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1. Introduction

Continuous advances in the VLSI processing technology
enable to produce ever more complex systems on a single
chip. These System-on-Chips contain dedicated circuits,
processors, memories, and also reconfigurable circuits for
increasing flexibility. As a result, an application executed on a
RSoC is partitioned between the heterogeneous components
of the system involving concurrent activities such as memory
transfers, accelerator execution, and processor activities. The
heterogeneity and the concurrent nature of the platform
make it hard to program and to perform functional verifi-
cations of a running application.

In order to cope with the increasing complexity of SoC
design, the abstraction level of the specification has been
raised [1]. The VHDL and Verilog languages, the main
hardware description languages employed today, support
abstraction levels up to the functional level [2, 3]. However
the lack of high-level programming features makes them
unsuited for developing high-level models and systems.

The verification of an application running on an RSoC
has to take into account all the system activities and their
impact in term of behavior and performances. For example,
an application mapped on a reconfigurable accelerator is

strongly dependent of the communications, managed by a
DMA controller, between the local buffers and the main
memory. Therefore, the execution of an application can be
considered as concurrent and involves specific issues for
testing and debugging such as collecting local states in order
to build up back a snapshot of the whole execution state.

A higher abstraction level entry for SoC design is
achieved by extending mainstream programming languages
such as C/C++ or Java [4–6]. The well-known SystemC
enables to describe and simulate hardware/software at
system-level by using a C++ class library [7]. The particular-
ity of the SystemC approach is that it brings to SoC design
the advantages of object-oriented software development.
Some other works using object-oriented concepts in various
languages have been reported such as [8–11].

However, the mainstream environments used (e.g., Sys-
temC) have restricted debugging exploration capabilities
and lack of dynamic features such as hot-code replacement
or object state alteration at runtime. Furthermore, despite
they are oriented toward software development, engineer-
ing methodologies such as eXtreme programming remain
underexploited keeping mitigated the productivity gain.

This paper focuses on the simulation, testing, and
debugging of an application running on an RSoC. The
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presented methodology aims at bringing to RSoC appli-
cation design the agility and efficiency of software devel-
opment techniques as found in object-oriented languages
and eXtreme Programming (XP) methodologies [12]. The
proposed framework enables to model the platform at
a system level by assembling components that inherit
from an object framework. The application mapped on a
reconfigurable accelerator is specified at different abstraction
levels and integrated as a component in the system model.
The specification starts at the behavioral level as object-
oriented code which is refined automatically through an
intermediate representation (IR). This IR is a Control/Data
Flow Graph (CDFG) encoding algorithms and is taken as
input of simulators and synthesis tools [13].

The framework is developed in a Smalltalk-80 object-
oriented environment which offers symbolic debugging
facilities and testing features as well as tools for exploring
the application at runtime giving access to instantaneous
snapshots of the system state [14, 15]. Our framework
brings these benefits to the hardware simulation, while
enforcing validation through characterization tests. Our
approach relies on a nonmainstream environment, therefore,
interoperability with mainstream tools is a critical issue and
is provided through automated code generation.

The article is organized as follow. Section 2 discusses
software engineering methods and tools support for vali-
dation and how their concepts are applied to our frame-
work. Section 3 details the intermediate representation of
the applications supporting multilevel simulation and used
for synthesis. The system-modeling framework based on
components is described as well. Section 4 presents the
simulation models used by the framework and the auto-
mated generation of HDL wrapper enabling interoperability
with mainstream tools. Section 5 shows simulation results at
multilevel for the system and the mapped applications.

2. Software Tools Support and Methods for
Validation

Software engineering methodologies are well known for
enhancing productivity. This section presents tools and
methods used in software design for validating applications
and how it is applied to our methodology.

2.1. Debugging Tools and Use. Debugging is the task of
tracking down causes of program malfunction. Some subtle
errors, such as the mishandling of unusual assignments to a
variable, can take a lot of exploration to trace and resolve. To
trace these the programmer needs a mechanism for tracing
the flow of a program and variable assignments at various
points.

