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This study investigated the effect of polyethylene glycol (PEG) and nanosilica (NS) on the physical-mechanical properties and cure
kinetics of diglycidyl ether of bisphenol-A-based epoxy (DGEBA-based EP) resin. For this purpose, tensile and viscometry tests,
dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry (DSC) were carried out under dynamic
conditions. The results showed that adding NS and PEG enhances the maximum cure temperature as well as the heat of cure
reaction (ΔH) in EP-NS, while it decreases in EP-PEG and EP-PEG-NS. The cure kinetic parameters of EP-PEG-NS were
calculated by Kissinger, Ozawa, and KSA methods and compared with each other. The Ea calculated from the Kissinger method
(96.82 kJ/mol) was found to be lower than that of the Ozawa method (98.69 kJ/mol). Also, according to the KAS method, the
apparent Ea was approximately constant within the 10-90% conversion range. Tensile strength and modulus increased by
adding NS, while tensile strength diminished slightly by adding PEG to EP-NS. The glass transition temperature (Tg) was
calculated using DMTA which was increased and decreased by the addition of NS and PEG, respectively. The results of the
viscometry test showed that the viscosity increased with the presence of both PEG and NS and it prevented the deposition of
solid particles.

1. Introduction

Because of their excellent thermal and mechanical properties,
epoxy (EP) resins are widely used in structural adhesives [1],
insulating materials [2], resin matrices for high performance
composites [3], protective coatings [4], electronic and elec-
tronical components [5, 6], etc. These wide applications are
due to creep resistance [7], excellent adhesion to many sub-
strates [8], high temperature performance [9], high stiffness
[10], and high mechanical and electrical properties [11].
However, almost all EPs are brittle [12–14]. Many tough-
eners such as carboxyl-terminated butadiene-acrylonitrile
(CTBN) [15, 16], core-shell rubber (CSR) particles [17, 18],
thermoplastic or thermoset polymers [19, 20], and organic-
inorganic particles [21, 22] have been incorporated to
increase the toughness of EP resins. These tougheners
decrease modulus, tensile strength, and glass transition tem-
perature (Tg); so in order to enhance the mechanical and
thermal properties, the toughened EPs are reinforced by

nanosilica (NS) particles. Mousavi and Amraei [23] used
EP-CSR-NS composites and found that NS partially offsets
the reduction in properties caused by CSR.

The properties of cured EPs depend on curing conditions
such as time and temperature. Differential scanning calorim-
etry (DSC) has been used to investigate the kinetics of cure
process under dynamic [24, 25] and isothermal [26, 27]
modes. Many kinetic models have been used to study kinetic
parameters, such as Kissinger [28, 29], Ozawa [30, 31],
Kissinger-Akahira-Sunose (KSA) [32, 33], Flynn-Wall-
Ozawa (FWO) [28, 34], Kamal [35, 36], autocatalytic
[37, 38], and Borchardt Daniels [39, 40] methods.

Many researchers [41] have observed that the main prob-
lem with thermoplastics tougheners is compatibility with the
EP resin. Because of aromatic rings in DGEBA EP resin, it
has high mechanical properties after curing, and it is miscible
with polyethylene glycol (PEG) [42, 43]. Thus, this grade of
EP resin was blended with PEG and NS in this study. Further,
the physical-mechanical, viscometry, and thermal properties

Hindawi
International Journal of Polymer Science
Volume 2020, Article ID 7908343, 10 pages
https://doi.org/10.1155/2020/7908343

https://orcid.org/0000-0003-2521-4366
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7908343


were investigated. Finally, the cure kinetics of EP-PEG-NS
composites were studied using Kissinger, Ozawa, and
KSA methods.

2. Materials and Methods

2.1. Materials. DGEBA EP resin (Epon 828) was supplied
from Shell with an epoxide equivalent weight of 185-
192 g/eq. The DICY as a curing agent and Diuron as an accel-
erator were obtained from Sigma-Aldrich. PEG used was
supplied by Merck with an average molecular weight of
4000 g/mol. NS (Aerosil R972) was prepared from Evonik.
All of the materials were used as received. The chemical
structures of the materials used in this study are shown in
Figure 1. The chemical and physical properties also are
reported in Table 1.

