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As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D
printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering.
Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan,
alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture,
packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to
produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the
additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and
properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished;
now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for
tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment
than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The
review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and
developments in regenerative medicine and tissue engineering with potential applications.

1. Introduction

The various aspects such as type of tissue and the hormones
necessary for the discrepancy and physical size are restricted
to this regeneration as the body can regenerate amazingly
(critical defect). Any tissue damage beyond this crucial
dimension requires external assistance approaches such as
tissue engineering (TE) and regenerative medicine (RM), in

which the external hollows are termed yardsticks. These tis-
sues offer a platform for cellular activity and new tissue crea-
tion [1]. In TE and RM, the scaffolds have a crucial role.
These tissues are frequently supplied with growth agents in
order to accelerate the differentiation between cells and
selected lines to encourage the development of new tissue.
For cell viability and cell prolife, the physical and chemical
content plays a crucial part [2]. Biomaterial is classified
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according to a wide variety of parameters, including chemical
and physical composition, biodegradability, origin, and mod-
ification generations. Biomaterial is selected depending on
the target tissue. Biomaterials are divided into ceramics, poly-
mers, and composites based on their chemical composition.
The biomaterial class of ceramics includes important compo-
nents of inorganic metal or calcium salts [3]. The primary
usage of these biomaterials has been orthodontal. Because
of its resemblance with binding tissues, polymers are
employed in soft tissue engineering. Mixes of ceramics and
polymers comprise the composite class of biomaterials. The
composites have orthopaedic and dental TE uses. Natural
and manmade polymers of TE and RM are commonly
employed [4]. The biodegradability and biocompatibility in
natural biomaterials have plentiful availability such as
collagen, chitosan, hyaluronic acid, and alginate that are
commonly employed. One of the key aspects of natural poly-
mers is the degradation of biomaterials [5].

Since these biomatters are present in the extracellular
matrix (ECM), cells are very compatible and respond to
growth. Collagen is one of the most frequently used natural
biomaterials in several applications of scaffolds. Biopolymers
have recently gathered significant interest with a view to bio-
composites with a multifunctional and high efficiency that
have a low environmental effect, with exclusive accessibility,
renewable, environmentally friendly, and lightweight quali-
ties [6]. Biopolymeric composites should replace for the
multifaceted application of synthetic materials in optics, bio-
chemistry, and biomedical engineering [7]. The product data
is divided into two dimensions. The data are sent through
the machine from the basis of the product layer by layer,
and the material is dropped layer by layer, which in an addi-
tive process infuses the newest layer of material into the old
layer as shown in Figure 1. The researchers have received
tremendous attention in recent years from biopolymers
and biodegradable synthetic polymers. Biomedical applica-
tions require the production of sustainable, stronger, and
lightweight biopolymeric materials [8]. The development
or choice of ways to tackle the issues of architectural design
however needs a compromise between visions and aims,
which generally conflicts with new biomaterials [9].

2. Need of Bioprinted Scaffolds and
Its Fabrication

Tissue engineering is an alternative method for tackling the
increasing need for organ transplantation. TE and RM proce-
dures can fill the gap between the number of transplants await-
ing patients and donors available [11]. Organ failure and
organ transplantation from another individual is the only
effective way to treat organs including the kidney, liver, pan-
creas, and heart in degenerative illnesses. With the production
of biomaterials and scaffolds, the TE process begins. These tex-
tiles are chemically and physically changed to fulfill particular
parameters in the production process including biodegrad-
ability, porosity, size, form, and bioactivity [12]. Depending
on the nature of biomaterial, production, and target tissue,
these requirements may be different. Cells can seed the tissue
and develop the desired tissue in vitro or in the body in order

to permit the host cells to enter and replace the tissue. Growth
factors, hormones, and chemical indices are vital for these two
methods since they define cell differentiation and tissue func-
tion [13]. Biomaterials not only permit physical cell attach-
ment but also provide therapeutic agents such as medicines,
proteins, factors for growth, and chemical indications. Most
mammalian cells depend on anchor feasibility. The lack of a
substratum for cellular attachment often causes the death of
the cell [14]. Therefore, for surface chemical and structure of
scrub materials, cell viability and function are of major impor-
tance. Three strategies—chemical alteration, change to phys-
ics, and surface coating—enhance the adhesion of cells on
biomaterial and scaffold surfaces; some of the 3D porous scaf-
fold strategies for tissue engineering purposes are represented
in Table 1. The aim is to support scaffold and biomaterial cell
growth and cell activity. This leads to the next stage when cells
are inserted into the yards. The seeding grounds of the
required cells conventionally include strategies for adding cells
to scaffolds [15]. The primary cells perform the specialised
function of the organ and the supporting cells, which secrete
the supporting matrix, vasculature, and structural frame, dur-
ing complex organ formation. Primary cells of diverse geno-
types and phenotypes may be injected in order to distinguish
these organisations or pluripotent cells among the required
cell lines [16].

Several ways for manufacturing scaffolds exist. The
manufacturing procedure is the next step to turn the biomate-
rials into fabrics. These manufacturing techniques are physical
and chemical processes performedwith the use of biomaterials
for tissue engineering. Not all biomaterials are appropriate for
a particular type of manufacture [17]. Biomaterials are there-
fore constantly updated to be used for every manufacturing
procedure. Conventional production procedures include elec-
trospinning, separating phases, drying freezes, autonomous
assemblies, casting of solvents, textile technologies, injections
of material, and additives. An ionic polymer solution is
expelled via a fine aperture through a high voltage potential
in the electrospinning process. Because of the potential differ-
ence, the solvent is sprayed in fine fibers as the solvent sprays
and leaves a polymeric fragmentation [18]. Although this
approach may use a wide variety of polymers, it still remains
a constraint to produce scaffolds with complicated geometries
and architectures. The use of a phase separation procedure can
produce very porous and sophisticated three-dimensional
scaffolds. A solution with distinct solvent systems is employed
in this method of scaffold production [19]. One of the phases
is separated with or without thermal solvents, leaving only the
polymer solutions that you want. In the scaffold production
method, it allows for the porosity of forged products but is
restricted by the polymers and their incapacity to produce
forged products with high resolution [20]. 3D printing com-
prises Fused Deposition Modeling (FDM), Laser Beam Melt-
ing (LBM), Selective Laser Sintering (SLS), Digital Laser
Printing (DLP), PolyJet, Electron Beam Melting (EBM), and
inkjet printing. Regardless of the 3D printing technique, all
additives employ a common layer-by-layer design approach
until the entire product is constructed. This means that a 3D
structure is constructed by the continuous addition of 2D
material layers. Additive production was first utilised to create
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prototypes which were then adapted from many industries in
mechanical and industrial applications [21]. This manufactur-
ing approach has many advantages, including the capabilities
to produce complex geometries, a large range of biomaterials,
and various materials. Researchers have created new ideas and
methods for the formation of tissues with multiple cell lines
and organs using biodegradable polymers and cells [22].