VisualWorks Smalltalk [15] provides several facilities to
help the programmer debug his programs. Software probes
insert triggers into the compiled code, without changing the
source code, which interrupt either processing (breakpoints)
or log status information (watchpoints). A walkback window
is opened when an unhandled exception is detected, showing
the last several executed methods. The debugger tool allows
for extensive exploration of the execution history, for

test1
self shouldnt: [CDFGSynthesisAPI example1]

raise: TestResult error

Algorithm 1: Validating an example. The method test1 is defined
in a class inheriting from the SUnit framework. It provides a set of
methods that detect all conditions that return false while handling
unexpected errors.

modifying variable values, and modifying code on the fly,
and for controlling program execution.

To diagnose a problem, sometimes it is sufficient to see
the last few entries in the context stack. The Debugger’s top
view lists as much of the stack as the programmer wants
to see. Then, one would like to continue execution in the
debugger for the next iteration for some iterator construct.
The software debugger provides these capabilities.

Software probes provide a way to check the state of the
system at a specific point. A software probe does not change
the source code design but will affect the timing of the
program execution. Similarly, using an electronic probe does
not change the design of an electronic circuit, but, when
used, it may change the circuit’s characteristics slightly.

A breakpoint, which is the simplest kind of probe,
immediately opens the system debugger, skipping the notifier
stage, when it is triggered. The top method in the stack is the
method containing the breakpoint.

A conditional expression may be used with a breakpoint,
allowing the programmer to test for specific conditions and
selectively trigger the breakpoint. The expression, that must
return a Boolean upon completion, can include any arbitrary
operation such as data collection.

Debugging makes an intensive use of such mechanism as
gaining an in-depth understanding of a program behavior
often goes through a cyclic speculate-test scheme. Stressing a
hypothesis then relies on probes usage.

2.2. Methods: Iterative and Test-Driven Development. Devel-
oping reusable software typically involves many design
iterations. Each iteration may introduce new requirements
that change or extend the original design. This iterative
process of rearchitecting a design may be described as
code refactoring. Whereas reworking or rewriting code may
involve dramatic changes in functionality; refactoring is
an intermediate step that generally does not disturb the
behavior of an application.

Extreme Programming [12] advertises the creation of
unit tests for test-driven development. The developer writes
a unit test that exposes either a software requirement or a
defect. This test will fail because either the requirement is not
implemented yet or it intentionally exposes a defect in the
existing code. Then, the developer writes the simplest code to
make the test, along with other tests, passes (Algorithm 1).

XP mandates a test everything that can possibly break
strategy and provides guidance on how to effectively focus
the limited resources we can afford to expend on the
problem.
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test2
CDFGSynthesisAPI new

example: ‘example.step’
family: ‘F5’

resF5 := self readResult.
CDFGSynthesisAPI new

example: ‘example.step’
family: ‘F4’

resF4 := self readResult.
self assert: resF5 = resF4

Algorithm 2: Characterization-based validation for synthesis
cases on two reconfigurable device families (F5 and F4). Both
postsimulation memories contents are checked to be equal.

XP’s thorough unit testing allows several benefits, such
as simpler and more confident code development and refac-
toring, simplified code integration, accurate documentation,
and more modular designs. Besides, these unit tests are also
constantly and automatically run as a form of regression test.

The main drawback using such tests in a simulation scope
is obviously to write significant tests, whereas there may be
no specification available for the process being simulated.

Characterization tests act as a replacement. A character-
ization test characterizes the actual behavior of an existing
piece of software and therefore protects existing behavior
of legacy code against unintended changes via automated
testing [16].

The goal of characterization tests is to help developers to
verify that the modifications made to a reference version of a
software system did not modify its behavior in unwanted or
undesirable ways. They enable, and provide a safety net for,
extending and refactoring code that does not have adequate
unit tests.

2.3. Moving from Software to Hardware Design. Despite hard-
ware debugging is a major concern, getting such facilities as
speculate-test pairing support and deep state analysis are not
obvious to offer in a simulation framework. One solution
relies on some design patterns such as memento and observer
[17]. Respectively, they are used for state recovering and
propagating changes through dependent objects.

