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The aim of this study is to determine and quantify the monomer elution from four different resin-based composite dentin
replacement materials for 3 months using HPLC. Four different composite dentin replacement materials were used in the
present study: EverX (EVX), X-tra base (XTB), SDR (SDR), and GrandioSO Heavy Flow (GHF). Fifteen samples from each
material were prepared (5 × 5 × 4mm). After preparation, each specimen was immersed in a 10ml 75% ethanol/distilled water
solution for three different periods: 1 h, 24 h, and 3 months (n = 5). After the immersion period, 0.5ml of solutions were taken
from each bottle and analyzed using HPLC. At the end of the 3-month immersion period, the elution of monomers was
determined mostly from SDR, GHF, EVX, and XTB, respectively. TEGDMA, the most released monomer of all groups, was
released from all samples after 1 h, 24 h, and 3 months. The amount of monomer released in all composite groups at the end
of the 3-month immersion period was significantly higher than the monomer amounts released after the 1-hour immersion
period. The monomers were eluted from the composite dentin replacement materials during all immersion periods, and the
amount of eluted monomers was increased with time.

1. Introduction

In recent decades, resin-composite materials have been fre-
quently used due to the aesthetic demands of patients and
their ease of application. However, the use of resin compos-
ites is not recommended for large restorations exposed to
high occlusal stress and masticatory load in the posterior
region [1, 2]. A long-term clinical study revealed that a com-
posite fracture in the molar teeth is one of the most com-
mon causes of restoration failure [3]. Flowable composites
and cements as dentin replacement materials have been
used in the past to overcome these problems [4]. However,
the use of flowable composites as dentin replacement mate-
rials leads to enamel fractures in large cavities without ade-
quate dentin support [5]. Today, there are composite dentin
replacement materials that are used instead of flowable com-

posites or cements that are produced specifically to address
these problems. When the resin composite shrinks, the
underlying dentin replacement material absorbs the stress
and distributes the contraction force by transmitting it to
the adjacent structures. The use of such intermediate mate-
rial modifies the configuration factor of the cavity [6]. Also,
it has been reported that the use of composite dentin
replacement materials strengthens the conventional compos-
ite and thus provides stronger restorations [3]. For these rea-
sons, it may be beneficial to use dentin replacement materials
under conventional composites in deep cavities in the poste-
rior region.

Aside from the beneficial properties of composite dentin
replacement materials, there is also the possibility of the
release of unreacted monomers. Since monomers form the
main part of the resin matrix (20–40wt%), they represent
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the greatest risk in terms of biotoxic effects and mechanical
properties [7]. These monomers may be released from the
restoration into the oral cavity or from the dentinal tubules
into the pulp chamber over time [8, 9]. These released
monomers have cytotoxic, genotoxic [10, 11], and estrogenic
[12] effects and may cause reactions in the pulp [13] and soft
tissues [14, 15]. Unreacted monomers may cause pulp dam-
age if there is insufficient protection at the bottom of the
cavity [13]. When dentin thickness decreases, there is a high
risk of unreacted monomers passing through the dentinal
tubules and irritating the pulp [9]. In deep cavities, pulp
damage has been occurring even after 3 years [16].

Although there have been studies on the different prop-
erties of composite dentin replacement materials [3, 6, 17,
18], there is a serious lack of knowledge about the elution
of monomers. Therefore, the aim of this study was to deter-
mine and quantify monomer elution from four different
composite dentin replacement materials for 3 months using
high-performance liquid chromatography (HPLC) after
immersion in ethanol. The null hypothesis was that there
would be no monomer release from the composite dentin
replacement materials even after 3 months.

2. Materials and Methods

2.1. Sample Preparation. Four different composite dentin
replacement materials were used in the present study: EverX
Posterior (GC, Tokyo, Japan), X-tra base (Voco, Cuxhaven,
Germany), SDR (Dentsply, Konstanz, Germany), and Gran-
dioSO Heavy Flow (Voco, Cuxhaven, Germany). Detailed
information about the composition and manufacturers of
composites are given in Table 1.