3. Biopolymers and Types

Natural polymers are considered as polymers derived from liv-
ing or biological resources, including plant, animal, or micro-
organisms and biological systems. Carbohydrate is also known
as biopolymers (arabinoxylan, chitosan and starch, proteins
such as gelatin and keratin, and polyhydroxyalkanoates
(PHAs), poly(3-hydroxybutyrate) [P(3HB)]). In order to
improve structural and functional qualities in the resulting
composites, the synthesis of biopolymer composites is
employed one by one or more biopolymers [30]. The compo-
sition of a biopolymer affects its functionality, while functional
potential mostly depends on the behaviour of amorphous or
crystalline components. Cellulose, for instance, is a structural
polymer that has its crystalline shape. Chitosan is a famous
component of the polysaccharide carbohydrate family. Biosus-
tainability, biodegradability, and compatibility have been
called for in the various industries [31]. It can readily be man-
ufactured from marine sources (lobsters, crabs, and shrimps)
and utilised for various biopolymer composites. Many con-
cerns need to be considered before broad usage of biosustain-
able polymer are achievable, such as technical and production
problems. Their functional features appear negative compared
to established petroleum-based polymers and a fundamental
hurdle to the wider application of biopolymer in numerous
areas [32, 33]. For example, the performance of a component
of biopolymers with single bonds is less than that of plastic

materials as it results in a poorer mechanical characteristic.
These shortcomings can be addressed in numerous methods
including greasing, mixing, combining, and strengthening
with other suitable ceramics and polymers [34]. Polymers
come from a variety of sources including commonly manufac-
tured polystyrene and natural biopolymers such as cellulose,
protein, and microbial polyesters that are vital for a biological
system structure and function [35]. The three basic forms may
be categorised as biopolymers or biobased polymer compos-
ites, which depend on their source.

(1) Polymers such as starch, cellulose, arabinoxylan, and
keratin are extracted or separated from biomass

(2) Polymers created from ordinary chemical processing
by means of renewable biopolymer are formed
through fermentation of carbohydrate by monomers
such as polylactic acid (PLA) and cellulose acetate
(CA)

(3) Polymers are obtained mostly from PHAs, although
the creation of bacterial cellulose from digestion of
microbial organisms. Biocomposite is used for the
creation of materials formed from natural or bioder-
ived polymers, like chitosan, arabinoxylane, PHAs,
or PLA [36, 37]

The green composites comprising biopolymer-natural
components and degradable inorganic filler are known as effi-
cient and sustainable biocomposites. They are the topic of atten-
tion because of environmental problems and laws [39].
Biopolymers are quite strong, natural resource-derived mole-
cules. These products are biodegradable, easily recyclable,
sustainable in trade and environment and are labelled as biosus-
tainable products [40]. Inmultiple possiblemedical applications
and in other applications, chemically altered biopolymers, e.g.,
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Figure 1: Schematic representation of 3D printing [10].
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thiolated arabinoxylan and cellulose acetate, have been used as
shown in Figure 2. Environmental factors and microbial break-
down contribute to a conducive setting for their degradation.
Biodegradable biopolymer composites are known as “green
organic composites.” A number of in-organic fillers, including
titanium, silica, and alumina, are characteristic for many green
bio compounds. A number of viable and environmentally ben-
eficial articles have already been offered with synthetic oil on the
market by bioplastic advances [41].

4. Properties of Biomaterials Appropriate for
3D Printing

The principle of bioprinting consists in impressing the bioma-
terial using a liquid layer procedure till it is entirely produced,
immediately following the biomaterial exit of the cranium in
a fluid condition; the biomaterial becomes shaped. This trans-
formation process from sol to gel or phase is the key to the
bioprinting of biomaterials [42]. Themost commonly used bio-
materials are polymers and composites, since theymay be poly-
merized with different ways to make them “3D-printable.”
Rheological characteristics and the cross-linking procedure
are crucial factors which make biomaterials acceptable for 3D
printing methods. Again, the criteria of bio inkjet printing are

distinct from those of extrusion-based bioprinting, depending
on the method of bioprinting, whose qualities differ [43].
Furthermore, appropriate printing qualities are dependent on
the type of the elements of the polymer biomaterial concerned.
The creation of innovative polymers or hydrogel bioprinting
systems should include rheological features such as viscosity,
non-Newtonian, Barus effect, and cross-linkage. Non-
Newtonian systems have a low fluid dilution viscosity and are
time-dependent on shear pressure [44]. Polymers are shown
to have higher viscosity and tend to clog the press nozzle during
3D printing and shear-thickening fluids. Polymers are thrown
by dust out of the printed head during the printing process
and expanded following expulsion [45]. This phenomenon is
known as the effect of Barus. Ideal bioinks should have slight
or no Barus effect to reserve 3D-printed object purpose.
Figure 3 displays various additive manufacturing (AM) acel-
lular approaches for biomaterials categorised in accordance
with American Society for Testing and Materials (ASTM)
recommendations.

5. Polymers Fabricated by 3D
Printing Technology

5.1. Natural Biomaterial. Promising options have been investi-
gated using tissue engineering procedures while searching for

Polymeric
composites

Biopolymers

Fillers

Drug
delivery

Advanced
biomaterial

Wound
healing

Skin tissue
engineering

Bone tissue
engineering

Figure 2: Potential applications of biopolymers in different aspects [38].