Evaluating conditions before clocking the circuit when
running simulation allows to freeze the execution on
demand, hence implements conditional probes. Recording
a stack of states allows to trace some bugs back from a
conditional break point.

In addition, the simulation framework provides feedback
when refactoring the CDFG that models the system and
offers by then an iterative development support. For exam-
ple, the designer may change the I/O data types or substitute
a parallel node by a sequential one. Further, as some portions
of the initial CDFG are replaced by RTL ones during the
synthesis process, refactoring also covers migrating from
high-level to low-level CDFG while preserving the agile
behavior of software development. As a low-level CDFG is an
extension and so a special case of high-level CDFG, synthesis

appears as a deep refactoring similar to source-to-source
transformation at software engineering level.

As our simulation framework operates at several abstrac-
tion levels ranging from untyped functional code (Smalltalk)
to RTL netlists, a set of characterization tests can be
automatically generated to validate the synthesis scheme.
This is done by exercising the one step above specification
level (code, CDFG) with a wide range of relevant and/or
random input values, recording the output values (or state
changes) and generating a set of characterization tests. When
the generated tests are executed against a new version of
the code (e.g., synthesized CDFG), they will produce one
or more failures/warnings if that version of the code has
been modified in a way that changes a previously established
behavior. Characterization tests remain change detectors;
it is up to the person analyzing the results to determine
if the detected change was expected and/or desirable, or
unexpected and/or undesirable.

Algorithm 2 illustrates a characterization test for validat-
ing synthesis cases on two reconfigurable device families (F5
and F4). Both produced CDFGs are simulated on a common
set of inputs. The output values are stored into memories.
Identity between these two memory contents is assumed to
point out that both CDFGs share a common behavior.

3. Application and System Modeling

Our multilevel simulator takes as input a specification of an
accelerated application and a model of the host system. The
global flow of the methodology is depicted by Figure 1.

At the highest level the application is specified by
behavioral code. Entry point is not restricted to a partic-
ular language since simulation can be performed on an
intermediate representation (IR), which is a Control/Data
Flow Graph (CDFG), generated from the behavioral code.
However, to simulate the application at a behavioral level
the language has to be the same as the framework since
application is executed as software.

The high-level CDFG is synthesized to a lower level, by
our tool named Madeo+, and can be simulated or exported
to EDIF as well as Verilog netlists. Target dependent tools
perform final place and route.

Simulation of the application is integrated in a system-
level simulation for a global simulation. The host system is
modeled from an object framework defining components
and communication links. The multilevel simulator pro-
duces Gantt and interaction diagrams giving information on
the system behavior as well as signals waveforms generated
by the application at RTL level.

Debugging and testing iterations are performed on
simulation and synthesis results.

3.1. Multilevel Representation Supporting Simulation

3.1.1. Intermediate Representation for Modeling and Sim-
ulating Applications. A CDFG is a directed graph whose
nodes are operations and edges represent data flows. A
classical representation of the CDFG consists in isolating data
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nodes constituting a DFG apart from control nodes (CFG)
which role is to drive the execution flow of operations by
establishing a specific instruction ordering (e.g., loops and
conditions). Representing a CDFG requires to manipulate
nodes and edges. Edges represent data; a datum classically
knows its source, its consumers, and its type. An edge
cannot cross a hierarchy; to connect to a node located into
another hierarchy, the datum must be encapsulated within

an AliasData which allows (1) a better modularity of the
hierarchical CDFG and (2) renaming of signals.

CDFG nodes carry their own semantic. They do not
explicitly dissociate the control from the operative nature.
For example, a loop is a particular hierarchical node; it is not
a control structure in charge of the execution of the loop core.

The CDFG is defined in an object-oriented environment;
Figures 2 and 3 give the class hierarchy of the model for both
types: atomic and hierarchical.

Atomic Nodes. An atomic node (see Figure 2) is a node
without suboperators; it represents an abstract hardware
primitive. If hardware primitives are not available in the
target or in libraries, nodes are implemented as soft macros.

