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Using Polyvinyl Alcohol as a Cross-Linker
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Leather processing generates a huge amount of chromium (Cr) containing wastes, and one of them is chrome shavings (CS),
which frequently end up in landfills. It may be harmful to the environment and human health due to the oxidation of Cr(III)
to poisonous Cr(VI). Herein, CS and polyvinyl alcohol (PVA) are used for the preparation of flexible CS-PVA composite
sheets, using CS as a skeletal and PVA as a cross-linker by a simple and facile technique. CS-PVA composite sheets are
characterized by FT-IR, SEM, STA, and UTM. FT-IR analysis of CS-PVA composite sheets indicated the existence of
dominating peaks corresponding to collagen amide bands as well as PVA characteristic bands, and it demonstrates the
uniformity of the developed composite sheets. When the amount of PVA is increased, the tensile strength of CS-PVA
composite sheets increases from 0.21 to 4.17N/mm2. With increasing of the amount of PVA, the softness decreases from 6.47
to 3.7mm, and SEM shows decreasing of pores in the composite sheet. The addition of more PVA makes CS-PVA composite
sheets more thermally stable. This facile method of preparing CS-PVA composite sheet is low-cost and eco-friendly, having
potential applications in various fields, including clothing, leather goods, decoration, packaging, and footwear products, as well
as presenting promising platforms for effective utilization of industrial waste materials.

1. Introduction

Perishable hides and skins are transformed into stable
leather in leather making process operated in a tannery. In
Bangladesh, a huge amount of solid wastes generated during
leather processing are dumped on land or river and cause
critic environment and severe health problems [1]. One met-
ric ton of raw hide generates about 200 kg of finished leather,
200-250 kg of tanned solid waste, and 200-350 kg of non-
tanned waste, and 100 kg is lost as wastewater [2, 3]. Solid
waste from tannery comprises of 2-5% hair, 5-7% skin trim-
mings, 35-40% buffing dust, CS, chrome split, wet blue

scraps, and 56-60% fleshing [4, 5]. These buffing dust, CS,
and wet blue scraps contain a high quantity of chromium,
whereas CS dust possesses 2.5-5% of chromium [6]. When
these high chromium containing solid wastes are disposed
of in landfills or other dumping sites, chromium may leach
into the groundwater and affect the human food chain [7, 8].

Every year, 5 9 × 104 tons of hides and skins (bovine,
sheep, lamb, goat, and kid) are used as raw materials for
leather production in Bangladesh [9], resulting in massive
amounts of solid waste being produced by the tanneries. Envi-
ronmental pollution from the indiscreet dumping of solid
waste generated by tanneries causes harmful consequences
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on human health [10]. Due to the production of solid, liquid,
and gaseous pollutants, the Department of Environment
(DoE) of Bangladesh has described tanneries as an industry
under the “red” category [7]. However, several approaches
have been proposed to manage the solid wastes emanating
from the tanneries [11–15]. The solid wastes can be utilized
by producing activated carbon [16], bioadsorbent [17], bio-
diesel [18], and biohydrogen [19].Most importantly, collagen,
glue, keratin, gelatin, etc. have been extracted from the solid
wastes of the tannery for the preparation of composite leather
board, composite material, poultry and fish feed, and func-
tional materials for biomedical applications [15, 20–25].

One method of the various approaches for treating tan-
nery solid wastes, including buffing dust and CS, is the fab-
rication of composites using polymers [24]. Due to the
inherent fibrous nature of leather waste, it can be utilized
as a reinforcing component in a variety of thermoplastic
composite materials [26]. To get better compatibility with
thermoplastic goods, some additives or modifying leather
fibers, such as polyethylene, polypropylene, polyvinyl chlo-
ride (PVC), and polystyrene were added for in situ polymer-
ization with other polymers, e.g., methyl methacrylate [27,
28]. PVA has good biodegradability, water solubility, non-
toxicity, thermal stability, cross-linking ability, high
mechanical properties, and noncorrosiveness [29, 30]. The
chemical resistance and physical properties of PVA have
contributed to its extensive industrial applications in numer-
ous purposes, such as drug delivery [31], membrane separa-
tion system [32], packaging [33], tissue engineering [34],
and hydrogels or microgels [35].

