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Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to
their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based
composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug
delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-
based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis,
structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the
structure-property relationship and the corresponding functional applications of the conducting polymer-based composites.
Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.

1. Introduction

Conducting polymers (CPs) can be referred to the composite
materials comprising polymeric components and conductive
components. The polymeric components and the conductive
components of the CPs can be arranged in different struc-
tures and configurations, e.g., mixing, coating, and hierarchi-
cal, to gain the designed functionality. Different from the
CPs, the intrinsically conducting polymers (ICPs) can trans-
port the electrons and holes through their unique alternating
single-and-double-bond structure in the main chains, and
the addition of another conductive phase is not necessary.
The discovery of the ICPs dates back to the 1850s with the
introduction of polyaniline [1] by Henry Letheby, but only
in the 1970s did polyaniline (PANI) and other conducting
polymers such as polypyrrole (PPy), polythiophene, and
polyacetylene receive intense attention from the scientific
and industrial communities due to the breakthrough work
done by Heeger, MacDiarmid, and Shirakawa [2]. Conduct-
ing polymers are organic polymers that can conduct electric-
ity, which are different from the conventional polymers such

as polyethylene and natural rubber, and due to their unusual
electrochemical and optical properties, the ICPs have greatly
benefitted our society in applications such as energy storage
[3], supercapacitors [4, 5], field emission [6], biosensors [7],
gas sensors [8], and tissue engineering [9]. Chemical synthe-
sis and electrochemical synthesis are generally two main
methods to synthesize ICPs; in particular, electrochemistry
has played a key role in the synthesis of ICPs for its fine-
tuning in the polymer structures, compositions, and electro-
chemical properties. Several articles and reviews have been
published on the synthesis, properties, and applications of
ICPs [10, 11]. However, to achieve a wide range of applicabil-
ity, excellent mechanical properties, easy processability, and
high-performance electrical, sensing, and energy-storage
capabilities are required for the next-generation conducting
polymer-based composites.

Compared to the bulk polymers, the conducting polymer-
based composites which are formed by blending or mixing
ICPs with other materials have drawn more attention, and
the properties of each individual component can be effi-
ciently integrated to achieve multifunctionality [12]. Various
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strategies have been developed to synthesize the conducting
polymer-based composites, such as electrosynthesis in the
presence of an insulating polymer [8], encapsulation of fibers
[13], incorporation of other secondary nanoparticles to form
conducting polymer nanocomposites [14], electropolymeri-
zation of different monomers (e.g., aniline and 3,4-ethylene-
dioxythiophene) [15], and the utilization of dopants with
multiple functions (e.g., disulfide biotin) [16], and the in situ
integration of noble metal nanoclusters during oxidative
polymerization (e.g., platinum nanoclusters) [17]. Resulting
from the synergistic effect of different components, the con-
ducting polymer-based composites showmultifunctionalized
properties and enhanced mechanical performance and pro-
cessability. The structure of the composites, interfacial adhe-
sion between the conducting polymer and other components,
and the synthetic strategies would greatly affect the properties
and applications of the as-obtained conducting polymer-
based composites.

Although it is widely accepted that the key component of
neural communications in the human body is the action
potential generated at the synapses, the subsequent genera-
tion of the electrical charges plays a vital role in the signal
transmission and simulation of the neural cells. The applica-
tions of ICPs in bioelectronics are quite attractive, as they are
intrinsically biocompatible and mechanically soft to realize
conformal matches between the electronics and tissues to
reduce the foreign body response (FBR). The biocompatibil-
ity of ICPs has been extensively investigated both in vitro and
in vivo. The reported results indeed demonstrated that the
ICPs, especially PPy and poly(3,4-ethylenedioxythiophene)
(PEDOT), possessed good biocompatibilities with cells, tis-
sues, and organs [18–23]. Vaitkuviene et al. showed that the
PPy nanoparticles synthesized by oxidative polymerization
exhibited almost no cytotoxicity to the primary mouse
embryonic fibroblasts, mouse hepatoma cell line, and human
T lymphocyte Jurkat cell line at low concentrations (up to
9.7μgmL-1) [19]. They also demonstrated that the PPy-
modified gold surface showed good biocompatibilities to
support the adhesion and proliferation of mouse bone
marrow-derived stem cells, similar to the bare gold and poly-
styrene surfaces [20]. Wang et al. reported that the PPy
extraction solution showed no trace of acute and subacute
toxicity, pyretogen, hemolysis, allergen, and mutagenesis.
The Schwann cells in the PPy extraction solution also showed
higher survival and proliferation rates compared to the saline
solution; they also tested the chronic effect of the implanted
PPy-coated silicone tube for bridging the transected sciatic
nerve. The result showed that the PPy-coated silicone tube
can improve the nerve tissue regeneration and induce only
light inflammation after 6 months’ implantation [21]. George
et al. fabricated PPy implants doped with polystyrene sulfo-
nate (PSS) or sodium dodecylbenzenesulfonate (NaDBS)
and surgically inserted the PPy implants into the cerebral
cortex of rats. Reduced gliosis and enhanced tissue-implant
interactions were found on the PPy implants after either 3
weeks’ or 6 weeks’ implantation, which in most cases outper-
formed the Teflon implants as the control [22]. Moreover,
Ramanaviciene et al. showed that chemically synthesized
PPy nanoparticles neither demonstrated any cytotoxic effects