2.2. Sample Preparation. Initially, EP, DICY, and NS were
homogeneously mixed by a Perl Mill. Then, they were

blended with Diuron and PEG using a High-Shear mixer
(IKA T25). Next, the mixture of resin and other materials
was degassed in a vacuum oven at 50°C for 30min. After-
wards, the samples were gently poured into mold and cured
at 120°C for 90min. The details of experimental setup were
according to Mousavi and Amraei previous work (Figure 2)
[23]. Details of the composition of the formulations are listed
in Table 2.

2.3. Mechanical Properties. A Santam STM-150 tensile/com-
pression testing machine was employed to the investigate
mechanical properties of dumbbell shaped specimens at a
crosshead speed of 5mm/min according to ASTM D-638
(I-type).

2.4. Dynamic Mechanical Thermal Analysis. Dynamic
mechanical thermal analysis (DMTA) was conducted using
a TA Instruments DMTA 2980 analyzer. Rectangular speci-
mens with dimensions of 2 × 3 × 48mm3 were used.
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Figure 1: Chemical structures of the EP, DICY, Diuron, PEG, and NS.

Table 1: The chemical and physical properties of the EP, DICY, Diuron, PEG, and NS.

Material Property

EP (DGEBA)

EEW (g/eq) 185-192

Viscosity at 25°C (P) 110-150

Density at 25°C (g/cm3) 0.97

DICY

Molecular weight (g/mol) 84.08

Melting point (°C) 208-210

Solubility in water (g/100 g H2O) 3.2

Solubility in epoxy at 25°C (g/100 g epoxya) 0.05

Diuron

Molecular weight (g/mol) 233.09

Melting point (°C) 159

Solubility in water (g/100 g H2O) 0.0042

PEG

Molecular weight (g/mol) 4000

Viscosity at 100°C (cSt) 140.4

Density (g/cm3) 1.0926

NS
Average particle size (nm) 16

Tapped density (g/L) 50

DGEBA: diglycidyl ether of bisphenol-A; EEW: epoxy equivalent weight. aEpoxy resin Epon 828, based on the DGEBA.
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Temperature sweeps were performed at a rate of 5°C/min and
a frequency of 1Hz, from 25 to 200°C.

2.5. Viscosity Test. Viscosity measurement was performed
using a Brookfield viscometer ranging from room tempera-
ture up to 65°C according to ASTM D2196.

2.6. Kinetic Models. The curing kinetics of the samples was
examined on a differential scanning calorimeter (DSC,
Netzsch DSC 200F3) under nitrogen atmosphere. Dynamic
measurements were carried out from 25 to 250°C at heating
rates of 2.5, 5, and 10°C/min.

In the DSC analysis, we can assume that the area under
the exothermic curve is proportional to the degree of conver-
sion (α), which is expressed as follows [44, 45]:

α = Ht

ΔH
, ð1Þ

where Ht is the partial heat of cure reaction at time t and ΔH
is the total heat of cure reaction. Curing kinetics of EP is a
very complex process, and there are a variety of physico-
chemical reaction, and the activation energy (Ea) changes at
any point in time. Accordingly, in this study, the Ea has been
calculated by different dynamic methods. These methods are
described as follows:

2.6.1. Kissinger Method.

ln β

T2
p
= ln AR

Ea

� �
−

Ea

RTp
, ð2Þ

where β represents the heating rate, Tp is the absolute tem-
perature at the peak, A denotes the preexponential factor,
and R is the gas constant. If the curve of ln ðβ/T2

pÞ versus
1/Tp is plotted for different heating rates and linear extrapo-
lation is obtained, the slope of that line gives the value of Ea.

2.6.2. Ozawa Method.

d ln βð Þ
d 1/Tp
� � = 1:052 Ea

R

� �
, ð3Þ

where all of parameters are the same as described before. If
the curve of ln β versus 1/Tp is plotted for different heating
rates and linear extrapolation is obtained, the slope of that
line gives the quantity of Ea.

2.6.3. Kissinger-Akahira-Sunose (KAS) Method.

ln β

T2
α

� �
= C −

Ea

RTα

, ð4Þ

where Tα is the absolute temperature at a fixed α andC is a
constant. If the curve of ln ðβ/T2

αÞ versus 1/Tα is plotted for
different heating rates and linear extrapolation is obtained,
the slope of that line gives the value of Ea.