Composite sheets were prepared to combine leather
waste and PVC [27, 36]. To improve the mechanical and
thermal characteristics of thermoplastic polymer composite,
leather wastes were employed as fillers in those materials
[37]. Furthermore, compression molding of chemically
processed short leather fibers into plasticized PVC matrix
and dioctyl phthalate plastisols was used to produce com-
posites with enhanced characteristics [38, 39]. Rajaram
et al. prepared polymer composites using butadiene rubber,
PVC, and CS, to have high machinability and nailing quali-

ties [40]. In addition, collagen hydrolysate and PVA were
utilized for biodegradable thermoplastic film fabrication
where collagen hydrolysate came from enzymatically hydro-
lyzed CS in the presence of organic amines [41, 42].

To gain more profit and more employment facilities, as
well as protect the environment, tannery waste materials
need to be utilized properly. The present study mainly
focused on the formulation of chrome shaving-polyvinyl
alcohol (CS-PVA) composite sheets to be employed in cloth-
ing, regenerated leather, decoration field, key chain holder,

Chrome shaving PVA

Flexible composite sheet

Figure 1: Pictorial representation of the formation of CS-PVA composite sheet.
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Figure 2: FT-IR spectra of PVA and CS-PVA composite sheets
(the results were presented with respect to wt% of PVA in CS):
(a) PVA 50%, (b) PVA 40%, (c) PVA 30%, (d) PVA 20%, (e)
PVA 10%, (f) PVA 0%, and (g) PVA 100%.
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packaging, footwear products such as shoe soles and insole.
The goal of this work is to fabricate flexible composite sheets
from CS and PVA, an easily available water-soluble syn-
thetic polymer with excellent mechanical properties, bio-
compatibility, biodegradability, nontoxicity, and chemical
resistance. PVA and CS were partially hydrolyzed by
nitric acid, and then, CS-PVA composite sheets were pre-
pared using various proportions of PVA and CS. The
thermal, mechanical, and morphological properties of the
prepared CS-PVA composite sheets were studied. Apply-
ing the criteria of “clean and green technology,” this study
presents an easy technology for solid tannery waste
management.

2. Experimental

2.1. Materials. CS were obtained from tannery industry situ-
ated at Savar, Dhaka, Bangladesh. Then, the CS was washed,
sun-dried, and preserved at room temperature in an airtight
container. Polyvinyl alcohol (PVA) (degree of polymeriza-
tion 1700-1800) was purchased from Research-Lab, India,
and nitric acid was purchased from Merck Life Science Pri-
vate Limited, India.

2.2. Partial Hydrolysis of CS. CS were grounded finely and
separated into desired sizes (1mm-2mm) with the help of
a sieve shaker and kept at room temperature in an air tight
container. Nitric acid (2.5M) was added to the known
amount of CS at a ratio of 100% (v/w), and then, distilled
water of 200% (v/w) was added. After gently stirring the
mixture, it was left undisturbed for 30mins. The previously
mentioned mixture was heated in a water bath at 70°C for
20mins with constant stirring and formed a viscous mass.
The formed viscous composite precursor was left undis-
turbed for 30mins. In this stage, the obtained viscous com-
posite precursor of chrome shaving and nitric acid was
denoted as CS.

2.3. Preparation of Composite Sheets. Partially, hydrolyzed
CS was mixed with PVA using a mechanical stirrer in differ-
ent weight ratios, such as 10, 20, 30, 40, and 50wt% based on
the weight of CS. The corresponding mixture of CS and PVA
was heated for 10mins at 60°C while being stirred. The
formed viscous paste of CS-PVA was pressed in a compres-

sion molding machine with 50 kN pressure and 60°C for
60mins. The CS-PVA sheet was demolded after cooling
down at -18°C and then air dried at room temperature. As
can be seen, this straightforward, highly effective, and envi-
ronmentally friendly method can be used to develop flat
and flexible CS-PVA composite sheets, as illustrated in
Figure 1.