on mouse peritoneum cells nor affected the spleen, kidney, or
liver indexes and the immune-related hematological param-
eters of the mice. According to their observation, the PPy
nanoparticles also induced no allergic response and no
inflammation can be detected in the peritoneum of mice in
the sixth week after the injection of PPy nanoparticles [23].
The relatively good biocompatibility of the chemically and
electrochemically synthesized ICPs makes them ideal candi-
dates for medical bionics and implantable electrodes, where
high electrical conductivity, low impedance, and seamless
integration of biomolecules are required to establish an inte-
grated tissue-electrode interface [24, 25].

However, several drawbacks are associated with ICPs and
their composites and hinder their biological applications,
such as low mechanical strength, low sensitivity and selectiv-
ity, and low stability. To overcome the limitations of the
ICPs, different methods and strategies have been employed
and the results were carefully investigated, including (i)
chemical surface modification of conducting polymers with
physiologically active species; [26] (ii) blending with other
nonconductive polymers with good mechanical properties,
e.g., biomass-derived and biodegradable polymers such as
PDLLA [27], chitosan [28], collagen [29], cellulose [13],
and polysaccharide [30]; (iii) utilizing nanostructured con-
ducting polymers such as nanoparticles, nanotube, nano-
wires, and nanofibers; [11] and (iv) usage of the physical
and covalent surface coating technologies—the conducting
polymers were used either as substrates or as coatings [13].
And the biocompatibility of these polymers in the biological
tissues was also evaluated using different methods such as
“in vitro” assays [31]. After all, the ICPs and their composites
hold a perspective future in biological applications, especially
in implantable devices and cyborg tissues.

Several review articles have been published on ICPs used
in biomedical [32, 33], tissue engineering [9], and biosensors
[34, 35]. In this review, we mainly focus on the conducting
polymer-based composites and devoted to summarizing
their structures, properties, and applications in the biologi-
cal fields, including drug delivery, neural interfacing, and tis-
sue engineering.

2. Conducting Polymer-Based Composites for
Drug Delivery

An efficient drug delivery system that can deliver the drug
to targeted body sites and control the drug release rate pre-
cisely is able to improve the therapeutic outcomes and
reduce the side effects [36, 37]. Structuring such drug deliv-
ery systems has been long dreamed of and became more
and more practical with the development of a variety of
polymer-based delivery systems. From nonbiodegradable
diffusion-controlled membranes [38] to biodegradable sys-
tems with a combination of diffusion and polymer matrix
degradation [39], the polymer-based delivery system has
shown enormous benefits in drug delivery and release.
And since the 1980s, an effective and intelligent drug deliv-
ery system based on the ICPs has been developed [40, 41].
Resulting from their inherent electrical, magnetic, and opti-
cal properties, the ICPs, especially their composites, are
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expected to be used as next-generation stimuli-responsive
drug delivery systems that are smart enough to adjust the
release rates according to the changes of the tissue microen-
vironment. Various ICPs, including PPy and its derivatives,
PANI [42], PEDOT, and its derivatives [43], have been used
to construct new polymer-based drug delivery systems. The
ICPs also showed promising biocompatibility when inter-
facing with different biological tissues [44], which further
proved their application potential in the fabrication of drug
delivery systems.