Fifteen samples from each composite material were pre-
pared in Teflon molds (5 × 5 × 4mm). The molds were filled
with the composite materials and sealed with a Mylar strip.
The samples were built up in one increment (4mm) except
for the GHF composite resin samples. GHF composite resin
samples were built up in two increments (2mm + 2mm),
and all specimens were polymerized according to the manu-
facturer’s instructions with a LED curing unit (Elipar S10,
3M ESPE, St. Paul, MN, USA) with a light output power
of 1200mW/cm2. The radiometer system on the device
was used to verify the output intensity for each use of the
light curing unit.

After preparation, each specimen was immediately
immersed in a 10ml 75% ethanol/distilled water solution
in the amber-colored glass bottles at room temperature for
three different immersed periods: 1 h, 24 h, and 3 months.
The specimens were divided randomly into three subgroups
according to the immersion period (n = 5). At the end of the
immersion period, 0.5ml of the solution from each vial con-
taining the specimen was taken up in sterile glass vials with
the help of a micropipette and stored at room temperature
for analysis with HPLC.

2.2. HPLC Analyses. The monomer releasing analyses were
performed using chromatographic measurements including
a thermodiode array detector (DAD) and autosampler
(Accela HPLC, Thermo Fisher Scientific, San Jose, CA,

USA) with a C18 analytical column (250mm × 4 6mm,
5μm–100Å particle size, Luna C18, Phenomenex, Torrance,
CA, USA) and software to control instruments and data
handling (Thermo Xcalibur v.2.2, Thermo Fisher Scientific,
San Jose, CA, USA). As a solvent, 80% HPLC-grade aceto-
nitrile (Merck KGaA, Darmstadt, Germany)/20% ultrapure
water (obtained using the Millipore refinement system in
ultrasound at 18.2 MWcm at 25 C0, and the diluted sam-
ples were passed through a 0.45μm membrane filter prior
to injection) with a flow rate of 1ml/min was used. For pre-
paring the calibration curves and reference monomers’
retention times, pure monomers bisphenol-A glycidyl
methacrylate (BisGMA), triethylene glycol dimethacrylate
(TEGDMA), urethane dimethacrylate (UDMA), hydro-
xyethyl methacrylate (HEMA), and ethoxylated bisphenol-
A dimethacrylate (BisEMA) were used (Figure 1), and data
about the substances are given in Table 2.

Each of the standard solutions at a concentration of 5,
10, 25, 50, and 100μg/ml was left in 75% ethanol solution
for 24 h. The solutions obtained were stored at 4°C until
the monomer analysis. The released monomer amounts
from samples were calculated by using standard curves,
and identification and quantitative analysis were made by
comparing the elution time and by the integration of the elu-
tion peak area with those of the authentic sample which used
the linearity of the calibration curve, based on the quantitative
determination of standard monomers in the six solutions.
The peak areas, correlation coefficients, and retention times
were obtained for each monomer, and plotted versus the con-
centration using linear regression analysis for BisGMA,
BisEMA, UDMA, TEGDMA, and HEMA and are repre-
sented in Figure 2. The correlation coefficients of the regres-
sion equations were higher than 0.95; accuracy within the
interval was 73–111% of the target level, and repeatability
with a relative standard deviation was lower than 10%, dem-
onstrating that the method was accurate and appropriate for
quantitative analysis (Figure 2).

The limit of detection (LOD) and the limit of quantifica-
tion (LOQ) were determined from the calibration curve
according to the following formula;

LOD =
3 3s
S

 LOQ =
10 s
S

, 1

where S is the slope and s is the standard deviation of inter-
cept. The absolute amount of each monomer in the extract
was calculated in μg/ml.

2.3. Statistical Analyses. Data normality was analyzed using
the Kolmogorov-Smirnov and Shapiro-Wilk tests. Multiple
comparisons were performed using the one-way ANOVA,
independent sample t-test, and Tukey HSD test. In addition,
the paired sample t-test was used to assess the time-
dependent changes in the same materials. The level of signif-
icance for the statistical analysis was 0.05. A software pro-
gram (G∗Power 3.1; Universitat Düsseldorf) was used to
perform the power analysis.
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3. Results

The amount of monomer released from the composite den-
tin replacement materials and the statistical differences for
each immersion period are shown in Table 3.