Additive manufacturing of biomaterials
acellular techniques ( ASTM guidelines )

Binder
jetting

Binder
jetting

Direct energy
deposition

Materials extrusion
and jetting

Powder bed
fusion

Vat
polymerization

LENSTM FDM, rebocasting
inkjet 3D printing SLS SLA

DLP

Figure 3: Acellular techniques for biomaterial additive manufacturing [46].
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alternatives to traditional therapeutic strategies for repairing or
replacing lost or dysfunctional human tissue and organ.
Biomaterial-based scaffolds were beneficial for this search
[47]. Gelatine, the principal hydrolyzed collagen ingredient,
has spontaneously come into being in the extracellular matrix
(ECM) and has the ability to suspend gel cells at low tempera-
tures. Research studying the use of natural starch polymers
with water-based binders in 3D direct printing has shown pos-
itive results, and the essential biodegradables can bemixed with
the necessary mechanical qualities by synthetic polymers [48].
Polymers based on starches provide for extended time of break-
down and subsequently higher porosity with increased cellular
integration which is ideal for the engineering of bone tissues
[49]. For the Three-Dimensional Printing (3DP) method, a
unique blend of polymer-based starch granules was produced
(cornstarch, dextran, and gelatin). Scanned Electron Micros-
copy (SEM), Differential Scan Calorimetry (DSC), porosity
evaluation, and compression testing tested the quality of the
scaffolds [50, 51]. Analysis and testing have shown that new
3DP material combinations can build 3D pore scaffolding. In
polymers for medication supply management, composites of
starch and cellulose have demonstrated biocompatibility [52].
The density measures and mechanical tests demonstrate that,
due to the small sintered level and the limit of joints, the
mechanical qualities of the specimens built of bigger particles
were less and that the enclosed pores were higher and more
covered with small sizes of particles [53]. The results showed
that biopolymer scaffolds could be produced by a process opti-
misation using starch and cellulose acetate to modulate laser
power and scanning speed. The results are demonstrated. Spec-
imens made of small particle size have adequate mechanical
characteristics and porosities in the design and manufacture
of tissue and drug delivery scaffolds with potential utility [54].
The application of 3D printing in tissue technique has permit-
ted the production of tissue-analogous structures using innova-
tive technologies for the printing of cells and matrix materials.
The use of 3D printing to manufacture cell charging construc-
tions has been shown to locate cells as intended and to have a
high cell viability of the constructions manufactured [55, 56].

5.2. Ceramic Scaffolds. Ceramics are a sort of biomaterial, com-
prising calcium and phosphate, which comprises inorganic
salts. Because of their osteoconductive and osteoinductivity,
these biomaterials have significant potential for bone and den-
tal TE. The inorganic composition of the bone tissue imitates
calcium and phosphate salt [57]. These biomaterials stimulate
the creation of new bones and are hence known as osteocon-
ductants. Few compounds can cause a cell difference to the
osteoblast linage without applying growth factors that are
hence known as osteoinductive [58]. Ceramic and polymer-
based biomaterials are classified as composites. Chitosan,
Poly-Lactide-Glycolic Acid (PLGA), and Polyethylene-Glycol
Diacrylate (PEGDA) are the common polymers added. Mate-
rials such as zirconium oxide, graphene, silica, and bioglass
were added to the composition of the skin in order to build
composites with mechanical properties that are bone-like
[59]. Many researchers created porous materials in 3D in order
to enhance vascularization in the scaffolds. Many 3D-printed
ceramics will eventually be exposed to sintering and freezing

techniques in order to improve mechanical characteristics
and cytocompatibility [60]. The compressive strength was
proven to consist of 3D-printed scaffolds employing stron-
tium, hardystonite, gahnite, hydroxypropyl methylcellulose
(HPMC), and sodium polyacrylate equal to 110MPa bone,
with 34% porous scaffolds. Because of the high mechanical
qualities and the capacity to stimulate vascularization, the
bone tissue engineering has a very great potential [61, 62].
3D printing enables you to produce patient-specific grafts that
fit the patient’s needs with regard to histocompatibility, graft
size, and bone development rates.

5.3. Synthetic Biopolymers. Bone is one of the most thor-
oughly studied of various tissues being actively investigated,
because of its vital activities in daily living. The defective
portion often must be removed by the surgery if the bone
has disease or injuries. But regeneration is limited to a few
millimetres away from the healthy bone [63]. The regenera-
tion is only possible. Afterwards, the excised part of the bone
is replaced by a graft, to restore its functionality. The most
commonly used polymer for 3D porous scaffolds is Polyca-
prolactone (PCL), which is hydrophobically caused to limit
cell-skin interactions, despite its strong biocompatibility
and processability [64]. PCL is also semicrystalline, resulting
in very lengthy degradation kinetic conditions, which is con-
sidered as soft and hard tissue compatible bioresorbable
material, coupled with its hydrophobicity and its poor water
absorption capacity. In the ranges 40%–85%–2,74%–55,
95MPa and 1,17–5,03MPa, the porosity, compressive steep-
ness, and yield strength of the scaffolds varied. This range of
rigidity closely fits the ringing bone in the maxillary region.
In addition, as is apparent from the results of cytotoxicity
testing, the selected manufacturing method for PCL scaffolds
has proved practicable [65, 66]. In addition to PCL, some
additional polymers are employed for tissue engineering in
3D printing. Poly(3-hydroxybutyrate) (PHB) is a natural,
in-balanced growth-related, thermoplastic polyester that
has garnered attention in biomedical fields, such as tissue
engineering scaffold fabrication because of its biocompatibil-
ity and biodegradability [67]. Unlike conventional proce-
dures, PHB may be processed by 3D printing without the
need of chemicals such as plasticizers. A functional polyester
with PCL-based aliphatic Phenylmagnesium Chloride
(PhMgCl) has considerably greater hydrophilicity due to
their backbone hydroxymethylglycolide-co-ε-caprolactone
groups, which has recently been developed, leading to a sig-
nificant increase in the adhesion, proliferation, and differen-
tiation between human mesenchymal stem cells and PCL
[68]. The PCL-based polyester was also developed. In order
to test in vivo biodegradation and biocompatibility of 3-
dimensional PhMgCl scaffoldings, 3D plasters utilising this
polymer have been created via fiber filtering, increasing
hydrophilicity, higher rates of degradation, and an enhanced
interface between the cell material and the PCL (melt plot-
ting). A normal external body response was seen in PhMgCl
scaffolds to both types of scaffolds characterised by the pres-
ence of macrophages, lymphocytes, and fibrosis [69, 70]. The
degree of interactions of tissue scaffolds and of vasculariza-
tion in PhMgCl scaffolds was demonstrated to be higher
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than that of PCL. Therefore, a potential biomass for bone
and cartilage tissue engineering is the rapid and degradable
PhMgCl that has shown good biocompatibility [71].