2.4. Characterization

2.4.1. Tensile Testing. In accordance with SATRA TM43
[43], tensile tests on CS-PVA composite sheets were carried
out using a computer-controlled universal testing machine
(UTM) (STM 566, United Kingdom) with a test speed of
100mm/min and an extensometer gauge length of 50mm.
Each type of composite sheet was evaluated with three spec-
imens that were 90mm long and 10mm wide, and the load
cell was maintained at 1 kN. From the average of three indi-
vidual measurements, the final mechanical characteristics of
the composite sheets were presented.

2.4.2. FT-IR Spectroscopy. The infrared spectra of the CS,
PVA and developed CS-PVA composite sheets, were
obtained using a Fourier-transform infrared spectrophotom-
eter (FT-IR) (Perkin-Elmer, Frontier, United Kingdom) with
Universal Attenuated Total Reflectance Accessory (UATR).
Absorbance and FT-IR spectra were recorded for each sam-
ple. Initially, the FT-IR spectrometer was calibrated for
background scanning signal against a pure KBr sample. Each
spectrum was acquired after an average of 20 scans with a
resolution of 4 cm-1 in the frequency bands 4000-600 cm-1.

2.4.3. Scanning Electron Microscopy (SEM). The morphology
of CS and CS-PVA composite sheets were examined using
SEM. Micrographs of the surface were taken using a ZEISS
AVO 18 (Carl Zeiss, Germany) research scanning electron
microscope at 1500 times magnification and an accelerating
voltage of 12 kV.

2.4.4. Simultaneous Thermal Analyzer (STA). STA (Model:
449 F3 Jupiter®; Brand: NETZSCH GmbH) was used to
investigate the thermal stability of the composite sheets
using Proteus software. Thermal properties of the composite
sheets were measured from room temperature to 800°C in a
nitrogen atmosphere, where the heating rate was 20°C/min.
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Figure 3: Possible cross-linking reactions between collagen in CS and PVA.
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Moreover, the same instrument was used for differential
scanning calorimetry (DSC) measurement to examine the
thermal characteristics of the developed composite sheets.

For DSC measurement, a constant heating rate of 20°C/
min was maintained from room temperature to 300°C while
nitrogen was present.
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Figure 4: TG curves of CS-PVA composite sheets (the results were presented with respect to wt% of PVA in CS): (a) PVA 100%, (b) PVA
0%, (c) PVA 10%, (d) PVA 20%, (e) PVA 30%, (f) 40%, and (g) PVA 50%.
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2.4.5. Softness Tester. An ST 300 digital leather softness tester
was used to assess the softness of composite sheets in accor-
dance with the standard procedure [44]. The reducing ring
utilized has a 10mm diameter. Measuring the distension of
composite sheets, the softness was expressed in mm.

2.4.6. High-Performance Moisture Analyzer. The moisture
content of the CS and CS-PVA composite sheets was mea-
sured using a high-performance moisture analyzer (WBA-
110M). Required amount (1-2 g) of composite sheet samples
were cut, and the moisture content was evaluated according
to the ISO 287:2017 method.

3. Results and Discussion

3.1. FT-IR Analysis. Figure 2 shows the FT-IR spectra of
composite sheets made of PVA and CS. The peaks of the
amide I (1,700-1,600 cm-1), amide II (1,600-1,500 cm-1),
and amide III (1,300-1,200 cm-1) bands are typically used
to represent the FT-IR spectra of proteins [45]. In the FT-
IR spectra (Figure 2), CS with 0% PVA reveals collagen’s dis-
tinctive peaks, including amide I at 1,633 cm-1 for C=O
stretching, amide II at 1,548 cm-1 for N–H and C–N vibra-
tions, and amide III at 1,237 cm-1 for C–N stretching, N–H
in plane bending, and absorptions arising from wagging
vibrations from CH2 groups. The short peaks around 2,986
and 2,882 cm-1 are caused by the methylene groups for
asymmetric stretching. The presence of amine and hydroxyl
groups in the collagen molecule accounts for the broad peak
reaching over 3300 cm-1. The outcomes support the preced-
ing reports in this case [27, 46]. The pure PVA pattern
showed a sharp-edged peak at 1,090 cm-1 corresponding to
C-O stretching, two small peaks at 2,911 cm-1 and
2,944 cm-1 caused by the respective asymmetric and sym-
metric stretching vibration of methylene groups, and a broad
peak at 3,308 cm-1 caused by a strong O-H stretching vibra-
tion [47]. It is noteworthy to see that some of the distinctive
peaks of both PVA and collagen may be seen in all CS-PVA
composite sheets. As PVA concentration rises in the com-
posite sheets, it is seen that the typical PVA peaks become
more apparent. The dehydration of hydroxyl groups
between PVA and CS resulted in the production of ether
bonding (C-O-C), which was indicated by the prominent
peak at 1,036 cm-1. Additionally, the formation of ester
bonding (-COO-), which was caused by the esterification
reaction between the -OH in PVA and the -COOH in CS,
was also shown by the second strong peak at around
1234 cm-1.