At the end of the 3-month immersion period, the elution
of monomers was determined mostly from SDR, GHF, EVX,
and XTB, respectively. TEGDMA, the most released mono-
mer of all groups, was released from all samples after 1 h,
24 h, and 3 months. No quantifiable TEGDMA release was

observed in the SDR samples that were immersed for only
1 hour. At the end of the 3-month immersion period, EVX
and GDH showed the highest, and XTB showed the lowest
TEGDMA release (p < 05). Except for the samples of the
SDR group immersed for 3 months, no quantifiable HEMA
release was detected in any of the samples. BisEMA was
released from all groups except EVX. At the end of 3
months, there was no significant difference between the
amounts of BisEMA released in the GHF, XTB, and SDR
groups (p > 05). UDMA was released from the XTB and

Table 1: The compositions and manufacturers of resin-based composite tested in present study.

Material Manufacturer Code Organic matrix Filler loading
Inorganic filler
ratio % (wt/vol)

EverX
Posterior

GC Corporation,
Tokyo, Japan

EVX
BisGMA, TEGDMA,

PMMA
E-glass fibres, barium borosilicate glass filler 74.2/53.6

X-tra base
Voco GmbH,

Cuxhaven, Germany
XTB

UDMA, BisEMA,
EBPADA, DEGDMA

Barium glass ceramic, fumed silica 75/61

SDR
Dentsply, Konstanz,

Germany
SDR

BisEMA, TEGDMA,
modified UDMA resin

Ba-Al-F-borosilicate glass, Sr-Al-F-silicate
glass, SiO2, titanium dioxide

68/44

GrandioSO
Heavy Flow

Voco GmbH,
Cuxhaven, Germany

GHF
BisGMA, BisEMA,

TEGDMA
Glass ceramic, SiO2 83/68
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Figure 1: HPLC chromatogram of a mixture of reference monomers (BisGMA, BisEMA, UDMA, TEGDMA, and HEMA).

Table 2: Monomers used as reference standard.

Monomer Name Chemical type Mol. W. CAS no.

Hydroxyethyl methacrylate HEMA C6H10O3 130.14 g/mol 868-77-9

Triethylene glycol dimethacrylate TEGDMA C14H22O6 286.32 g/mol 109-16-0

Bisphenol-A ethoxylated dimethacrylate BisEMA C25H32O6 Av. Mn~1,700 41637-38-1

Urethane dimethacrylate UDMA C23H38N2O8 470.56 g/mol 72869-86-4

Bisphenol-A glycidyldimethacrylate BisGMA C29H36O8 512.59 g/mol 1565-94-2

All monomers in this study were from Aldrich (Sigma-Aldrich, St. Louis, MO, USA) [19].
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SDR groups in all time periods, and the amount of UDMA
released from SDR was found to be significantly higher in
all immersion periods (p < 05). No quantifiable level of
BisGMA release was detected from XTB and SDR. The
amount of BisGMA released from the GDH group at the
end of 3 months was significantly higher than that from
the EVX group (p < 0 05) The amount of monomer released
in all composite groups at the end of the 3 month immersion
period was significantly higher than the monomer amounts
released after 1-hour immersion period (p < 05; Figure 3).

4. Discussion

Bulkfill composite resins have been produced with the claim
of eliminating the disadvantages of the layering technique in
clinical applications. Although it is stated by the manufac-
turers that ideal polymerization can be achieved in bulk
use up to 4mm or even 5mm in these materials, there have
been many studies on the degree of polymerization, mono-
mer release, etc. Recently, Süsgün Yildirim et al. [20] evalu-
ated the relationship between the layer thickness of bulkfill
composites and monomer release and conversion rates and
reported that as the layer thickness increases, the conversion
rate decreases and monomer release increases. It should also
be noted that monomers and other contents released from
resin composites can penetrate the pulp, damage the pulp,
and damage its regenerative properties [21]. For this reason,
it is important to determine the amount of residual mono-
mer released from dentin replacement materials, especially
used in the area closest to the pulp. In the present study,
BisEMA, HEMA, TEGDMA, UDMA, and BisGMA elution
from four composite dentin replacement materials was eval-
uated using HPLC over 3 months. According to the results,
monomer elution from composites was determined even
after 24 hours. Thus, the null hypothesis that there would
be no monomer release was rejected.

