
of the loaded molecules into a polymer matrix. The transition
temperature for linear PNIPAM is very close to the human
skin; thus, this polymer can be applied for photodynamic anti-
cancer therapy [12, 13]. For a larger window of applications,
especially in the field of nanotechnology as drug delivery sys-
tems, LCST should be shifted to higher temperatures. It was
shown that the branched structure of PNIPAM-containing
polymers opened the possibility to tune the LCST [14, 15].
Also, it was established that the star-like copolymer dextran-
graft-PNIPAM can be used as a universal platform for drug
delivery, namely, dextran-PNIPAM-+doxorubicin nanoparti-
cles have huge potential as novel anticancer agents [16].
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Hybrid nanocomposites containing polymer and noble
metal nanoparticles attract a great interest as material with
unique properties [17-20]. It is known that Ag nanoparticles
(AgNPs) possess a remarkable biomedical application [20].
The hybrid materials with Ag nanoparticles incorporated
into a thermosensitive polymer matrix could be a real
achievement in drug delivery. They can combine the local
chemotherapy and antibacterial therapy with photothermal
anticancer treatment. That can lead to shortening the treat-
ment time and decreasing the drug dosage.

However, successful applications of such intelligent
polymers-nanocarriers depend on the possibility to control
the hydrophobic-hydrophilic balance of the macromolecule
at the physiological temperature. Earlier, the possible tuning
of the region of phase transition and the size of hydrophobic
domains by variation of the star-like copolymer molecular
structure was reported [21]. Also, it was shown that star-like
copolymers are more efficient for stable nanosystem prepara-
tion in comparison with their linear analogue [22, 23].

In the present study, we discuss a behavior of the nano-
system consisting of Ag nanoparticles embedded into a
branched PNIPAM matrix in the region of conformational
transition of the polymer.

2. Experimental

2.1. Polymer Matrix Dextran-Graft-PNIPAM (D-g-PNIPAM).
The star-like copolymer consisted of dextran core with
Mw =70 x 10* g/mol, and 15 PNIPAM grafts were used
for the AgNP preparation. Further, this copolymer will
be labeled as D-g-PNIPAM. Synthesis and characterization
of dextran-graft-poly(N-isopropylacrylamide) copolymers
were reported in [21].

2.2. D-g-PNIPAM/Ag Nanosystem Synthesis. Reduction of Ag
ions was performed in aqueous solutions of the polymer
template D-g-PNIPAM. The molar ratio of acrylamide mers
to Ag ions was equal to 5. 0.01 M AgNO3 aqueous solution
was added to 0.5ml of polymer solution (C=1gl™) and
stirred for 20 min at T'=25°C. Then, 0.1 M of NaBH4 was
added drop by drop while stirring. The solution turned
reddish brown, which indicated the formation of AgNPs.
The obtained Ag sols were stored in cold dark.

2.3. Transmission Electron Microscopy (TEM). For the sample
preparation, 400 mesh Cu grids with plain carbon film were
rendered hydrophilic by a glow discharge treatment (ELMO,
Cordouan Technologies, Bordeaux, France). A 5 ul drop was
deposited and allowed to be adsorbed for 1min, then the
excess of the solution was removed with a piece of filter
paper. The observations of the AgNPs were carried on two
TEMs, Tecnai G2 or CM12 (FEI, Eindhoven, Netherlands),
and the images were acquired with a ssCCD Eagle camera
on the Tecnai and a MegaView SIS Camera on the CM12.

2.4. Dynamic Light Scattering (DLS). DLS measurements
were carried out by using a Zetasizer Nano ZS90 (Malvern
Instruments Ltd., UK). The apparatus contains a 4mW
He-Ne laser with a wavelength 632.8 nm, and the scattered
light is detected at an angle 173° (back scattering).
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For accurate study of transition, correlograms of
0.1 mg/ml aqueous D70-PNIPAM were collected in the
temperature range of 25-40°C with a step of 0.1°C and heat
rate of 0.02°C/min. Each temperature point was held for
5 min before measurements to equilibrate the sample. 10 cor-
relation curves for each temperature point were treated by
the CONTIN algorithm [24] which is known to be reliable
in getting the hydrodynamic diameter (DH) distributions
for complicated systems [24]. The CONTIN algorithm was
performed using the MATLAB program rilt.m [25].