5.4. Synthetic Biopolymer-Based Composites. As the main scaf-
folding materials in the preparation of multimaterials, two
photocross-linkable hydrogel biopolymers Poly-(Ethylene
Glycol) (PEG-DMA, MW 1000) and poly-(PEG-DA, MW
3400) have been employed. In distinct zones of the scaffold,
multimaterial scaffolds were created using a tilt of regulating
concentrations, including fluorescent, fluorescent, bioactive
PEG marking, or bioactive PEG [72]. Fluorescence micros-
copy was used for the presence of the fluorescent component
in particular parts of the skull, and selective bioactivity micros-
copy was used to illustrate cell localization with the help of the
PEG bioactive pattern in the sections. Successfully demon-
strated multimaterial spatial control. Moreover, after SLS
manufacture, the balance swelling behaviour of these two bio-
polymers was established and used to build constructions in a
swollen state with the given dimensions [73]. Multimaterial SL
is used, and different bioactive ligands or growth factors are
relatively easy to conjugate to PEG to manufacture custom
three-dimensional constructions with a specific bioactivity
that can be controlled by a space [74]. Most of the present pro-
cedures use water-insoluble images incompatible with live cell
manufacturing and ultraviolet (UV) radiation that harms cel-
lular DNA. Several researches show the use of water-soluble
dimethacrylate poly(ethyleneglycol) (PEG-DMA) to produce
stereolithographic structured, cell-containing hydrogels. The
cell viability and activity of the scaffolds with their porous
internal architecture was greater than that of solid scaffolds,
perhaps because of the increased exchange of oxygen and
nutrients inside the scaffolds [75, 76]. A well-defined pore net-
work, a limited pore dispersion, and significant pore intercon-
nection characterised the porous hydrogel structures. Cell
compatibility of the resin with the building structures. Human
mesenchymal stem cells are attached to the surfaces of the
hydrogel structures, and after seeding, they exhibited their
propagating form. After five days of cultivation, cell growth
was found [77]. In tissue engineering, medications, cell trans-
plants, and other biomedical applications, these hydrogel
structures can therefore be used [78].

Compared to materials such as PCL and PLA that offer a
better native biocompatibility, Acrylonitrile Butadiene Styrene
(ABS) is not extensively employed in medical devices. Biolog-
ical applications demand protein and other biomolecular
adhesion components during flow reduction [79]. The chem-
ical modification of the ABS surface to the engineering hydro-
philicity and biocompatibility is therefore very important.
Surface changes have proven to be an excellent technique for
increasing material biocompatibility for many years now, in
particular through the grafting of PEG [80]. Amethod for pro-
ducing watertight microfluidic equipment with chemical dis-
solution via acetone has proved to impair water movement
between layers of a porous FDM ABS device, while keeping
the structural fidelity of printed microstructures to 250μm.
The photographic grafting of PEG groups will next present a
way to building a stable, biocompatible ABS surface that will
improve the biocompatibility of ABS by reducing the biocom-

patibility of biofluidity [81, 82]. Surface and protein-adhesive
studies have shown that this modified ABS is a versatile mate-
rial to be used to model fusion deposition for the forming of
micro-fluid-resistant biofuel channels that expand the range
of potential applications in ABS-based FDM microscopic
and laboratory on a chip application [83]. Compounds of
polymers and inorganic bioactivematerials are currently being
developed to increase mechanical stabilisation of scaffolds and
enhance the interaction of the tissue [84]. Combination of bio-
degradable polymers and ceramics such as hydroxyapatite
(HA) and tricalcium phosphate (TCP) created third-party
composition scaffoldings. The development of biomaterials
in the nanosized osteoconductive Calcium Phosphates (Ca
Ps) including HA, tricalcium phosphate, and substituted HA
and TCP was recognised as being small in size, high surface-
to-volume relationship, and biomechanical similarities with
natural bone structure combined with bone structures such
as collagen, poly(L-lactide) (PLLA), and chitosan [85, 86].

Hydroxyapatite (Ca10(PO4)6(OH)2), the chemical resem-
blance with calcium phosphate mineral present in biological
hard tissues, has received a lot of interest. HA is used for a
range of biological applications such as a controlled medica-
tion release matrix and a bone tissue transporter material
[87]. Recently, the advantage of nanosized hydroxyapatite
(nHA) compared with typical microsizes has been empha-
sised. NHA can operate as a carrier of therapeutic agents to
enable the extracellular or intracellular regulated release of
drugs, and, at the same time, it is highly absorbent into the
body for hard tissue regeneration [88]. The bone tissue engi-
neering application has been of major interest to PCL/HA
composites. The use of PCL and HA biocomposite materials
to manufacture tissue scaffolds via SLS technology. Experi-
ments with cell culture have shown that Saos-2 cells can live
on the manufactured fabric and proliferate. The results reveal
that PCL/HA biocomposites have the advantage of being
tissue engineering bodies produced by SLS. In addition to pure
PCL, the mechanical features of the PCL-HA composites were
improving. They also show that the mechanical properties of
these boots can be anticipated with great precision before pro-
duction [89, 90]. The ability to adjust the material properties
and the anatomical form of fabric-engineered constructions
for patient and site recovery strategies is an extension of
mechanical features of composite materials at any loading of
fillers combined with a direct production method and a com-
plicated anatomical component production process [91, 92].
In combination with the natural manufacturing process to
fabricate the sophisticated anti-anatomical protein techniques
of the composite materials at all loads of fillers. It can adapt
material properties and building designs for both patients
and site rehabilitation plans [93].

The cell interactions of polymer engineering tissue scaf-
folds are known to benefit from bioactive glass. The best
response will probably be obtained if the glass has no cover
on the surface of the scaffold [94]. The recent creation of a
3D fiber draws technology to produce perfusable glass grills,
which are similar to patterned vascular systems and are cov-
ered with a thin layer of poly-(d-lactideco-glycolide). The very
porous and surface scaffolds were used to distribute bioactive
glass homogenously. The presence on the surface of composite
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scaffolds of calcium phosphate deposits in vitro bioactivity
[95]. The metabolism of fibroblast was boosted by bioactive
glass. Investigations have shown that SLS technology allows
for the production of well-defined composites, where bioactive
glass is equally scattered on the surface and readily available
for quick cell and ion release. An undesirable polymer layer
covering BG particles can be prevented by Stereolithography
(SLA) on the surface of the skin [96]. The study revealed that
the bioactive and biodegradable cell support of regenerative
medicine photocross-linked composite and PCL scaffolds
produced by SLA technology has a high potential [97].