The amount of monomers released from resin-based
dental materials is generally determined by the HPLC
method. High molecular weight monomers, such as
BisGMA and UDMA, may be degraded by the gas chroma-
tography technique, which is another method for determin-
ing the amount of monomers, and only degradation
products can be detected [22]. Since monomers can dissolve

in the mobile phase in the HPLC method, the elution pro-
cess occurs in a more controlled manner [23]. Therefore,
in this study, the HPLC method was used to determine the
amount of monomer released from composite dentin
replacement materials. Another important point for deter-
mining monomer elution is the immersion time. Ferracane
[24] reported that after the polymerization of composite
materials, 50% of the monomers were eluted in the first 3
hours, and 85–100% in the first 24 hours. More recent stud-
ies using the HPLC method have reported that monomer
release from composite materials continues after 24 hours,
and even up to 1 year [25, 26]. In another recent study,
monomer release was detected even from resin-containing
CAD/CAM blocks during the long immersion period [19].
In the present study, the amount of monomer released dur-
ing 1 hour, 24 hours, and 3 months was quantificated, and it
was found that the release of all monomers continued until
the 3-month immersion period, even though some mono-
mers were released at a quantifiable level after 3 months.
Also, Alshali et al. [27] stated that monomer release from
resin-based composite materials is expected even after 3
months according to the results of their study. There are sev-
eral factors that affect monomer release from resin-based
dental materials [24]. For example, there is an inverse corre-
lation between the amount of monomer released and the
degree of conversion (DOC), which reaches its highest level
24 hours after polymerization. Second, the type of immer-
sion solution can affect the amount of monomer released.
Additionally, the filler content and rate of composites may
affect monomer release. In the present study, 75% ethanol-
water solution was used for the immersion process. This
solution is recommended by the United States Federal Drug
Administration as it mimics the oral environment well and
has a solubility similar to the resin-composite matrix.

Among the tested base composites, the highest monomer
release was detected in SDR and showed the highest vulner-
ability. This may be related to the low initial conversion
degree [28], as well as the density and heterogeneity of the
weak cross-links in the polymer structure of SDR [27]. This
causes the polymer structure to swell, thus opening pores
and pathways, and eluding residual monomers. In addition,
considering the filler content of the tested composites, it was
observed that SDR has the lowest filler ratio. In previous
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Figure 2: HPLC calibration curves for reference monomers.
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studies, it was reported that SDR showed the highest mono-
mer release, which is in accordance with the results of the
present study [8, 27, 29]. In a previous study [30] that exam-
ined TEGDMA elution from SDR, it was reported that there
was no TEGDMA elution after 1 week, while at the end of
the 1-month immersion, 9.4μg/g TEGDMA elution was
detected in 75% ethanol solution. The results of the present
study showed that 12.511μg/ml TEGDMA elution from
SDR was detected at the end of 3 months. In accordance
with the results of the present study, BisEMA, TEGDMA,
and UDMA release from SDR were also detected in previous
studies [8, 27, 31].

In previous studies, XTB was investigated in terms of
monomer release in an ethanol/water solution for 3 months.
The authors stated that DEGDMA, BisEMA, and UDMA
were eluted from the XTB [27, 29]. In accordance with the
results of that study, BisEMA, TEGDMA, and UDMA were
eluted from XTB. Since the retention times of TEGDMA and
DEGDMA monomers are very similar to each other, these
monomers are likely to interfere in HPLC. In contrast to
the results of the present study, Lagocka et al. [8] could
not detect UDMA elution from XTB composite. XTB sam-
ples showed the lowest monomer elution in the present
study, and these results are consistent with those of previous
studies [27, 29]. In another study, Al-Hiyasat et al. [32]
reported that the change in the filler and monomer ratio of
the composite has a significant effect on the monomer
release from the material. Some studies have found a lower
absorption rate in composite materials with a high filler ratio
than those with a lower proportion of filler [33, 34]. This can
be explained by the fact that XTB samples absorb less solu-
tion, showing lower monomer elution. In only one study
investigating the monomer elution from EVX, it was found
that BisGMA and TEGDMA were detected after a week of
immersion in an ethanol (100%) solution [35]. Therefore,
in the present study, monomer elution from EVX was com-
prehensively analyzed, and it was found that 6.339μg/ml
BisGMA and 30.673μg/ml TEGDMA eluted even after 3