2.5. Small Angle X-Ray Scattering (SAXS). The investigations
by the small angle X-ray (SAXS) method were carried out on
a Rigaku instrument which is available at the Moscow Insti-
tute of Physics and Technology (Dolgoprudny, Russia) [26].

2.6. UV-VIS Spectroscopy. UV-VIS absorption spectra of
AgNPs in the D70-g-PNIPAM/AgNP nanosystem were
recorded by the Cary 60 UV-VIS spectrophotometer (Agilent
Technologies Inc.) using 1:25 dilutions in the temperature
range of 23-45°C. The measurements were performed with
the temperature step of 1°C with the temperature stabiliza-
tion in each temperature point during 5 min.

3. Results and Discussion

Earlier it was reported [21] that the star-like structure of
PNIPAM-containing copolymers allows to shift LCST to a
higher temperature, namely, to 33.7 instead of 32°C for linear
PNIPAM. The D-g-PNIPAM copolymer with dextran core
(Mv =7x10° g/mol) and 15 PNIPAM grafts were chosen
for synthesis of a hybrid nanosystem with further precise
analysis of temperature-induced changes in the polymer/-
AgNP nanosystem, since this polymer revealed well-defined
size changes in the range of 25-40°C [21]. Molecular
parameters of this copolymer, determined by SEC, are as
follows: Mv =1.05x 107° g/mol, Mn =0.674 x 107® g/mol,
and Mw/Mn = 1.52.

The TEM image of the synthesized Ag sol into the solu-
tion of the D-g-PNIPAM copolymer is represented in
Figure 1. It is seen that there are single nanoparticles and
nanoparticles located in the limited volume. Obviously, these
nanoparticles are located inside of the macromolecules. It
should be noted that the synthesis of Ag nanoparticles
was performed in dilute polymer solutions, thus, below
the overlap concentration.

DLS was efficiently used for the accurate study of the con-
formational transition process for individual D-g-PNIPAM
in water solution [21] and for the study of Au sols synthe-
sized in the solution of the D-g-PNIPAM copolymer [27].
Therefore, this method has been chosen for the characteriza-
tion of the nanosystem D-g-PNIPAM/AgNPs below and
above the LCST of the polymer matrix.

The DLS experiment was carried out in the temperature
range 25-40°C with a step of 0.1°C and a heating rate of
0.02°C/min. For the nanosystem D-g-PNIPAM/AgNPs,
the size distribution curves exhibit a more complicated
character than for those of the individual D-g-PNIPAM in
water solution [21]. DLS results for D-g-PNIPAM/AgNP



International Journal of Polymer Science

. < ™
b ) _4"4 -
. . '
A . 2 . ('
»
-
~
< ¢ - -~
. ) L
.
~ -
s
v s S -~ ; \.
- i
3 ¥ JE
»
. . <
it + b
» B ~
L /
»
- - - + ’
2 - ~
t

()

FiGure 1: TEM image of Ag sol, synthesized in D-g-PNIPAM solution.

nanosystems revealed the presence of few types of scattering
nanoobjects. The hydrodynamic diameter distributions for
D-g-PNIPAM/AgNP nanosystems at 25°C are shown in
Figure 2. The first peak in the size distribution scattering
curve corresponds to the individual AgNPs; further, they will
be indicated as Nanoobjects 1. The sizes of Nanoobjects 1 are
estimated as 5-10nm. The second peak corresponds to
Nanoobjects 2. Nanoobjects 2 are 85-100 nm in size at 25°C
and correspond to the aggregates of D-g-PNIPAM macro-
molecules with incorporated AgNPs inside. It is evident that
the size of individual macromolecules of D-g-PNIPAM is
equal to 37-40 nm [21] at this temperature.

The Peak 1 of individual AgNPs was registered for all
studied temperature ranges and revealed the presence of
nanoparticles of 5-10nm in size (Figure 2; black, red, and
green curves). The drastic change in the hydrodynamic
diameter of Nanoobjects 2 (Peak 2) and the variation in
intensity of Peak 1 and Peak 2 were observed during the heat-
ing process (from 25 to 40°C). It is reasonable to take into
account the peak positions, since their intensities depend
on the density of the scattering object. This parameter for
hybrid nanosystem D-g-PNIPAM/AgNPs depends on two
factors: the conformation of the polymer matrix and the dis-
tance between incorporated AgNPs. Both these parameters
are changed in the region of LCST.