5.5. Peptide-Based Biopolymers. A new class of biomaterials
known by the outstanding chemical, physical, and biological
properties of the peptide-based biopolymers is produced;
protein engineering and macromolecular assembly con-
verged to enable peptide-based biomaterial to expand [98,
99]. Prototype examples include poly-amino acids, leucine
zip-based peptides, peptide amphiphiles, ionic oligopeptides
in beta-sheet and peptides in beta-hairpin, and prototype
peptide-based biomaterials; poly-amino acids, polypeptides,
silk proteins; and coiled-coil domains. Biopolymers can also
readily be functioned to strengthen cell connections and cre-
ate an appropriate platform for cellular activities and func-
tional tissues [100, 101]. This section examines two major
classes of technical biopolymers based on peptides: the auto-
assembly of polypeptides; the formation of gels by means of
environmental stimuli and polypeptides. The application of
in situ gelation chemically cross-linking elastin-like protein
(ELP) hydrogels was impaired by low water soluble, toxicity
problems, absence of biocompatible cross-linking reactant
and product reactants, and delayed gelation kinetics [102].
While peptide biomaterials have become ever more essential
materials in regenerative treatments, their use is restricted by
the short lifetime and thermal instability. Many of these
constraints can be overcome using new technology, and the
usage of peptide-based biomaterials can therefore be further
extended to applications for which it is presently impossible
[103, 104].

5.6. Polymer Scaffolds. Polymers are often used in 3D printing
biomaterials. The use of polymers in the manufacture of addi-
tives is extended to various tissues, including the most trans-
planted organs liver, kidney, and heart tissue. Biodegradable
and nondegradable polymers can be used for 3D printing;
however, the advantages of biodegradable polymers are
greater and are therefore extensively used [105]. Biodegrad-
able polymers are usually categorised as natural or synthetic
based on their origin. In recent times, numerous synthetic
polymers have been produced with programmable degrada-
tion rates. The degradation rate is vital because it needs to
match the pace of the new tissue synthesis [106]. The scaffold
design also incorporates natural and synthetic polymers in
combination. In one or two physical stages, whether solid or
fluid polymers often occur in bioprinting. Solid polymers are
mainly utilised in FDM printers, while liquid polymers are
used in extrusion and inkjet printers [107]. Liquid polymers
are solutions of solvent systems which can be polymerized or
interconnected with monomers or oligomers. Hydrogels are

a polymer type that holds water and hence imitates the natural
tissue environment. They are used to cell encapsulation, med-
ication delivery systems and packs in a number of applications
[108]. Vascularized tissues with tremendous promise in organ
manufacturing were imprinted 3D using hydrogen and cell
combinations. In efforts to build scaffolds for specific tissues,
a variety of 3D printing methods were utilised. Modeling
deposition fused provides an economical way of building up
scaffolds that use widely available biodegradable polymer fila-
ments with regulated porosity and architecture [109, 110].
However, thermal deterioration and spatial resolution are the
limitations of FDM printers. For extrusion-based printing, the
suspension, solution, or emulsion is supplied with a pneumatic,
piston, or screw-driven system to produce pressure [111], given
the varying viscosity of many hydrogels; pressure-oriented
extrusion methods are effective.

6. Applications of Biopolymer Materials in
Biomedical Fields

6.1. Drug Delivery. The revolutionary potential as carriers for
the provision of genes, biomolecules, or biological agents has
been displayed by polysaccharide-based composites, including
arabinoxylan, xanthan gum, and chitosan [112]. These are
employed as medicine carriers with excellent bioactivity, low
cytotoxicity, nonantigens, processability, reversible loading,
and release mechanisms for cartilage repairs and vascular
grafts. They are used for treating cancer. Other assets that
improve your medication delivery application are emulsifica-
tion, gel formation, foaming, and moisture absorption [113].
These polymeric materials have also been acknowledged as
excellent controlled drug delivery systems because of their
unique mechanical and cross-link features, suitable biodegra-
dation in various environments and at specific areas [114].
Such biomaterials can be directly synthesised or included into
engineering particular and specific places of resultant nano-
carriers with multifunctional features. Some biomaterial kinds
have been employed efficiently as hydrogels, movies, tubes,
microspheres, and microneedles and based on chitosan, guar
gum, and arabinoxylan.

Controlled drug delivery tries to steadily give treatments at
the desired spot, usually in the blood, and to maintain an
efficient therapeutic window [115, 116]. The results are cost-
effective and desirable, reducing or eliminating unpleasant side
effects, complications in the dose, and increasing patient recov-
ery and comfort. It is claimed that regulated breakdown and
sustainable release following accumulating at the target site
are the most wanted pharmacological properties of biomaterial
systems [117]. This controlled release of implanted medicines
or other therapeutic substances can be primarily controlled
using triggers like temperature, pH, and ion concentration. In
order tomanage the release of therapeutic usage, the aimed sys-
tem of drug supply must typically activate the cellular areas
[118]. Therefore, to optimise the synthesis or functioning of
precursors, composition conditions of manufacture, and drug
encapsulation technique, a tailored drug delivery approach
must fit into the required release kinetics [119]. The medicine
or other nutrient should be delivered at a controlled rate and
dosage by ensuring that all factors such as size, shape, surface
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morphology, bioavailability, and biodegradability are suitable
and particular to the intended spot. The biomimetic polymer
nanoparticles were made in various sizes, and the therapeutic
ingredients were loaded effectively. Such accurate nanodrug
carriers assisted to imagine inflammatory regions in molecular
form and resolved possible inflammations and immune
responses [120]. Figure 4 shows various types of carriers to
control drug release mechanisms.

6.2. Tissue Engineering (TE). Tissue engineering involves the
treatment or regeneration of faulty tissue through biomaterial
scaffolds. It requires polymer composites with the requisite
composition, desired technical qualities, and adequate physi-
cochemical behaviour in order to promote the formation of
biological tissue. It has expanded in depth and importance as
an advanced discipline of its own, having been classified as a
biomaterial subsection [122]. As tissue technology deals with
different applications, the result is usually related to applica-
tions which substitute, repair, or rebuild part or complete tis-
sues (bone, cartilage, blood vessels, bladder, skin, and muscle).
The tissues implicated are typically responsible for the appro-
priate functioning of particular architecture, morphology, and
mechanics [123]. Tissue engineering phrase also is employed
in the artificially produced protection and support system to
combine complex biochemical pathways via cells (skin, hip
replacement). Capable technology for 3D bone scaffolding is
bone tissue engineering (BTE) that contains living cells and
bioactive chemicals. BTE focuses on the perception of the skel-
etal structure as the bone dynamics increase the clinical ability
to address unsettling skeletal and segmental anomalies [124,
125]. In other circumstances, contemporary technology and
advancement of bone biochemistry are important to efficiently
grow or rebuild bone tissue. Bone can be used for a wide range
of multifunction, leading to physiological and endocrine stim-
ulation [126].