3.2. Design Concept of CS-PVA Composite Sheets. The major-
ity (75–85%) of the CS are composed of collagenous protein
[48]. Polypeptide chains, that makeup collagen, have repeat-
ing sequences of amino acids, and the most prevalent
sequence is glycine-proline-hydroxyproline (Gly-Pro-Hyp)
[49]. Here, condensation reaction may be occurred between
PVA and CS [50].

Figure 3 depicts the relevant and possible chemical reac-
tion between CS and PVA. These findings show that PVA
was homogeneously mixed and incorporated into the CS
mass.

3.3. Thermogravimetry (TG) Analysis. TG was used for
determining the thermal degradation properties of PVA
and CS-PVA composite sheets, and the resulting thermo-
grams are displayed in Figure 4. PVA undergoes decomposi-
tion in a single step, with an inflection point at 288°C. This
point corresponds to the decomposition of the polymer
matrix, and the mass change that occurs is approximately
74%. The weight loss in all of the CS-PVA composite sheets
occurs in two stages, and this is well agreed with the litera-
ture [51, 52]. Due to the evaporation of moisture content,
the initial stage of mass loss for all CS-PVA composite sheets
occurs between 80 and 120°C. The resulting weight loss is
roughly 9-15%, which agrees with the moisture content
analysis in Table 1. In the second step, mass loss occurs
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Table 1: Mechanical properties, softness, and moisture content of the CS-PVA composite sheets (here, CS-PVA compositions were
presented with respect to wt% of PVA in CS).

CS-PVA composition (wt%) Softness (mm) Load (N) Tensile strength (N/mm2) Elongation (%) Moisture content (%)

10 6.47 1.48 0.21 32.20 14.98

20 6.15 6.14 0.80 51.20 17.72

30 5.96 24.57 2.19 47.23 16.87

40 5.22 53.74 3.20 30.52 17.42

50 3.70 71.70 4.17 24.95 17.35
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between 200 and 480°C, and it may be attributed to the
breakdown of the PVA-collagen cross-linking. The denatur-
ation temperature of composite sheets rises progressively
from 316°C (PVA/CS 0wt%) to a maximum of 326°C
(PVA/CS 50wt%). The outcomes here agree with those of
the tensile strength, SEM, and DSC analyses. The decompo-
sition of CS-PVA composite sheets results in a mass change
of 33–41%.

3.4. Differential Scanning Calorimetric (DSC) Analysis. DSC
was used to study the thermal characteristics of PVA and
CS-PVA composite sheets, and the findings are depicted in
Figure 5. The pure PVA DSC thermogram clearly showed
a significant melting endothermic peak at 222.9°C [53].

Here, the PVA/CS 0% composite sheet did not exhibit a peak
around 200°C. Strong chemical interaction between PVA
and CS would alter the properties of pure PVA, and this is
clearly seen in the composite sheets that the endothermic
peaks are not only weaker and broader but also moved to
lower temperatures [50].

3.5. Scanning Electron Microscopic (SEM) Analysis. At a
magnification of 1500 times, Figure 6 depicts SEM images
of the developed CS-PVA composite sheets. The SEM image
of CS showed that CS had lots of microvoids and porosity,
which may be helpful for the cross-linking with PVA
(Figure 6(a)). On the other hand, there were uneven surfaces
and many voids in the composite sheet with 10wt% PVA

(a) (b)

(c) (d)

(e) (f)