In drug delivery systems, the use of ICPs is significantly
limited by the choice of dopant and the molecular weight of
the loaded drug. To remove these barriers, chemical modifi-
cation or physical coating methods have been used. For
example, George et al. modified the surface of PPy through
biotin-streptavidin coupling [45]. Due to the ability of
attaching any biotin-labeled compound, streptavidin bridges
the biotinylated drug and PPy (Figure 1(a)). The modified
PPy composites show high stability and well-controlled drug
release process. Different from the chemical surface modifi-
cation, Abidian and his coworkers reported the electrochem-
ical depositions of PPy or PEDOT nanotubes on drug-
loaded, electrospun biodegradable poly(L-lactide) (PLLA)
or poly(lactide-co-glycolide) (PLGA) (Figure 1(b)). This
nanostructured conducting polymer composites can be used
for the release of dexamethasone with electrical stimulations
[43]. The controlled release of dexamethasone was also
reported by Wadhwa et al. [41] In their study, the prodrug
of dexamethasone disodium phosphate (Figure 1(c)) was
used as a dopant in PPy followed by coating PPy on the
gold-coated coverslips (electrodes). The release of the dexa-
methasone was controlled by the cyclic voltammetry (CV)
with alternating positive and negative potentials. In this
study, 0.5μg/cm2 dexamethasone can be released after each
CV cycle and up to a total of nearly 16μg/cm2 can be released
after 30 CV cycles (Figure 1(d)). To further enhance the drug
release performance and drug-loading capacity of the ICPs,
Woeppel et al. reported the usage of functionalized negatively
charged porous silica nanoparticles as the dopant for PEDOT
[46]. The silica nanoparticle-doped PEDOT showed signifi-
cantly enhanced doxorubicin (DOX) release profiles (up to
7-folds higher than the control) by applying electrical stimu-
lations; different kinds of drugs, e.g., fluorescein and DNQX,
have been loaded into the porous silica nanoparticle-doped
PEDOT and demonstrated controllable release profiles
in vivo. Biologically active dopants, such as neural growth
factor and brain-derived neurotrophic factor, can also be
directly incorporated into the matrices of PPy and PEDOT
to promote the neurite outgrowth in vitro [47, 48]. In sum-
mary, chemical modification of conducting polymer sub-
strate, coating conducting polymers on the drug-loaded
biodegradable polymeric substrate, or prodrug modification
have been proven to be the effective methods in preparing
conducting polymer composite-based drug delivery systems.

Conducting polymer-hydrogel blends were also synthe-
sizedandapplied inelectrochemically controlleddrugdelivery
systems. Due to their high swelling capacity, hydrophilicity,
and quick responses to external stimuli such as strain, pH,
and temperature, the hydrogels have been proposed as suit-

able materials for drug delivery applications [49, 50]. Inte-
gration of conducting polymers into the hydrogel may
endow smart functions to the as-prepared composites,
e.g., switchable delivery modes (on and off) and controls
over the drug-releasing rate. Conducting polymers such as
PANI [51, 52] and PPy [53, 54] are electropolymerized to
grow inside or on the surface of different hydrogels. Semi-
interpenetrating PANI-polyacrylamide hydrogel composites
were prepared by Lira and de Torresi, and the electrochem-
ically controlled release of safranin has been demonstrated
in this research [52]. It was found that the release of safra-
nin was influenced by not only the physical and chemical
properties of the composites, but also the electrochemical
processes. In another work, drug-loaded PPy nanoparticles
were suspended in a temperature-responsive hydrogel
(poly[(D,L-lactic acid)-co-(glycolic acid)]-b-poly(ethylene
oxide)-b-poly-[(D,L-lactic acid)-co-(glycolic acid)] (PLGA-
PEG-PLGA)), which is a liquid at low temperatures but
becomes a gel at body temperature, as shown in Figure 2
[54]. The composites acquire the advantages of both con-
ducting polymers and the sol-gel transition of hydrogels,
exhibiting a dual stimulus (temperature and electric field)
responsiveness and can be used to trigger sensitive dosage-
controlled release of drugs. Other conducting polymer-
hydrogel systems such as PANI-polysaccharide hydrogels
[30], PPy-alginate hydrogel [53], and chitosan-graft-PANI-
oxidized dextran hydrogel [55] have also been evaluated to
identify their potential in drug delivery applications.
Recently, near-infrared light and pH dual responsive drug
delivery composites of PANI-biodegradable poly(ethylene
glycol)-poly(ε-caprolactone) (PEG5k-PCL10k) block copol-
ymers and lecithin that are used for the controlled release
of cisplatin were reported by You and his coworkers [42].

Nowadays, there is an increasing trend in the fabrication
of conducting polymer-based composites for drug delivery.
However, most ICPs and their composites are not biode-
gradable, which is considered a major drawback for the
ICP-based drug delivery systems, and a postdelivery process
is required to remove the drug-loaded carriers. Although
several biodegradable conducting polymer composites have
been reported [56], it is still a challenge to achieve both high
conductivity and appropriate biodegradability. Meanwhile,
conducting polymer composites that can response to dual
or more stimuli are expected to find widespread applica-
tions in drug delivery for their more precisely controlled
release rate.