At the temperature of 32°C, we observe the drastic
decrease of the size of Nanoobjects 2 up to 40nm. Such
diminished size of the scattering objects is caused by confor-
mational transition of the polymer matrix (partial collapse of
the macromolecule). Further heating to 40°C leads to the
increase in size of Nanoobjects 2 to 200 nm and increases
their polydispersity. Also, the third peak (green curve) in size
distribution appears, which may correspond to the slight

deviation from sphere-shaped scattering objects. Obviously,
we observe the aggregation process in the system, because
above LCST, the hydrophilic-hydrophobic balance of the
polymer matrix changes. This peak also was observed for
individual D-g-PNIPAM [21].

Further, we analyze the Nanoobject 2 (D-g-PNIPAM
with incorporated AgNPs) in the studied temperature range,
since the change in size of Nanoobject 1 (free AgNPs) was
not observed in the studied temperature range. Figure 3
demonstrates the comparative behavior of individual
D-g-PNIPAM macromolecules and Nanoobjects 2 (D-g-
PNIPAM/AgNPs) within the temperature range 25-40°C. It
is seen that the shape of both curves is similar. LCST for both
systems is registered at 33.8°C for both systems.

Thus, the presence of silver nanoparticles into the
D-g-PNIPAM matrix leads to the formation of nanoobjects
consisting of few macromolecules. It can be assumed that
the presence of AgNPs inside the polymer can block some
hydrophilic groups causing a partial decrease of the hydro-
philicity of the D-g-PNIPAM matrix and formation of
aggregates. There are two types of AgNPs: free (single) nano-
particles formed outside of macromolecules, and nanoparti-
cles incorporated inside of the polymer macromolecule. It
was shown that free nanoparticles do not aggregate with tem-
perature increase. However, the DLS data analysis does not
give a reply to the main question. Does collapse of macro-
molecules cause some aggregation process of the incorpo-
rated AgNPs or does it only lead to a change in the distance
between them?

Further, SAXS and UV-Vis spectroscopy were used for
analysis of the behavior of D-g-PNIPAM/AgNP nanosys-
tems in the region of LCST. Figure 4 shows SAXS curves
measured on a Rigaku instrument at different temperatures
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F1GURE 3: Temperature dependence of the hydrodynamic diameter for D-g-PNIPAM (individual macromolecule, black empty squares) and

D-g-PNIPAM/AgNP nanosystems (Nanoobject 2, blue empty circles).

and on a BioSAXS instrument (at ESRF) at 25°C. One can
see that curves from different instruments at 25°C are
similar. So P(R) functions for these curves should also be
similar. Anyway, the main goal of our SAXS measure-
ments was investigation of a sample structure at different
temperatures. Since SAXS curves do not change with temper-
ature change, the sample structure is also stable. Curves were
normalized on transmission; the buffer (D-g-PNIPAM
solution with the same concentration and without AgNPs)
was subtracted. It should be noted that the used concentra-

tion of the polymer in the solution is invisible for SAXS
(the scattering curve is similar to the scattering curve of
distilled water). That is why all curves in Figure 4 corre-
spond to the scattering on AgNPs. One can see that tem-
perature changes of scattering curves are minor. It means
that the structure of the AgNPs, their distribution, and
interactions (including aggregation) do not change in this
temperature range. Obviously, the diminished distance
between AgNPs in the collapsed polymer matrix above
LCST takes place.
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Using the PRIMUS program from the ATSAS package
[28, 29], we calculated the distance distribution functions
(DDFs) for each temperature (Figure 5). All DDFs have two
peaks—at 5.9 nm and 23.5 nm. They correspond to two main
particle sizes in our solution. DDFs of AgNPs at 25°C and
34°C are almost the same and differ a little at 40°C. Anyway,
these changes are negligibly small.

TasLE 1: Comparison of particle sizes, obtained from Dynamic Light
Scattering data and distance distribution function calculations.

Size 1 Size 2
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FI1GURE 6: The behavior of the SPR absorption peak of AgNPs in the
D70-g-PNIPAM/AgNP nanosystem at the increase of the
temperature from 23°C to 45°C.