3. Results and Discussion

3.1. Mechanical Properties. Table 3 presents the ultimate ten-
sile strength (UTS), Young’s modulus, and strain at break. It
was observed by adding NS, UTS, and Young’s modulus of
the EP increased without any reduction in strain at break. It
is because as the tensile force is applied to the specimens,
the silica nanoparticles lead to increased deformation
resistance. On the other hand, the deformation decreases in
EP-PEG-NS due to the presence of flexible chains in PEG.
As such, the tensile strength declines slightly with respect to
EP-NS. Cured EP resin has high internal stresses due to the
shrinkage resulting from the cooling from curing tempera-
ture to room temperature. These internal stresses affect the
performance through producing cavities and microcracks.
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Figure 2: Details of the experimental setup.

Table 2: Details of composition of the formulations.

Sample DICY (phr) Diuron (phr) PEG (phr) NS (phr)

EP 7 3 0 0

EP-PEG 7 3 10 0

EP-NS 7 3 0 3

EP-PEG-NS 7 3 10 3

phr: parts per hundred parts of resin by weight.

Table 3: Mechanical properties of different samples.

Sample
UTS
(MPa)

Young’s modulus
(GPa)

Strain at break
(%)

EP 73 ± 3 2:9 ± 0:05 3:1 ± 0:02
EP-MEG 69 ± 1 2:96 ± 0:1 3:24 ± 0:05
EP-NS 83 ± 2 3:17 ± 0:2 4:1 ± 0:3
EP-PEG-NS 75 ± 2 3:22 ± 0:05 3:52 ± 0:2
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Induction of PEG soft segments to EP dramatically reduces
these internal stresses.

3.2. Dynamic Mechanical Thermal Analysis. Figure 3(a) indi-
cates storage modulus (E′) versus temperature. A tempera-
ture at which the maximum value of tan δ occurs is the
glass transition temperature. Tg of all the samples is shown
in Table 4. Adding PEG reduces the modulus and Tg. One
of the reasons for the fall in Tg is the low Tg of PEG
(−23°C). The reduction in Tg is also attributed to a decrease
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Figure 3: (a) Storage modulus and (b) tan δ versus temperature.

Table 4: Glass transition temperature for all samples.

Sample Tg (
°C)

EP 129.5

EP-PEG 103.2

EP-NS 124.7

EP-PEG-NS 105.2

Table 5: The tan δ curve peak of the samples.

Sample Temperature at peak (°C) tan δ at peak

EP 142.7 0.7467

EP-PEG 128.5 0.4621

EP-NS 143.9 0.8721

EP-PEG-NS 128.8 0.5004

Table 6: The effect of temperature elevation on the viscosity of
samples.

Sample
Viscosity (cp) at

25°C 50°C 60°C 65°C

EP 26800 1940 574 450

EP-PEG 36522 1696 615 530

EP-NS 73400 1280 530 370

EP-PEG-NS 76350 7680 3600 2915
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in the rigidity of the polymer chains and a drop in the density
of crosslinks due to the presence of flexible PEG chains. The
highest E′ belonged to EP-NS, EP-PEG-NS, and EP-PEG,
respectively. As can be seen, the presence of flexible chains
in PEG has strongly affected the modulus of samples and
the mobility of chains.

Figure 3(b) shows variations of tan δ versus temperature.
The tan δ indicates which sample is better at absorbing
energy. The highest tan δ curve peak was observed in EP-
NS. This suggests that this sample has the maximum extent
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Figure 4: Viscosity-temperature diagrams of different samples.
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Figure 5: Reaction between PEG and NS.
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Figure 6: Heating flow versus temperature for all samples.

Table 7: The results of the DSC test of the samples at the heating
rate of 10°C/min.

Sample Tpeak (
°C) ΔH (J/g)

EP 151.3 382.1

EP-PEG 152 341

EP-NS 153.5 414.7

EP-PEG-NS 162 366.3
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of energy loss. Table 5 reports the tan δ curve peak of the
samples. Adding NS transfers tan δ curve peak to higher tem-
peratures while adding PEG transfers tan δ curve peak to
lower temperatures. The wider the area under the tan δ
curve, the greater toughness is. The EP-PEG has a wider area
under curve compared EP-NS. This indicates that EP-PEG
has greater fracture energy than EP-NS.

3.3. Viscometry Test. Table 6 shows the effect of temperature
rise on the viscosity of samples. Viscosity-temperature dia-
grams are also displayed in Figure 4. EP-PEG-NS had a
higher viscosity over the entire range of 25 to 65°C compared
to the other samples. This indicates that the viscosity
increased with the presence of both PEG and NS and it pre-
vented the deposition of solid particles. This is attributed to
the melting temperature of PEG (50-58°C). At this tempera-
ture, PEG has a viscosity of 70-80 cp. After the melting of
PEG, OH groups of the PEG react with O groups of the NS
(Figure 5), and by forming active groups on the surface of
NS, it results in the formation of agglomerations thereby
enhancing viscosity.