3. Conducting Polymer-Based Composite
Electrodes for Neural Interfacing

The nervous system is of great complexity due to the thou-
sands of networks of neurons and supporting cells, which
work synchronously to process external and internal cues
that result in movements, emotions, sight, speech, and hear-
ing. It is important for knowing the mechanism of the neural
network and treating some neural disorders to understand
the nervous system, which has engaged the interests of scien-
tists. The neural interface serves as a medium between elec-
trical devices and neural tissues. In other words, the neural
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interface is a tool to interface between biological and elec-
tronic systems, allowing for monitoring and manipulation
of neural circuits that underpin both normal and diseased
states. The information of nervous networks and their
responses to the bioactive materials have been effectively
provided by the neural electrodes. When implanted into
the brain, neural electrodes can record the signal from the
neuron for studying the mechanism of the brain and also
can give the degenerated tissues in the brain effective stimu-
lations to heal neurological diseases such as Parkinson’s dis-
ease, epilepsy, deafness, blindness, and movement disorders.
Therefore, it is vital for neural research to have reliable sig-
nals taken from the brain for the accurate analysis of the
neural system and selective stimulations. For clinical diag-
nosis, it requires a neural electrode with a high conductivity,
low impedance, and good biocompatibility. The traditional
neural electrodes are mostly composed of noble metals
and may not be competent for long-term implantations
and signal recording due to the mechanical mismatch
between the stiff metal electrode (Emetal = 74-530GPa [57])
and soft neural tissue (Ebrain = 2:1-3.7 kPa [58], Espinal cord =
3-6.3 kPa [59], and Eperipheral nerve = 576-840 kPa [60, 61]).
The mechanical mismatch between the electrodes and neu-
ral tissues may induce significant FBR at the electrode-
neural tissue interface, resulting in the malfunction of both
the electrodes and the surrounding tissues. Current research
is aimed at producing stable, small, and high-density micro-
electrodes in order to improve the recording and stimulat-
ing selectivity for both in vitro and in vivo applications.
To carry out implantation of neural electrodes precisely
and selectively and reduce the unwanted damage of neural
tissues, the fabrication of neural electrodes with a smaller
geometrical size, e.g., microelectrodes, has been widely
adapted. However, the small geometrical sizes also limit
the electrical functions of the microelectrodes, and increased
impedance and reduced charge injection properties are
associated with the microelectrodes compared to the bulky
ones. To address this issue, the geometric surface of the
microelectrodes can be miniaturized to form conductive,
porous, and biocompatible nanostructures [62].

Strategies to improve the electrochemical surface area
whilst maintaining the desired geometric area include the
development of rough microelectrodes and microelectrode
coatings onto traditional planar microelectrode materials
such as gold and platinum. The metal electrode (gold, plati-
num, and silver) was coated by conducting materials through
chemical and electrochemical deposition. The conducting
materials including graphene and graphene oxide (GO)
[63], iridium oxide (IrOx) [64], carbon nanotubes (CNTs)
[65], and ICPs [66]. ICPs with high conductivity, excellent
charge transport capacity, and good biocompatibility were
speculated as promising electrode materials for next-
generation neural electronics with reduced neural interfacing
impedance. Few researches focused on the way to coat ICPs
like PPy [67], PANI [68], and PEDOT [69] on the surface
of metallic microelectrodes to enhance their electrochemical
properties, which is considered simple but effective.
Compared to the bare metal electrodes, the impedance of
the modified neural electrodes became smaller due to the

increased electrochemical surface area after the deposition
of ICPs. For example, Zhou et al. fabricated a PEDOT and
multiwall carbon nanotube (MWCNT) composited thin film
and coated it onto platinum microelectrodes by different
electrochemical deposition methods, i.e., potentiostatic and
galvanostatic [70]. Compared to the PEDOT/MWCNT coat-
ing formed by the potentiostatic method, the PED-
OT/MWCNT film from the galvanostatic method showed a
porous morphology composed of tangled rods with a smaller
average diameter (~50nm). The impedances of the PED-
OT/MWCNT-coated microelectrodes from the two methods
exhibited almost two orders of magnitude lower than the
bare platinum microelectrode at 1 kHz. The impedance at
1 kHz is a typical parameter to evaluate the functions of the
neural electrodes, as it correlates to power consumption for
the electrical stimulation of the neural tissues and the neuro-
nal action potentials. However, the stability of the ICP coat-
ing on the microelectrodes is also critical for achieving
chronic monitoring of the neural tissues. Few researches have
focused on solving these problems by doping inorganic and
organic substances into the ICP coating to enhance the adhe-
sion between the ICP films and the substrates and also to
enhance the biocompatibility of the electrodes corresponding
to the neural tissues. For example, Bodart et al. polymerized
PEDOT:tetrafluoroborate (PEDOT:BF4) onto the platinum
neural electrode by using three different solvents, i.e., propyl-
ene carbonate (PC), acetonitrile (ACN), and water [71]. The
mechanical and electrochemical stabilities of the as-obtained
composited electrodes were subsequently analyzed. The
result indicated that PEDOT:BF4 coatings deposited in
organic solvents on platinum-iridium (PtIr) microelectrodes
remained physically stable after 5min of sonication and
retained more than 80% of their charge storage capacity
(CSC), while coatings deposited in deionized water detached
from the PtIr microelectrodes after 2-3min of sonication.
After soaking in the PBS (pH = 7:4) solution for two weeks,
the impedances of PEDOT-coated microelectrodes obtained
in PC and ACN were increased but still considerably lower
than the bare PtIr electrode. They concluded that the PtIr
electrode coated by the PEDOT:BF4 film from the organic
solvents showed better stability under ultrasonication, PBS
soaking, and steam sterilization than the PEDOT:BF4 coating
from water. Cui et al. electrochemically polymerized PPy and
a biomolecule (a silk-like polymer having fibronectin frag-
ments (SLPF) and nonapeptide CDPGYIGSR) onto the gold
electrode sites of a neural probe [72]. Apart from better per-
formance in electrical properties than the uncoated elec-
trodes, more cells (1:25 ± 0:6 cells per site) were grown on
the PPy/SLPF-coated gold electrodes than on the uncoated
ones. They also found that human neuroblastoma cells pre-
ferred to seed onto the PPy/CDPGYIGSR-modified electrode
selectively compared to the electrode coated with PPy/CH3-
COO− (Figure 3). It indicated that by doping different bio-
molecules in the conducting polymer coating deposited on
the neural electrode, the cell behaviors on the neural elec-
trodes can be mediated to promote the formation of inte-
grated tissue-electronic interfaces.