A computation is modeled by a ComputeNode, which
result is returned as the output edge of the node. However,
to simplify the detection and the processing of specific func-
tions, some particular compute operations are handled as
specific operators: memory accesses (LoadNode, WriteNode),
communication, and synchronization on channels in a CSP
like formalism [18] (ReceiveNode, SendNode).

Hierarchical Nodes. A hierarchical node (see Figure 3) is
a node containing suboperators. We can distinguish three
types of hierarchical nodes.

(i) Concurrency: ProcessNode for implementing parallel
coarse grain operation (threads), ParallelNode, for
parallel fine grain operations, or SequentialNode for
sequential ones.
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(ii) Control: loops (FixedLoopNode and CondLoopNode),
alternative (TestNode, AltNode), and accumulation
(AccumulatorNode).

(iii) Semantic-less organization: CompositeNode that can
come from loop bodies or functional calls.

3.1.2. RTL Modeling

(a) Elementary Components. The circuit appears as a set
of operators and data; the data carry their source and
consumers, and the operators keep a link to their data’s IOs.
These double-linked dependencies enable to simulate the
circuit.

(b) Object-Oriented Modeling: Polymorphism and Synthesis.
The RTL modeling makes use of another structure, qualified
as low-level CDFG, partially inherited from the CDFG one,
but that is linked to the target platform. This structure
conforms to the abstract node/data schemata (defined in the
EXPRESS formalism [19] and generated using Platypus tools
[20]). As this RTL model complies to the CDFG’s application
programming interface, and due to object-oriented facilities,
these two levels can be interleaved within a single model to
be simulated.

This model includes additional constructs (soft macros),
primitive operators (libraries), registers/flip-flops as well as
random logic nodes (e.g., BLIF format), and FSM descrip-
tion (e.g., KISS format). This model supports outputing
EDIF files; hence it allows coupling with back-end tools
providing among other feedbacks the circuit operating
frequency.

Pushing forward the extension of the high-level CDFG
to build up a low-level CDFG is a natural way to tailor RTL
modeling. This ensures that a low-level CDFG can easily fit
to any target at the cost of redefining the library of primitive
operators. Such an operator is specified by its I/O bitwidth
and its behavior to permit mapping from high-level CDFG
nodes as well as by its latency which is used for timing
generator during synthesis. An alternative solution consists
in relying on random logic to design operators.

3.2. Object-Oriented System Modeling

3.2.1. A Component Approach for Structuring the System.
SmallSystem is an object-oriented framework providing to
the designer a set of abstract entities for modeling concurrent
systems, built as a set of components interconnected through
communication ports. Concepts implemented in SmallSys-
tem are independent from any implementation language
and could be retargeted to another environment/language.
However, our approach takes advantage of a Smalltalk-80
environment that provides dynamic features as mentioned
above [15].

An object-oriented framework provides to the designer
a set of software components that can be directly used
or tailored for a given application by subclassing. An
application appears as an extension of the framework. The
more it is subclassed, the more it is enriched with new
reusable functionalities, bringing to the designer a flexible

ComponentPn
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Figure 4: Example of a model with three components. The top
hierarchy is the component Main that encapsulates two subcompo-
nents Unit 1 and Unit 2. Internal activities of each subcomponent
communicate through the ports of the interfaces.

Component

User class #1
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Figure 5: Class hierarchy of the modeling framework SmallSystem.
In order to use simulation functionalities the framework SmallSys-
tem inherits from the simulator.

resource. Moreover, all the classes of a framework inherit
from common classes’ hierarchy. Therefore, they share a
set of methods allowing to apply generic algorithms to
all the elements of the framework. The tools addressing
the framework are developed independently from specific
extensions guaranteeing a high-degree of reusability.