Figure 6: SEM images of CS-PVA composite sheets at a magnification of 1500 times (the results were presented with respect to wt% of PVA
in CS): (a) PVA 0%, (b) PVA 10%, (c) PVA 20%, (d) PVA 30%, (e) PVA 40%, and (f) PVA 50%.
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content (Figure 6(b)), which may be caused by weak PVA-
collagen binding. The voids in the composite sheets gradu-
ally decreased with the increasing of PVA percentage from
20% to 40% (Figures 6(c)–6(e)). Finally, the CS-PVA com-
posite sheet with a 50% PVA content, shown in Figure 6(f),
displayed greater surface regularity and included fewer voids.
As a result, it can be seen that in the developed CS-PVA com-
posite sheets, the surface uniformity increases, and the pres-
ence of voids diminishes as the percentage of PVA increases
from 10 to 50wt%. This could be explained by the significant
interfacial adhesion of PVA with the CS as PVA percentage
increases.

3.6. Mechanical and Bulk Properties. Table 1 displays the
mechanical characteristics of the developed CS-PVA com-
posite sheets. As the PVA content in the CS-PVA composite
sheets rises from 10 to 50wt%, it can be seen that the
mechanical properties of the composite sheets gradually
improve. Comparing all the other sheets, the composite
sheet with a 50wt% PVA/CS composition has the best
mechanical properties with regard to both load at break
and tensile strength. SEM study of CS-PVA composite
sheets with lower PVA percentages (10, 20, and 30% wt%)
showed that there were more voids in those sheets, and this
may be the main reason why the mechanical properties of
those sheets were lower. In contrast, SEM research reveals
that the CS-PVA composite sheets with 40 and 50wt%
PVA percentages have fewer voids, which helps to improve
mechanical properties by increasing the binding between
PVA and collagen matrix. As a function of the PVA content,
the percentage elongation of CS-PVA composite sheets
alters considerably. As the PVA percentage rose, it was dis-
covered that the mechanical properties of the created com-
posite sheets had improved. This is in good agreement
with earlier research [51]. All of the CS-PVA composite
sheets are found to be around 1.0mm thick. All of the pre-
pared sheets had a moisture content of about 16%, which is
mostly attributable to the hydrophilic characteristics of colla-
gen molecules. This is in accordance with the weight loss
attributed to moisture evaporation that was found during
the TGA analysis. The softness of composite materials
intended for low-stress applications is an important aspect.
High values of softness indicate that the material yields read-
ily to pressure or weight, allowing it to be easily shaped, cut,
or modified. Table 1 displays the softness values of developed
CS-PVA composite sheets. As the percentage of PVA is
increased, it can be noticed that the softness of the composite
sheets diminishes. When compared to sheets with PVA/CS
50wt% composition, the sheet with PVA/CS 10wt% compo-
sition demonstrates superior softness and flexibility [51].
Here, the inverse relationship between softness and tensile
stress is interesting to note. By adjusting the ratio of chro-
mium shaving to PVA, it is now able to create CS-PVA com-
posite sheets with the necessary strength and softness.

4. Conclusion

The current work proposed a feasible strategy for the man-
agement of chrome containing leather wastes, CS, produced

from the leather production sectors. Herein, flexible com-
posite sheets comprised of PVA and CS were developed
using a straightforward, simple, and effective method that
required less chemical or effort. In this experiment, the ten-
sile strength and thermal stability of the sheets increased as
the PVA contain increases, whereas softness reduced consid-
erably. With the increase of the amount of PVA in CS from
10 to 50wt%, tensile strength was found 0.21N/mm2 to
4.17N/mm2, respectively. Similarly, the softness of the CS-
PVA sheets was changed from 6.47 to 3.70mm, respectively.
Moreover, the denaturation temperature of composite sheets
rises progressively from 316°C (PVA/CS 0wt%) to a maxi-
mum of 326°C (PVA/CS 50wt%). The results of the
mechanical property analysis were strongly supported by
scanning electron micrographs by showing fewer voids in
composite sheets when the amount of PVA was increased.
The etherification reaction and esterification reaction
between CS and PVA were confirmed by the FT-IR spectra
of the CS-PVA composite sheet. These findings show that
composite sheets made of CS and PVA have good mechan-
ical and thermal properties, making it possible to develop
this simple and inexpensive composite for footwear, leather
goods, and home interior applications. Additionally, the
developed composites offer a solution to the environmental
problems related to waste management in the leather
industry.
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