To further decrease themechanicalmismatch between the
electrodes and tissues, and achieve the so-called conformal
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electronic-tissue interface, soft substrates such as Parylene C
[73], polydimethylsiloxane (PDMS) [74], SU-8 [75], polyim-
ide (PI) [76], and silk fibroin [77] can be introduced to fabri-
cate flexible and highly conductive neural electrodes.
Compared to the metal substrate, PI, SU-8, Parylene C, and
PDMS acquire much smaller Young’s moduli of 8.45GPa,
5.6GPa, 4.0GPa, and 1.0MPa, respectively. These materials
could be utilized to fabricate flexible neural electrodes of
different shapes and sizes with improved conformal match-
ing for minimally invasive implantation. For example, Heo
et al. fabricated a PI nanofiber- (NF-) based neural interface
with a high flexibility and permeability for stable neural sig-
nal recording [78]. The neural interface they designed con-
sisted of a PI NF substrate, electronic connection pads
composed of silver nanoparticles, and PEDOT: poly(styrene-
sulfonate) (PEDOT:PSS) as the advanced conductive layer
(Figure 4). They demonstrated that the as-obtained NF-
based nerve electrode showed electrochemical properties
superior to those of conventional cuff electrodes. And it
was able to record neural signals for a long period of time,
i.e., after implantation for 12 weeks.

4. Conductive Polymer-Based Electronics for
Minimally Invasive Electronics

The ICPs, such as PPy [79] and PEDOT [80], can be used as
the electrode materials for flexible and stretchable electron-
ics. Their major advantages include biocompatibility and
large surface area, resulting in higher in vivo charge transfer
capacities [81]. Various biomolecules, such as enzyme,
DNA, growth factor, and antibody, can be readily incorpo-
rated into the ICPs through electrochemical polymerization
as the stimuli to enhance the acquisition of biological cues
[82–85]. On the other hand, the CP-based stretchable elec-
trodes for engineered tissues can also be realized by incorpo-
rating metal-based or carbon-based nanoparticles into
elastomers, such as PDMS or styrene-butadiene-styrene
(SBS) [86]. Another way to make CP-based flexible and
stretchable electronics is to infuse liquid metal alloys inside
microfluidic channels, e.g., filling the eutectic gallium-
indium in the PDMS channels.

Bioresorbable macromolecules and polymers can be
used as the substrates for the fabrication of CP-based
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fabricated NF-based neural electrode. Electric wire cables were bonded to the end of the electrode pads using conductive silver epoxy and
were covered with bone cement. (d) Electrochemical impedance spectrum over a frequency range of 1–105Hz. (e) Cyclic voltammograms
with a scan range of −0.7 to +0.8V at a scan rate of 100mV/s. (f) Image of a wrapped stimulus cuff electrode and a recording NF-based
electrode. Acute ex vivo recordings obtained using (g) a control electrode, (h) AgNP-coated PI NF electrode, and (i) AgNP/PEDOT-
coated PI NF electrode. (j) Electrical packaging electrode (1) and implanted electrode (2). The NF-based electrode is wrapped around the
sciatic nerve of a rat. (k) Representative neural signal recording obtained from sciatic nerve tissue over a period of 12 weeks using a
control electrode, an NF-based electrode, and an NF-based electrode soaked with Tranilast. (l) Simultaneous mapping of the SNR of an
NF-based electrode with and without Tranilast [78].
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bioelectronics. The utilization of bioresorbable materials to
construct the bioresorbable electronics can effectively elim-
inate the adverse effects of long-term implantation such as
the FRB and unfavorable biofilm formation [87]. The sub-
strate layer of bioresorbable electronics can be fabricated
by natural or synthetic polymers with tunable degradation
properties. For example, the natural protein silk fibroin
[88] which can be degraded into natural amino acids by
enzymes in vivo. Alternatively, bioresorbable synthetic
polymers, such as PLGA, can also be used. The advantages
of the natural polymers include higher biocompatibility,
reduced FBR, and higher mechanical strengths. Disadvan-
tages include higher cost and lower processability. Com-
pared with natural polymers, the synthetic polymers
show the advantages including controllable degradation
rate and low cost [89].