3.4. DSC Analysis. Figure 6 depicts the heating flow rates ver-
sus temperature for all samples at heating rates of 10°C/min.

The results of the DSC test are presented in Table 7. As can be
seen, adding NS and PEG raises the maximum cure temper-
ature. The heat of cure reaction (the area under the exother-
mic peak, ΔH) increases in EP-NS and diminishes in EP-PEG
and EP-PEG-NS (more reduction in EP-PEG).

Figure 7 displays the DSC scan of PEG. As can be seen,
within the temperature range of 60 to 70°C, it indicates a
melting peak. The DSC scan of the cured EP-PEG-NS is also
shown in Figure 8 which is used to check for complete curing
of the sample. As it is seen, there is no melting peak suggest-
ing the complete curing of the EP-PEG-NS. The Tg obtained
from DSC is about 86.6°C, which differs by about 18°C from
the Tg obtained from DMTA.

3.5. Investigating of Curing Kinetics of EP-MEG-NS. In order
to investigate the dynamic cure kinetics of the EP-PEG-NS,
first, the DSC test was performed on the uncured sample at
heating rates of 2.5, 5, and 10°C/min. Figure 9 presents the
heating flow rates versus temperature and time for uncured
EP-PEG-NS. As expected, as the heating rate increased, the
exothermic peak shifted to higher temperatures.

The degree of conversion (α) versus temperature and
cure rate (dα/dt) versus the degree of conversion at heating
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rates of 2.5, 5, and 10°C/min is shown in Figures 10 and 11,
respectively. As can be seen in Figures 9 and 11, the curing
process has occurred under two reactions: kinetic control
and penetration control. First, the curing process is the
kinetic control, and the graph reaches the peak at a consider-
able speed. The reason is that as the reaction progresses,

more crosslinks are formed between the polymer chains
and its movement has becomemore difficult. Hence, the con-
tribution of the penetration control is more than that of the
kinetic control at higher curing degrees.

The variations of Ea at different α values were also calcu-
lated using KAS equation (equation (4)). Table 8 shows Ea at
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Figure 9: The heating flow rates versus (a) temperature and (b) time for uncured EP-PEG-NS.
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Table 8: Ea at different conversions of EP-PEG-NS.

Conversion
10% 20% 30% 40% 50% 60% 70% 80% 90% Average

Ea (kJ/mol) 92.53 89.38 87.45 90.81 93.98 94.85 97.18 102.47 98.65 94.14
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Figure 12: The plots obtained using (a) Kissinger and (b) Ozawa methods.

8 International Journal of Polymer Science



different conversions of EP-PEG-NS. As can be seen, the
apparent Ea was approximately constant within the 10-90%
conversion range.

Ea of the curing reaction was calculated using Kissinger
and Ozawa methods with the peak temperature determined
from DSC curves. In the Kissinger method, Ea was found to
be 96.82 kJ/mol. Ea calculated from the Ozawa method
(98.69 kJ/mol) was found to be higher than that of the Kissin-
ger method. Singh et al. [45] also reported similar results for
EP-based composites. Figure 12 indicates the plots obtained
using Kissinger and Ozawa methods.

4. Conclusions

In the present paper, physical-mechanical and cure kinetics
of blends of EP/DICY with PEG and NS were studied
through tensile and viscometry test, DMTA, and DSC. By
adding NS and PEG, the maximum cure temperature as well
as the heat of cure reaction (ΔH) increased in EP-NS, while it
diminished in EP-PEG and EP-PEG-NS. Ea calculated from
the Kissinger method (96.82 kJ/mol) was found to be less
than that of the Ozawa method (98.69 kJ/mol). Also, accord-
ing to the KAS method, the apparent Ea was approximately
constant within the 10-90% conversion range. The results
of mechanical tests revealed that tensile strength and modu-
lus increased by adding NS, while the tensile strength
dropped slightly by adding PEG to EP-NS. The glass transi-
tion temperature (Tg) was calculated using DMTA; accord-
ing to the results, NS and PEG led to heightened and
diminished Tg, respectively. Also, the viscosity increased
with the presence of both PEG and NS, and it prevented
the deposition of solid particles.
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