The bone endures a continual resorption and repair pro-
cess which takes place due to internal intermediates and
external mechanical standards, exchanges of chemicals, and
structural remodeling [127]. Bone had been named the
greatest intelligent material historically and most precisely
due to its limited regenerative flexibility. The freshly cured
bone with adjacent host bone and, most importantly, the
native bone functions include bone fusion [128, 129]. Func-
tional bone tissue engineering adds to functional and archi-
tectural diversity; the bone is an exceedingly complex tissue.
Particularly, the Extracellular Bone Matrix is made from a
nonmineralized organic matrix as well as an inorganic min-
eralized component [130]. For nanocomposite construction,
the compressive strength and resistance of the thigh-bone
fractures and the load-bearing applications are important
[131]. Suitable compounds for extracellular matrixes or
sticky ligands which enable stem cells and regenerate bone
tissue might be applied so quickly in different procedures
of engineering [132, 133]. Bone tissue engineering should
focus on producing scaffolds of angiogenesis, combining
growth stimuli and the porosity structure necessary for
vascular growth [134, 135]. The processing of these scaffolds
with micro- and nanometre-surface geomorphology is indis-
pensable to cell bond, propagation, and discrepancy as
shown in Figure 5.

However, bone tissue engineering is regarded as an alterna-
tive in situations when donor availability is restricted, or where
there is a risk of disease transmission, donor site difficulties, or
even limitations of external materials to reshape and respond to
physiological conditions. This is true whether the scaffold is
acellular or seeded with stem cells, which can directly develop
into bone cells, to replace a broken portion of bone. The scaf-
fold’s composition and structure are critical. Bone tissue engi-
neering’s primary goal is to create scaffolds that not only act
as a scaffolding for the implantation of cells but also send
regenerative signals to cells to accelerate bone healing and
repair. Structural bone scaffolds are 3D architectures and envi-
ronments that are designed to (1) promote cell adhesion and
survival, (2) accelerate bone remodeling and remodeling, (3)
provide osteoconductive structural guidance, and (4) in some
cases, act as carriers for growth factors, antibiotics, or gene
therapy. The epidermis which works as an anti-illness shield
is the most waterproof layer and plays a significant role in
bodily temperature and humidity regulation. More than 90
percent of epidermal cells are keratinocytes [137]. Langerhans,
melanocytes, and Merkel cells dominate the bulk of epidermal
cell populations. The dermis and skin base are around 90
percent of the skin’s weight. It is an extracellular matrix of soft
tissues consisting of a variety of cells, lenses, and hair follicles.
The dermis has a strong vascularization, and the nerve ends
with a blood vessel [138]. Fibroblast is the largest dermal cell
containing collagen and elastin and giving mechanical strength
to the skin. A more deeply elastic, mucous tissue-cell skin that
store fat, blood vessels, and nerve is present in the pulmonary
hypoderm. Traumas such as physical penetration, venom, fire,
illness, and operation are the major reason and contribute to
the chance that important organs are infected, injured, or dehy-
drated by this disease [139]. Skin replacement technology offers
a potential foundation for better care for combating chronic
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Figure 4: Mechanisms for controlled drug release using diverse
types of carriers [121].
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and acute skin damage. However, given the mechanical and
physiological aspects of active skin, cellular basis technology
and simulated extracellular matrix are required for skin tissue
engineering to connect with the surrounding tissue [140,
141]. No substantial skin prototype is currently available to
accurately replicate the natural skin structure, composition,
organic consistency, or visual environment. Alternatives of
the skin might have crucial, easy-to-use, and wound-specific
characteristics [142].

These biomaterials are sufficiently water-sensitive and
have specific affinity to host places. Their biochemical and
mechanical qualities are sufficient, their privation is con-
trolled, their disinfection is nontoxic and nonantigenic, and
their inflammation is minor [143]. They can also join the con-
gregation at low operational cost with minimum injury and
suffering of angiogenesis. The ultimate objective of tissue tech-
nology is to achieve the maximum of these needs to prepare
intelligent skin substitutes [144]. In addition, the new skin
electronic properties or aesthetic structure do not restore poly-

meric composite materials. In order to extend skin growth to
provide the typical usefulness and beauty of healthy skin, the
changes in stem cell biology and skin morphogenesis are nec-
essary [145]. Some of the biopolymeric materials and their fea-
tures are represented in Table 2.

6.3. Wound Healing. Wounds are a form of uneven skin
punching, breakdown, or skin deformation owing to a chronic
or thermal trauma. Injuries can be classed as chronic or acute
injuries depending on the healing procedure. Chronic injury is
predominantly tissue lesions, usually within 8 to 12 weeks,
which appear to have totally resolved [156]. Acute injuries
continue to occur and are still more than 12 weeks of recuper-
ation. Various neurological factors can lead to wound-healing
impairments or the failure to correctly heal. Chronic injury
examples are bedsores and leg ulcers. As the basis for the
wound gradation, skin layers and polluted areas are used and
only the epidermal skin surface is involved with surface
wounds [157, 158]. The word partial thickness injury is
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Figure 5: Representation of multidisciplinary fields used in the 3D printing technique for TE applications [136].

Table 2: Biopolymeric materials in tissue engineering and wound healing [146–155].

Biomedical field
S.
No.

Polymeric material Prominent characteristics

Tissue engineering

1 Chitosan Recyclable, biocompatible, uncontaminated

2 Gelatin Bioactive, biocompatible, hemocompatible, cell adherence

3 Arabinoxylan Biocompatible, uncontaminated, cell observance, bioactive, cell explosion

4 Collagen Biodegradable, fibrous, biodegradable, cell proliferation

5 Xyloglucan Cell explosion, environmental, cell discrepancy, biocompatible

6 Fibrinogen Biocompatible, hemocompatibility, cell propagation, decomposable

Wound healing

7
Arabinoxylan/guar gum/gelatin/

collagen
Antiseptic, biocompatible, decomposable, bioactive, continuous drug

release, cell propagation

8 Chitosan Biocompatible, antibacterial, cell proliferation, bioactive

9
Alginate/fibrinogen/hyaluronic acid/

xyloglucan
Fiber protein, biocompatible, recyclable, rubbery, sterile, cell obedience