The conductive components of the CP-based bioelec-
tronics, such as semiconductors and dielectrics, can be made
of silicon and silicon dioxide, which would degrade into non-
toxic Si(OH)4 in physiological solutions, and the dissolution
rate is dependent on the thickness. For the metallic conduc-
tors, the biocompatibilities of gold and platinum are good,
but they are not degradable. Magnesium and zinc can dis-
solve rapidly, and the degradation products are magnesium
hydroxide and zinc oxide, which can be easily removed by
the human body [90]. Tungsten, molybdenum, and iron
can also be dissolved, but the dissolution rates are slower,
and the degradation products are iron oxides or hydroxides
and tungsten and molybdenum oxides [88]. Therefore, the
metal conductors may need to be selected according to the
life expectancy of the bioresorbable electronics. Zinc and
magnesium are suitable for short-term implantation, while
tungsten, molybdenum, and iron are suitable for long-term
implantation [91].

The flexible polymeric substrates and conductive mate-
rials can be integrated to fabricate CP-based bioresorbable
electronics in various structures and configurations to
achieve minimally invasive implantations, e.g., the injectable
bioelectronics. Typical structures of the injectable bioelec-
tronics are cylindrical, consisting of a microchip and inte-
grated electronic components such as semiconducting
electronic components, solenoid microcoils, and hybrid
charge storage capacitors. All the electronic components of
the injectable bioelectronics are combined in a thin film of
an integrated circuit chip. Metal electrodes are extended from
both ends of the device, acting as the stimulation electrodes
to activate the nearby nerves or muscle motions [92]. With
the development of injectable bioelectronics, reticular elec-
tronic implants were found to have excellent mechanical
and structural properties and were widely used in the neural
research, e.g., the single-neuron chronic recording for the
retina in awake mice [93] and seamless syringe-injectable
mesh electronics with minimal chronic immune response
for brain monitoring [94]. Mesh-shape flexible bioelectronics
provide new solutions for the signal recording and stimula-
tion of brain tissues during implantation, and they can avoid
problems associated with traditional rigid wire-shape
electrodes such as mechanical mismatch and FBR [93–99].
The unique macroporous morphology with submicrometer

thickness and cell-scale-wide mesh elements may realize the
stable and seamless tissue integration by virtue of their
unique mechanical and structural properties [94, 95, 97].
Previous studies on the mesh-shape electronics also demon-
strated stable chronic recording at the single-neuron level
for at least eight months [91].

Key points related to the structural design of standard
mesh electronics are highlighted in Figures 5(a) and 5(b)
[100]. Periodic unit structures are constructed for the stan-
dard mesh electronic probes (Figures 5(a) and 5(b)). The
unit cell of the mesh consists of longitudinal elements paral-
lel to the injection direction and transverse elements ori-
ented at an angle α of 45° relative to the longitudinal
direction (Figure 5(b)) [94, 96–99]. The longitudinal ele-
ments may have composite structures, consisting of gold
interconnects sandwiched between two layers of the bio-
compatible photoresist SU-8 [101]. One end of the longitu-
dinal element is connected to a sensor or stimulator such as
a metal electrode [94–98, 102] or nanowire transistor [95,
102, 103], and the other end is connected to an input/output
(I/O) pad. The transverse elements may consist of two SU-8
layers with a total thickness of approximately 800nm and a
width of 20μm [95]. The transverse elements determine the
transverse bending stiffness of the overall mesh structure,
and correspondingly, it also determines the rolling degree
of grid probes when they are loaded into the needle. After
all, both longitudinal and transverse elements contribute to
the longitudinal bending stiffness of the mesh probe, and a
sufficient longitudinal bending stiffness may maintain the
overall linear structure of the mesh electronics during injec-
tion [95, 96].