SmallSystem defines abstract entities that are special-
ized by inheritance for modeling concrete system elements
and communication links. An abstract system element is
structured as a component implementing a behavior and
a communication interface defined as a set of input and
output ports. A system is built by interconnecting the
component’s interface with communication links of varying
semantics and capacities (see Section 3.2.2). A component
encapsulates its internal states and behaviors meaning that
only communications with its interface can modify them. For
integrating a component in a system, only its functionality
and interface have to be known. This approach enables to
define concrete elements that are structurally independent
from a specific model. Additionally a component can be
hierarchical; it then contains an entire subsystem being
connected through the interface of its encapsulating hier-
archy to an external component. The internal activities of
an encapsulating component can also communicate with a
subcomponent.

Figure 4 illustrates an example of a hierarchical model.
The top hierarchy is Main encapsulating the two components
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Unit1 and Unit2. Unit1 defines its internal activities by
three processes. Its interface defines three ports, and two
processes are in charge of the external communications.
Internal communications between processes are performed
by local declarations of communication links.

3.2.2. Raising Up the Abstraction Level: Object-Oriented
Modeling. Figure 5 illustrates the class hierarchy of the
SmallSystem framework. The classes User Class (1 and n)
correspond to an extension of the framework.

The basic framework elements are as follows.

(i) Component. It represents abstract behavioral system
elements. A specialization adds behaviors to the component
by the definition of additional methods corresponding
to internal activities. These methods can be executed as
processes or used as classical functions. An interface is
defined by the declaration of input/output ports in an
initialization method. The internal states are represented by
instance variables and are not directly accessible by external
components.

In order to access the simulation features this class
inherits from the simulator framework. More details about
the simulator are given in Section 4.3.1.

(ii) Connection. This abstract class corresponds to a connec-
tion between two component ports and allows to perform
communications. At this abstraction level no semantic is
associated to the connection. The class is specialized in
two entities that are Channel and FIFO. The former is
an equivalent of a CSP channel as defined in Occam
language [21]. Communications are synchronized by rendez-
vous providing a fine-grain synchronization. The latter is a
classical FIFO with a parametric size. Communications are
blocking if either the FIFO is empty or the maximal capacity
is reached (this parameter is defined by the designer).

Because of the delays created by the synchronizations
when the model is simulated, this class also inherits from the
simulator framework.

4. Methodology of Simulation

A multilevel simulation needs to manage different models
addressing the different abstraction levels. This section
details the simulation models used by our framework and
how they interact. The simulation engines for system-level
and RTL-level simulation engines are described. Automated
HDL wrapper generation ensuring interoperability of our
framework with mainstream tools is explained.

4.1. Simulation Models. A simulation model defines the
evolution of the system’s states according to the simulated
time. The model we use for system-level simulation is based
on discrete states with an event-driven approach while the
RTL level circuit simulation is cycle-accurate, that is, time-
driven.

An event corresponds to a change of state in the simulated
system caused by incoming data or by internal processes. A
system state simulated in a discrete event model is defined

by discrete state variables. Events are produced at discrete
instants called dates. Continuous variable values, including
time, are taken into account only when they are used, that is,
at event dates.

Discrete event simulation can be classified according to
how the simulation time goes on: event-driven and time-
driven.

Event-driven model does not use global clock; the time
is updated with the next earliest event date. Thus the time
evolution only corresponds to an ascending order of the
dates. The event scheduler consumes the event queue in
this order, triggers the events, and updates the simulated
time. Because of the sparse event repartition in a system
simulation, the event-driven model is well suited for behav-
ioral system simulation compared to RTL level. It avoids
simulating empty cycles.

The simulated time of a time-driven model is incre-
mented by a constant time step that is set according to the
problem. For each time step, the event scheduler searches for
dates in the list of events corresponding to the current step,
then the selected ones are executed. Obviously, it is possible
to obtain a time step with no events scheduled wasting
simulation time. Time-driven simulation is interesting for
an RTL level circuit simulation because of the activities
produced at each clock cycle such as updating values in flip-
flops. In this case the time step is set to one clock cycle.