10 Bacterial cellulose/pectin
Antibacterial, cell adherence, cell differentiation, biocompatible,

bioactive, cytocompatible
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defined as injury involving the epidermis, deep epidermis, mus-
cles, soft tissue, and follicular tissues. The wounds are combined
with subcutaneous fat or deep tissues besides the epidermis and
the skin surface [159]. The physiological wound repair is part of
coordinated teamwork among various biological systems. The
wound is entirely treated in a cascade with controlled opera-
tions. Hysteresis and coagulation of your blood start with
lesions, mainly in order to avoid first sight exsanguinations, tak-
ing place in every area of the body [160]. The lesion is also a
long-term secondary target and a matrix for cell adherence. A
carefully managed balance of endothelial cells and thrombo-
cytes relies on the homeostasis and fibrin produced at a site of
the injury [161]. The neurological system of response in dam-
aged veins causes vascularization, which blocks blood flow over
several minutes. The waterfall of coagulation is caused by
homeostatic behaviours and proliferation and differentiation
[162]. Platelets bond when blood spills, causing a release of
the coagulation factor: fibronectin, fibrin, vitronectin, and
thrombospondin. Coagulation retains homosexuality and a cell
migration matrix in homosexual and inflammatory treatments
[163, 164]. Many biopolymers are routinely used in wound care
and treatment, including fibrous proteins and different polysac-
charides. These biocompatible, biodegradable polymer matrices
preserve an atmosphere similar to the extracellular environ-
ment. The process of sluggish wound treatment is accelerated
[165]. For cell adhesion, proliferation, migration, and differenti-
ation, the biopolymeric matrix provides an ideal microenviron-
ment Using biopolymer-based wound care materials, three-
dimensional cross-linked polymeric networks can keep the
wound wet and oxygenated. As a result of the use of wound
healing dressings, the wound is regenerated, prevented, and
protected from disease-causing bacteria. Dermal and epidermal
tissue healing and regeneration rely on it. This wound healing
material is identified as hydrogels that can be packed for local-
ised therapeutic delivery with spatially and temporally con-
trolled cells, medications, and peptides. Hydrogels have been
utilised for biomedical and therapeutic applications, such as tis-
sue engineering, regenerative medicine, cancer treatment and
infectious diseases, controlled drug delivery, and peptide deliv-
ery [166]. Hydrogels adhere to the application site shape to pro-
vide for considerablymore therapeutically practical formulation
of loaded hydrogels in biomedical applications.While hydrogels
are believed to be exceptionally biocompatible with poly(ethyle-
neglycol) (PEG), hydrogels based on PEG, hydrogels used on
are considered extremely biocompatible. High systemic bio-
compatibility of PEG and utilisation of biomaterials generated
from ECM increase the distribution of cell growth [167]. As a
result, the multifunctional wound-care material PEG-based
cross-linking hydrogels with good loading components, such
as cells, medicines, and peptides, are being developed [168].

6.4. Bioprinting. Bioprinting includes production of AMs in
complex and functioning living tissues, utilising biocompat-
ible cells, supported components and materials. In regenera-
tive medicine, biopharmaceutical products are generally
used to support tissue and organ transplant, especially the
development of hydrogel [169]. Many forms of bioprinting
are available, including inkjet printing and AM-based extru-
sion. One study generated 3D cell architectures through

neural cell sheets employing an alternative human pluripo-
tent embryonal carcinoma (NT-2) cells and fibrin gel inkjet
printing approach [170]. The Vascular Endothelial Growth
Factor (VEGF) presence in 3D-bioprinted scaffolds that
incorporates alginate into one of their matrix mixes pro-
motes vascularization in gelatine microparticles.

The hydrogels developed containing hyaluronic acid and
semi-interpenetrating systems with a dextran basis [171].
The use of neural stem cells to produce artificial neural tissue
was organically printed with collagen and VEGF-releasing
fibrin gel. Hyaluronic acid-based scaffolds were created
through layer-by-layer deposition through bioprinting [7].
In order to print bespoke steaks with cell inclusion, many
such techniques have integrated other conjoined natural
polymers such as dextrin and gelatin. This has led to the
development of sophisticated materials with biological activ-
ity by adding growth factors such as Bone Morphogenetic
Proteins (BMP-2) by use of microfabrication technologies
[172]. Many of the bioprinting approaches mentioned could
be adjusted and optimised with or without cell utilisation for
bone tissue engineering. The survivability of cells in situ fol-
lowing the printing method is part of many issues related to
cell printing [173]. New methods used for obtaining 3D cell-
charged structures with proper mechanical and biological
properties have been applied with collagen-based bioinks
[174]. The 3D printing techniques for polymers are shown
in Figure 6.

6.5. Advanced Functional Biomaterials. In order to design and
synthesise multifunctional polymer material, a better under-
standing of the sequence, structural, and functional features
of natural polymers plays an essential role. These innovative
artificial biomaterials are self-assembled and stimulated to
encourage cell contact and growth under particular conditions
[176, 177]. The complexity of posttranscriptional changes has
limited sophisticated and multifunctional biomaterial protein
synthesis that utilises bacterial resources and the conundrum
of target genes [178]. Other changes have been intended to
properly control spatial and temporal releases. The develop-
ment of the structure and de novo design for protein-based
biomaterials has beenmade easier by progression in gene ther-
apy and manipulation approaches [179]. Due to the existence
of multifunctional domains on the protein structure, the struc-
ture of produced biomaterials is linked to significant versatil-
ity, such as cell binding places and enzymatic domains. The
design and production of new biomaterials based on artificial
proteins have been promised recently in genetic engineering.
Compared with its native counterparts, these biomaterials
have a unique performance, such as improving self-assembly
in fiber architectures [180, 181]. The significant necessities
for choosing a bioink for 3D printing in biomaterial character-
istics is shown in Figure 7.

6.6. Materials and Manufacturing Advances and Trends. The
selection of optimum biomaterials will be a vital part of
effective bioprinting of therapeutically relevant tissue. Based
on the availability and knowledge of these materials, numer-
ous polymers were examined during the bioprinting stage
for traditional 3D printing and fabric production [183].
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However, in bioprint applications, materials are not the most
physiologically suitable. Many of these are exceedingly physio-
logically active, leading to improper cell contact and premature
or undesired differentiation of the stem cells [184]. The focus is
currently on new biopolymers and hydrogels, which imitate
better the nanostructural characteristics and reactivity of
ECM and other constituents in the true tissue microenviron-
ment. But those new hydrogels and biopolymers more biocom-
patible are not necessarily appropriate to conventional
methods of bioprinting [185]. Many lack the structural stability
to optimise bioprinting and can collapse if they are too soft. An
interesting field of research is to optimise the microarchitecture
for these biopolymers. Substances are combined with the pro-
liferative and cytocompatible impact of a softer material to
optimise the usefulness of all of them, the mechanical proper-
ties of one single substance [186, 187]. For example, an “inte-
grated tissue organ printer” is utilised to put companies into
the soft hydrogel cell scaffold. Tricalcium phosphates with gel-
atine and hyaluronic acid bioprinting can be successfully com-

bined [188]. In general, the effectiveness of the bioprinting
process has to be enhanced. The existing bioprinting method
is time consuming and currently cannot reliably supply the
number of cells needed for varied tissue types.