months of immersion. Additionally, 14.099μg/ml BisEMA,
28.297μg/ml TEGDMA, and 19.360μg/ml BisGMA elution
from GHF were found in the present results, but there has
been no study evaluating monomer elution from GHF up
to now. According to the manufacturers’ data, none of the
tested materials contained HEMA, and the XTB composite
did not contain TEGDMA. However, in this study,
TEGDMA elution from the XTB samples and HEMA elu-
tion from the SDR samples were detected. Manufacturers
are responsible for providing information about the com-
pounds found in the material safety data sheet (SDS) for
any concentrations above 1% [7]. In addition, it has been
concluded that HEMA might be a degradation product of
UDMA-like monomers, which are included in SDR [31,
36]. Cebe et al. [31] could not detect HEMA elution at the
end of 1 month from the SDR composite; however, Lagocka
et al. [8] detected HEMA elution from SDR. HEMA elution
was detected at the end of 3 months in the present study.

The structure, size, and weight of the monomers con-
tained in the resin matrix are another important factors
affecting the amount and rate of monomer release. Smaller
and lower molecular weight monomers, such as TEGDMA,
are eluted faster and with greater amounts than high molec-
ular weight monomers, such as BisGMA [27, 37–39]. In
addition to the rigid structure of BisGMA, TEGDMA has a
flexible and linear structure that makes it easier to pass
through intermolecular spaces [38]. Furthermore, TEGDMA
is hydrophilic and prone to elute from aqueous solutions.
The results of the present study showed that TEGDMA
was eluted in a shorter time and in higher amounts than
other monomers.

The evaluation of residual monomers eluted from com-
posite materials is also important in determining the bio-
compatibility of these materials. There are previous studies
on the cytotoxicity of monomers eluted from composite
resins. For instance, Urcan et al. [40] analyzed the EC50
value of HEMA, TEGDMA, UDMA, and BisGMA mono-
mers on human gingival fibroblasts. The EC50 values of
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the HEMA, TEGDMA, UDMA, and BisGMA monomers
were 11.20 (0.60) mmol/l, 3.60 (0.20) mmol/l, 0.10 (0.04)
mmol/l, and 0.09 (0.01) mmol/l, respectively. The compar-
ative toxicity of these monomers was listed as BisGMA
most toxic > UDMA > TEGDMA >HEMA (least toxic).
When these mmol values were converted to μg, it was found
that only UDMA monomer elution from SDR after 3-month
immersion was above the EC50 dose in the present study.

It should be considered that monomer release in the oral
environment is affected by the amount of wear of the com-
posite restoration, saliva flow, and enzymatic degradation
due to saliva enzymes, contrary to the laboratory conditions
in which this study was conducted. It is appropriate to eval-
uate cytotoxicity and monomer release together, considering
the remaining dentin thickness and dentin permeability, in
order to better simulate the clinical conditions in future
studies. In addition, according to the information obtained
from the manufacturers, the monomers forming the organic
matrix of the resin-based composite materials used in the
study were taken into consideration, and the monomers
whose release was examined in this study were preferred.
Therefore, in vitro studies using different analysis methods
and different monomer types and, if possible, in vivo clinical
studies or studies that can further simulate the clinical envi-
ronment can be conducted in future studies.

5. Conclusion

Within the limitations of the present study, the following
conclusions were reached:

(1) The monomers were eluted from the composite
dentin replacement materials during all immersion
periods

(2) Monomer release at the end of 3 months was signif-
icantly higher than the 1-hour amount for all com-
posite dentin replacement materials

(3) The characteristics of the resin matrix and the filler
ratio of the composite dentin replacement materials
used affected the monomer elution

(4) SDR was the only composite that UDMA released
above the value considered cytotoxic
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