4.2. Embedding Cycle-Accurate Simulation within an Event-
Driven Scope. The platform described in this paper com-
bines two complementary simulation models for simulating
an application running on an RSoC. The system level is
simulated by a discrete-event and event-driven simulator
whereas the RTL level, corresponding to an application
mapped on an accelerator, is simulated by a cycle-accurate
simulator. This configuration raises the integration problem
of both simulation models with separate notions of time.
In order to synchronize both models, the cycle-accurate
simulation is embedded within the discrete-event one as
an atomic task. At the discrete-event level, when a start
signal is received, for example, from a DMA controller, the
mapped application is executed by starting the cycle-accurate
simulator (for more details on the API used to interface both
simulators see Section 4.3.2(b)). When computation ends, it
returns the amount of cycles spent. This latency is converted
in the time unit used by the discrete-event simulator in
function of the accelerator frequency. The result corresponds
to the delay applied in the event-driven simulation for
simulating the application execution. Although the mapped
application is time-driven, at the system-level the simulation
is homogeneously event-driven.

4.3. Simulation Engines

4.3.1. System-Level Simulator. The high-level discrete-event
simulator is event-driven and mainly inspired by [14]. The
simulation kernel is based on a scheduler providing all the
functionalities related to the creation, the scheduling, and
the execution of events. A simulation model is composed of
simulation objects that create delays for simulating execution



International Journal of Reconfigurable Computing 7

Big endian | 

CompositeData Data
Data

MappingAssociation

Mapper

Data

Mapping policy

Mapping

Type

Reference Create

Aggregation

Reference
Reference 

many

Aggregation

Little endian

Figure 6: The mapper links high-level data to an aggregation of Boolean data, with respect to data type.

Interactions

System
activities

Application
under test

Figure 7: Interactions between the design under test and the host
system correspond to the activities emulated by the mock object.

Acc. function

CDFG

Madeo +

Netlist
(Verilog)

ModelSim

Results

Wrapper
(Verilog)

Multilevel
simulation

Simulation
script

Figure 8: Simulation with generated wrapper and third party tool:
ModelSim.

latencies and schedule activities. The initial scheduling of
Smalltalk methods belonging to the components performs
the simulation of a system model. They represent the
component internal activities and are executed as processes.

Methods are executed by the Smalltalk virtual machine
and by default spend no time in the simulation. Latencies
of tasks are simulated by the insertion of specific calls

to the simulation kernel features for creating delays and
tracing the activities. The delay specified can be constant
or generated in function of a probability law for simulating
nondetertiministic behaviors such as bus contentions.

This technique allows monitoring fine grain system
activities and allows multiple levels of detail. For example a
task can be seen as atomic or traced at different points for
more accuracy. The simulation trace obtained is used by the
visualization tools presented in Section 5.1.

In order to have access to the simulation kernel function-
alities, the modeling framework inherits from the simulator
class Simulation Object as illustrated by Figure 5.

The simulation kernel defines two abstract classes.

(i) Simulation Object. This class corresponds to an abstract
simulation object and gives a restricted access to the simula-
tion kernel. It only provides to its subclass a set of methods
for scheduling and suspending activities. For example, a
simulation object has no direct access to the event queue
under the responsibility of the scheduler. The components
and communication links of the modeling framework inherit
from this class.

(ii) Simulation. This class is the entry point of a simulation
model. It permits to initialize the simulator and to start a
simulation by scheduling the initial activities.

4.3.2. Cycle-Accurate Simulator for Mapped Applications. The
simulation consists in computing the current value for the
data. Simulation is performed at RTL level and is cycle-
accurate.

Simulation relies on the following circuit structure.

(i) Data are computed by operators.

(ii) Constant Data force evaluating their consumers.

(iii) Operators compute their outputs following a data
driven scheme.

(iv) Flip flops own a special behavior to delay their change
until the next clock edge.
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The algorithm iterates over data and tries to fire their
consumers evaluation. Evaluation is correct when all data
changes have been considered.

This algorithm cools down until data values are stabi-
lized. Clocking the circuit validates the flipflops’ values and
evaluates again.

(a) High-Level CDFG. As the mapped structure keeps alive
the link between high-level variables and low-level signal
(see Figure 6), both low-level and high-level values can
be simultaneously probed during simulation (the mapping
Policy is used to rebuild the high-level values based on the
signals Boolean values).