As mentioned before, a change in cell shape, changed
signalling pathways, and even cell death is often caused by
imposed force through the printing process [189]. In order
to make more efficient cell death and loss, the huge effort
is involved in each bioprinting project. Improved methods
for monitoring and assessing cell death are part of the solu-
tion. Vascular networks may be the main task in converting
bioprinting into the lab for the production of functional tis-
sues [190]. Tissues of even minimal complexity will not sur-
vive without proper channels for nutrition delivery and
waste removal. In vivo, the diffusion of oxygen is limited
by a vascular network for tissues that are beyond 100-
200mm. Infected tissues will have nutritional restrictions
without a vascular network which result in inadequate devel-
opment of tissue or necrosis [191]. In order to properly
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Figure 6: 3D printing techniques for polymers [175].
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perfect bioprinted tissue, an early enough developmental
network must be established for the prevention of death of
tissue and for the endothelium to be attached and grown.
As a result of the development process, all tasks in normal
development must be played by the vascular structures,
including the maintenance of selective waste and nutrient
barriers, and inflammatory reactions, coagulation, and other
homeostatic processes [192, 193]. Today, problems with bio-
prints are mostly related to restrictions on printing resolu-
tion and speed. Capillaries, for instance, can have a
diameter of about 3mm while a droplet of 20mm is cur-
rently used by the highest-resolution laser-based bioprinters.

Conventional methods or additive manufacturing can be
used to create bone scaffolds. Pore size, shape, distribution,
and interconnectedness of pores are all difficult to manage
using conventional approaches. To add living cells in conven-
tional procedures would be very impossible because of
manufacturing circumstances. If pores are distributed in an
unintendedmanner, it could have a negative impact on cell dis-
tribution and, ultimately, the development of new tissue. Other
organic solvents left behind in the scaffold microstructure can
negatively affect cell survival or function. Due to low-cost items
and simple instrumentation, these techniques are still
employed today [194]. As a result of the absence of hazardous
solvents in AM procedures, the biocompatibility of scaffolds is
much improved as well. If necessary, scaffolds can be con-
structed with two or more materials. Despite the high resolu-
tion of SLA and SLS, their applicability in the manufacture of
bone scaffolds is extremely limited. Photosensitive polymers
required for SLA use in bone tissue have a low biocompatibility.
As a result of the high-intensity laser beam, SLS is not generally
used in bone tissue applications. In spite of its low resolution
and limited material options, FDM solvent-free and ultraclean
procedure is likely to be the greatest technology for incorporat-
ing live cells, which could explain why FDM-created PCL bone
scaffolds have won FDA approval.

Even if printing resolution is increased to such an extent
that a complex capillary network can be produced, time with
the currently available technology is prohibitive [195]. The cell
viability may be impacted if the printing cannot be finalised
fast. In consideration of these issues, several solutions have
been proposed. One of the most promising is attempts to
vascularize in vivo with the addition of angiogenic substances
to biomedical tissue implants, inducing the host vasculature
growth. This method has to be refined, despite encouraging
outcomes [196, 197]. Alternatively, vascular networks of syn-
thetic origin have been attempted. While the bioprinting of
vessels with bigger diameters has been successful, synthetically
created small microvascular grafts with fewer than 5mm show
poor patentability and are now unrealistic [198]. Inappropri-
ately, the basic problem of tissue death prevention and timely
growth of mature, functional vasculature has still to be
overcome [199].

6.7. Challenges and Future Directions. Two types of tissue
engineering difficulties exist: novel bioink research and devel-
opment for specific tissues or universal bioink for all tissues
and the regulatory category. Ideally, a universal bioink must
be a biomaterial mix that promotes survival in the angiogene-

sis and in nerve intercalation of natural tissues, chemical indi-
cators, and growth factors. These challenges can be overcome
by providing new technologies, such as additive fabrication,
which allow the production of complicated fabrics. Vasculari-
zation is one of the most essential difficulties for developing
sustainable angiogenesis solutions involving the addition of
angiogenic growth factors, platelet additions, bone marrow
clots, and bioreactors. Since numerous heads loaded with cell
type can be used by bioprinters, a vasculature is placed into a
3D imprint. The use of sacrificial biomaterials within the skin
is another technique to address vascularization. Sacrificial
materials provide mechanical support throughout the con-
struction of the 3D printing process. During the postproces-
sing, processing of the buildings from the channels or empty
regions in the building can be quickly dissolved or removed
as circulatory channels.

Graphene and their composites and metal nanoparticles
have also taken on a crucial importance as fillers into biopoly-
mers reinforced their mechanical characteristics, such as ten-
sile, effect, bending, and other structural qualities in medical
applications, to create the necessary biomaterials. The main
issues of the usage of biopolymers for synthesising biocompo-
sites are mechanical behaviours and inadequate dispersion.
The fillers produce agglomerates with a matrix of biopolymers
that leads to feeble interfacial connection with defective struc-
tural harmonics and imperfect mechanical characteristics. The
outcome is a large number of additional unusual properties,
such as susceptibility to high temperatures, humidity, low
impact strength, shelf life, and more. Future guidelines lead
to new biomaterial in order to meet the above concerns and
to be economically viable, recycled, and eco-friendly.

7. Conclusion

The biopolymers are the greatest option for synthetic petro-
leum polymers with considerably renewable, biodegradable,
and environmentally sound characteristics. Biopolymers
are not supported by mechanical properties such as high
strength of tensile, impact strength, bending force, and ther-
mal stability. However, they are able to perform load-bearing
applications using their ceramic composites using a mechan-
ical strength. There is yet more attention to be paid, inven-
tions and improvements by using reinforced elements to
adapt biocomposite microstructural features, the standard
mixing techniques.

(i) These composites lead to many other unusual qual-
ities such as sensitivity to high temperatures, sus-
ceptibility to moisture, low impact, and shelf life

(ii) In order to address the specified factors and to fit
economic viability, recyclability, and eco-friendly
ways, future direction leads to new biomaterials.
This combination of synthetic and natural macro-
molecular chemistry leads essentially to biomedical
applications since polymer structure management
can lead to functionality being manipulated

(iii) Bioprinters can automate the assembly process and
permit the preprogram and intricate manipulation
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of biopolymers, from macromolecular to the live
cell. This is done to achieve architectural and bio-
chemical complexity which is never previously
achievable especially in biomedical fields of tissue
engineering and regenerative medicine

(iv) Tissue engineering has generated both natural and
synthetic polymers through the technique of 3D
printing, and various other materials have been
developed. In combination with polymers, fiber
and particles are developed to produce materials
with enhanced bioactivity, biocompatibility, and
physical and chemical qualities
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