Besides the mesh-like structure, biomimetic neuron-like
structures for implantable bioelectronics were also proposed
by Yang et al. [104] The neuron-like electronic unit (NeuE) is
structurally and mechanically mimicking a neuron at the
subcellular level. The photoresists of SU-8 and S1805 were
used as the polymeric phase while chromium, gold, and plat-
inum were used as the conductive phase of the NeuE. The
sizes of the metal recording blocks of NeuE also match those
of the targeted neural cells. The interconnects of the neuron-
like structure have similar flexibility to the axons. And the
thin polymer insulating layer of the structure is also analo-
gous to the myelin sheath. Both of these features promote
in the propagation of electrical signals from the neural cells
to the electrodes. The NeuE can also be assembled into an
open three-dimensional neuron-like electronic network
with structures and morphologies mimicking the natural
neural network. However, the properties and functions of
the implantable bioelectronics are closely related to their
designed structures. In recent studies, mesh-like minimally
invasive electronics are often reported to have ultraflexible
structures so that they can on the one hand be delivered
by capillary needles and on the other hand be perfectly
adapted to the nonplanar surface of the brain tissues. The
ultraflexible mesh electronics comprising the SU-8 polymeric
layer and metallic electrodes can minimize the accumulation
of astrocytes and glial cells [94, 95]. In the meantime, it can
also reduce the glial scarring (Figure 6(a)), resulting in little
or no chronic immune responses in the brain [94, 105].
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The implant process was conducted by ultra-small-size nee-
dles; therefore, minimal damage was induced at the implant
site [93, 94]. To inject the device into targeted tissues, the
ultraflexible mesh-shape electronics are preloaded in a glass
capillary needle, then are injected to the targeted site, and
the mesh electronics are unfolded (Figure 6(b)) [93, 95].
The match between the injection rate of the mesh electronics
and the retraction rate of the needle after injection has been
proven to be the key factor to deliver the mesh electrons
to the targeted tissue with an unfolded conformation
(Figure 6(c)) [96]. On the other hand, the use of needles
and probes with smaller sizes can further reduce the damage
applied to the tissues and maintain the original vascular and
cellular structures during the injection process. Several
methods have been reported to reduce the probe size, e.g.,
the utilizations of ultraflexible two-dimensional (2D) and
one-dimensional (1D) probes have been proven to be effec-
tive in reducing the transverse bending stiffness of the elec-
tronics, and they can be injected through the glass needles
with an inner diameter as small as 100μm and an outer
diameter of 170μm [100]. In another study, the devices made
by the nanoelectronic thread (NET) were reported to obtain a
minuscule size [105]. The epoxy-based SU-8 was used as the
polymeric phase while gold and platinum were used as the
conductive interconnects and electrodes for NET. The
NET-50 showed a total thickness of 1μm and an average
width of 50μm, and the NET-10 showed a cross-sectional
area of 10μm× 1:5 μm. Due to the extremely small thickness,
the bending stiffness of NET-50 and NET-10 is much lower

than those of the typical silicon, carbon fiber, PI, and
Parylene C probes (Figure 6(d)). Recently, Liu et al. showed
that the longitudinal and transverse bending stiffness of
the mesh-shape electronics, DL and DT, was dependent on
the angle between the longitudinal and transverse elements
(α shown in Figure 5(b)) [95]. When α = 45°, DL and DT
were ~2:5 × 10−3 nN · m and ~10-2 nN·m, respectively. And
the bending stiffness of the injected mesh electronics can
be reduced to 0.087 nN·m. The bending stiffness was further
reduced to 10-15N·m2 by utilizing the NET structures which
realized the glial scar-free neural integration [105]. More-
over, the bending stiffness of the biomimetic neuron-like
electronics decreased 5-20 times as compared to the other
state-of-the-art mesh electronic designs, and both a struc-
turally and functionally stable tissue-electronic interface
can be formed after implantation [104].

The electronic properties such as stable impedance and
large signal-to-noise ratio (SNR) are also critical to achieve
a highly integrated tissue-electronic interface for chronic
and real-time monitoring. For the NET probes, the imped-
ance was around 750 kΩ after implantation and decreased
to around 600 kΩ in the first 1.5 months. The impedance
was then observed to remain stable for the next 2.5 months
accompanied with low noise levels (Figure 6(e)) [105]. Sort-
able single-unit action potentials (APs) with stable average
amplitude and SNR can also be obtained by the NET
probes throughout the experimental period of 4 months
(Figure 6(f)). On the other hand, the mesh electronics
showed higher biocompatibilities as compared to the flexible

wt = 0 𝜇m, tt = 0 nm

𝛼 = 70°, wt = 10 𝜇m, tt ≈ 400 nm

𝛼 = 45°, wt = 20 𝜇m, tt ≈ 800 nm

𝛼
wm

w1

(a)

(c)

(d)