(b) Low-level CDFG Simulator API. The low-level simulator
provides an API enabling to set conditional breakpoints
on the low-level CDFG top interface signals. SmallSystem
accelerator components interact with the low-level CDFG
under simulation through the API by defining execution
scenarios in a method.

(c) Probing CDFGs. Two kinds of conditional breakpoint are
used which either stops the simulation or performs an action
when triggered. Actions and breakpoints are defined in a
metamodel which is instantiated and used by the simulator.
This model can also be used for generating an HDL wrapper
for simulation with third party tools (see Section 4.4).

Algorithm 3 gives the syntax for a conditional breakpoint
set on the application termination signal stopping the
simulation when signal done is equal to 1. It corresponds to
the instantiation of a probe object with an implicit action.
The signal is an output and is retrieved by its name in the
low-level CDFG through the simulator API.

In order to simulate response on signals, it is also possible
to define breakpoints that perform user-defined action.
Algorithm 4 defines a conditional breakpoint associated to
an action setting the signal dma Req Read to value 0 after 10
cycles when signal dma Ack Read is equal to 1. The message
forceSignal: sent to the class SimulatorForceSignal creates an
action executed by the low-level simulator.

4.4. Automated Wrapper Generation for Third-Party Simula-
tion. Stimuli are performed by a wrapper mimic behavior
of the external environment such as systems activities.
In software engineering and object-oriented development
this technique is referred as mock object. A mock object
simulates a real object by defining the same interface and
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Figure 12: ModelSim results.

Simulator
probe: (Simulator synthesizedCDFG

outputNamed: ‘done’)
relation: ‘=’
value: 1
probeName: ‘Task Done.’

Algorithm 3: Conditional breakpoint set on the application ter-
mination signal. When the breakpoint is triggered, the simulation
is stopped.

Simulator
probe: dma Ack Read
relation: ‘=‘
value: 1
probeName: ‘dma ack read’
action: (SimulatorForceSignal

forceSignal: (dma Req Read)
to: 0
in: 10).

Algorithm 4: Conditional breakpoint associated to a user-defined
action. The signal dma Req Read is set to 0 when the breakpoint is
triggered. The action can also be conditional, and multiple actions
can be defined in an array.

providing equivalent services but without implementing the
real functionalities. It enables to quickly validate the behavior
of another object in a controlled way.

In a standard hardware design flow, applications are val-
idated through HDL simulations performed by mainstream
tools such as ModelSim [22]. Validation goes through using
a wrapper written in HDL which defines a set of stimuli
interacting with the application’s top interface. Writing HDL
wrappers can be burdensome and time-consuming when
applications have complex interfaces. Furthermore each
wrapper is specific to a given application, and it is necessary
to rewrite it for addressing different cases. In order to ensure
the interoperability of our methodology with mainstream
tool flows and to increase productivity, HDL wrappers are
generated from a higher-level specification.

In our framework, system activities, such as data trans-
fers, are modeled by SmallSystem (see Section 3.2) and inter-
faced with the application through the low-level simulator
API. However, it is also possible to test the application
apart from a system model by defining stimuli in a stand-

alone script. Scripting produces stimuli by instantiating the
metamodel described in Section 4.3.2(c); stimuli correspond
to breakpoints with actions simulating system activities
(normally handled by the system model, e.g., memory
requests) that interact with the design’s top interface. The
mock object corresponds to the probing model made up of
the set of stimuli.

Activities emulated by the mock object correspond to
the intersection between system activities and the design
(see Figure 7), for example, DMA handshakes and memory
requests.

This software approach takes advantage of testing and
debugging features as described in Section 2. The abstrac-
tion level of scripting enables to be more productive;
moreover, low-level aspects are taken into account by the
simulator (scripting and generating HDL wrapper enables to
save 50% of the designer’s coding effort compared to hand-
written HDL wrapper). For example, signal declarations or
design instantiation is not necessary since the simulator gives
access to the top interface through an API.