Comparing particle sizes obtained from DDF (Figure 5)
with sizes obtained from DLS measurements, one can say
that the Size 1 (Table 1) from both methods is in good agree-
ment. Thus, it may indicate that Size 1 (corresponding to
Peak 1, Figure 2) is the size of free AgNPs. At the same time,
DLS and DDF give a completely different Size 2 each. As we
already mentioned, the DLS method is sensitive both to poly-
mer size and to AgNP sizes and SAXS is sensitive only to
AgNP sizes. Considering this, we can conclude that the Size
2 obtained from the DLS data (Peak 2, Figure 1) corresponds
to the polymer matrix dimension (which changes with
temperature) and Size 2 obtained from DDF calculations
corresponds to the size of AgNPs incorporated in the
polymer matrix. These AgNPs are located in local volume
of the macromolecule.

To study the transformations occurring at the conforma-
tional phase transition in the D70-g-PNIPAM/AgNP nano-
system, the surface plasmon resonance (SPR) in AgNPs was
used as an optical sensor of these transformations. Namely,
the temperature-caused behavior of the SPR absorption peak
was analyzed in the temperature range 23°C to 45°C. The
temperature behavior of the AgNP absorption spectrum
under the increasing temperature is shown in Figure 6. It is
seen that the SPR spectrum has a two-component structure.



The high-energy one with a maximum at 390 nm (at room
temperature of 23°C) corresponds to single AgNPs. The
low-energy SPR peak with a maximum at 435nm (at 23°C)
corresponds to the light absorption by the aggregates of
AgNPs. Meanwhile, the quite large fraction of AgNPs in
a hybrid system exists in the form of the aggregates that
caused an appearance of additional low-energy peak
corresponding to aggregated AgNPs. Such two-component
structure of the plasmonic absorption spectrum in the
D70-g-PNIPAM/AgNP nanosystem is similar to the one
observed in our recent work [30] where the laser-driven phase
transformations were studied in D70-g-PNIPAM/AuNPs
containing AuNPs.

It is seen from Figure 6 that similar to the data of the
SAXS measurements shown in Figure 5, the changes in the
plasmonic absorption spectrum of AgNPs are quite small.
However, let us note that the SPR absorption spectrum
changes during the heating of the sample. Namely, the inten-
sity of the high-energy peak corresponding to single NPs
decreases at the increase of the temperature. Meanwhile,
the intensity of the low-energy peak corresponding to aggre-
gated AgNPs increases at the increase of the temperature.
Similar behavior was observed for the plasmonic absorption
spectrum in D70-g-PNIPAM/AuNPs reported in our recent
work [30]. Similar to the results of reference [30], the
observed transformation of the plasmonic absorption spec-
trum proves the fact of the aggregation of AgNPs occurring
during the conformational LCST phase transition. Indeed,
the shrinking of D70-g-PNIPAM macromolecules leads to
decrease of the distance between the Ag NPs and their conse-
quent aggregation. The fraction of single AgNPs decreases
causing the decrease of the high-energy peak, while the
fraction of the aggregated AgNPs increases causing the
increase of the low-energy peak intensity. Thus, one can
conclude that SPR spectroscopy proves the fact of enforcing
the process of the AgNP aggregation during the phase transi-
tion in D70-g-PNIPAM/AgNP nanosystems.

4. Conclusions

The star-like copolymer dextran-graft-poly(N-isopropylacry-
lamide) has been used as a matrix for D-g-PNIPAM/AgNP
nanosystem fabrication. It was shown that the branched
structure of host PNIPAM polymers allowed tuning of LCST
to higher values of T'=33.8°C in comparison with linear
PNIPAM. The existence of two types of AgNPs into the
D-g-PNIPAM/AgNP nanosystem was revealed: single
(separated) nanoparticles and aggregated nanoparticles.
The comparative study of individual D-g-PNIPAM and
D-g-PNIPAM/Ag nanosystems in water medium showed
that Ag nanoparticles incorporated into the D-g-PNIPAM
matrix did not affect the range of LCST. It was shown that
slight aggregation of Ag nanoparticles occurs due to the
macromolecule shrinking at LCST. It was obtained that
the thermally induced collapse of end-grafted poly(N-iso-
propylacrylamide) chains above the LCST did not affect
significantly the size characteristics of silver nanoparticles
incorporated into the polymer matrix. It can be concluded
that such nanosystems can be a promising approach for the
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preparation of nanocomposites containing nanoparticles
which can be used as a nanocarrier for biomedical application.
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