(b)
wt

Figure 5: Structural design of ultraflexible syringe-injectable mesh electronics. (a) Schematic of a conventional mesh electronic probe. (b)
Schematic of the mesh electronic unit cell, highlighting key probe design parameters, including the angle between longitudinal and
transverse elements (α), the longitudinal element width (wl), the transverse element width (wt), the longitudinal interconnect metal width
(wm), and the transverse element thickness (tt). For the standard mesh (α = 45°, wl = 20 μm, wt = 20 μm, wm = 10μm, and tt ≈ 800 nm).
(c) Schematic of ultraflexible 2D mesh electronics to facilitate loading and injection using reduced diameter needles and injection volumes,
where α = 70°, wt = 10 μm, and tt ≈ 400 nm; parameters for the longitudinal elements are the same as in the standard design highlighted in
panel (b). (d) Schematic of ultraflexible 1D mesh electronics with transverse element removal in the implantation site, i.e., wt and tt equal
to zero, and the parameters for the longitudinal elements and transverse elements external to the implantation region are the same as the
2D probes highlighted in panel (c). Orange lines represent the gold interconnects, dark blue lines represent two SU-8 layers for
interconnect insulation, and the cyan line represents a single SU-8 layer [100].
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thin-film probes according to the immunohistochemical
characterization, as the fluorescence intensity corresponding
to the neuron somata was much higher near the surface of the
mesh electronics (Figure 6(g)), and the intensities of astro-
cytes and microglia were much lower [94, 97, 104]. Con-
trolled injection of the mesh electronics has also been
realized by a stereotaxic surgery station equipped with a
syringe pump, and a spatial precision of ca. 20μm has been
achieved. And subsequently, 100% multichannel input/out-
put (I/O) connectivity between the mesh electronics and a
flexible cable device can be achieved by using a computer-
controlled conductive ink printing technique [96].

The CP-based injectable electronics with minimal inva-
siveness have great potential for neural study and brain
recording such as single-unit neural AP recording [95], brain
mapping [97, 106], and biochemical sensing [107] which
may promote the establishment of a next-generation brain-
machine interface for both fundamental neuroscience and
therapies [108]. By maximally reducing the tissue damage
during implantation and minimizing the chronic immunor-
esponses, the CP-based injectable electronics can serve as a
long-termmonitoring platform in vivo [109] and can retrieve
the physiological signals from the deep brain regions [110].
The CP-based injectable electronics can also integrate with
the wireless devices for the applications of wireless optoge-
netics [111].

5. Conclusions and Future Work

Upon integrating the flexibilities of polymers and conductiv-
ities of metals, the CP-based composites show promising
applications for the in vivo therapeutics and implantable

electronics, including drug delivery, neural interfacing,
and injectable electronics. The ICPs can be utilized as the
biocompatible, tunable, and controllable advanced delivery
platforms for the in vivo targeted transport of the nega-
tively charged drug molecules. And they can also be inte-
grated with other functional materials such as metallic
electrodes and hydrogels to form multifunctional composites
for tissue monitoring, stimulation, and drug delivery. High-
performance neural recording electrodes with significantly
enhanced biocompatibility and sensitivity can be fabricated
by coating the nanostructured ICPs onto the metallic elec-
trodes. Flexible electronics which conformally comply with
the epidermal layer of tissues can also be obtained by coating
the ICPs on polymeric substrates using various techniques,
such as photolithography, inkjet printing, and electrodeposi-
tion. On the other hand, ultraflexible CP-based composites
can be obtained by integrating the polymeric photoresists
with metallic electrodes in various structures and configura-
tions, such as the mesh- and thread-like shapes. The ultra-
flexible CP-based composites can be further utilized as the
injectable electronics for minimally invasive implantation
and show high performance in chronic recording, neural
monitoring, and single-neuron-level brain mapping. To fur-
ther transform the lab-based technique into therapeutic
applications, the mechanical property and chemical stability
of the ICPs may need to be improved for drug delivery. The
chronic performance of the ICPs and the patterning preci-
sion of the printing electronics may need to be further
improved for the flexible electronics. Finally, concerns over
the biocompatibility of the CP-based injectable electronics
also arise since highly cross-linked nondegradable SU-8 and
metallic chromium with biological toxicity are used.
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Figure 6: (a) Thin-film electronics may induce the glial scar formation while the mesh electronics may not. The blue lines represent different
types of electronics (mesh and thin film), the neurons are in purple, and the glial scars are in yellow [94]. (b) Schematic showing a mesh
electronic that is injected into the tissue and extended [95]. (c) Mesh electronics injected by the balanced FoV approach was extended (1).
And a mismatched injection may result in a wrinkled mesh (2) [96]. (d) A comparison between the bending stiffness of the NET-
structured probes and other typical fiber-based probes [105]. (e) Stable impedance (red) and low noise level (blue) were demonstrated by
the NET-structured probes during a long-term recording process (~4 months) [105]. (f) Stable average amplitude (red) and large SNR
(blue) for the chronic recording of single-unit APs were also observed on the NET probes [105]. (g) Stable fluorescence intensity of
neuron somata can be obtained near the surface of the mesh electronics as compared to the flexible thin-film probes [94]. (h) Single-unit
neural recording from one channel of the mesh electronics; the average potential waveform (red) showed characteristic average duration
of 2ms and peak-to-peak amplitude of 70 μV of the single-unit APs [95].
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