In order to ensure the interoperability of our method-
ology and final validation by mainstream tools, a Verilog
wrapper is generated from the mock object. This corresponds
to a model-to-model transformation with refinement on
data. A probe on a variable is translated to a composite
probe on a signal vector conforming to Figure 6. Two
rewriting schemes are supported depending of the kind of
breakpoint (Algorithms 4 and 3) as shown in Algorithm 5.
The generated wrapper is used for testing the design netlist
produced by Madeo+ as depicted by Figure 8.

Algorithm 5 shows the generated Verilog code for break-
points of Algorithms 4 and 3. Declaration of signals and
design instantiation are generated automatically as well.

5. Simulation Results

In order to perform verifications on the model, the designer
needs tools to visualize the concurrent activities of the system
under test. Our visualization tools show the system behavior
as well as the interactions between components at different
levels of detail. For example, at the system level, the activities
are seen as tasks evolving on a time scale while at the mapped
application level each clock cycle is reported.

To illustrate this, a good case study must be an applica-
tion simple enough to ease explanation, that makes sense in
a DSP scope and that designers do know pretty well, with
no compromise on the ability to highlight the benefits our
approach carries. These considerations lead us to select an
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Figure 13: Internal view of a low-level simulation.

FIR filter. The global application is on purpose simplified:
it is composed of two processes performing reading/writing
operations on accelerator’s local memories (input and output
processes) for feeding an FIR filter function process and
writing back results. CDFG representation of the function
is given by Figure 10. The function receives three data from
the input processes and sends back one result to the output
process.

5.1. System-Level Simulation. The system simulator reports
the behavior of each traced activities on a Gantt diagram.
Figure 9 illustrates the system-level simulation of the FIR
filter application running on a modeled SoC including a
main memory, a bus, a DMA controller feeding accelerator’s
local memories, and a reconfigurable accelerator. The task
names are listed on the Y-axis and the time scale on the X-
axis. All the system components are modeled at a behavioral
level in the SmallSystem framework.

Only the needed functionalities of components have been
modeled at a high abstraction level. The processor task
is to initialize the DMA and sends a start signal to the
accelerator. The DMA controller performs communications

in a pipelined way. The bus transfers the packets and
simulates contention penalties by a probability law chosen
by the designer.

The diagram of Figure 9 shows tasks related to a local
execution on the reconfigurable accelerator. Traces prefixed
by BUS show the data transfers between the main memory
and the accelerator. Activities of input and output processes
computing addresses for local memory accesses are reported
by traces CIn and COut. Function’s activities (receive,
compute, send) are given by traces prefixed by FNC. Figure 9
focuses on the application behavior, but it is also possible to
visualize system activities such as memory accesses and DMA
transfers.

At this level the application is specified in Smalltalk, and
the simulation is performed at software level. The refinement
of the abstraction level is obtained by a translation of
Smalltalk into a CDFG taken as input of the cycle-accurate
simulator integrated as a component in the model (see
Section 5.2).

A Gantt diagram gives a global vision of the system
behavior with a fine grain tracing of the components’
internal activities. Another aspect concerns the interactions
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Figure 14: Low-level simulation for a computation divided in three phases.

initial begin
@(posedge done); − −HALT
$stop

end
always @(posedge dma ack read) begin

#(PERIOD ∗ 10) dma ack read = 0;
End

Algorithm 5: Generated Verilog code of two conditional break-
points.

between the components performed by communications.
Communications between SoC’s components are repre-
sented by an interaction diagram shown in Figure 11. A
circle corresponds to a communication starting point. For
example, at the time 2 the CPU sends a start signal to
the DMA for initiating data transfers to the reconfigurable
accelerator. Then a request is sent to the main memory
(MEM) through the bus (BUS).

5.2. Cycle-Accurate Simulation of an Application. Figure 13
presents a list of traces for the low-level CDFG simulation
of the previous example.

The curves represent, respectively, the value read from
memory (1), the buffered values for the FIR filter computa-
tion that come from the read values at different timestamps

(2) (3) (4) and correspond to the three receive operations in
Figure 10, FIR filter result (5), the write address (6), and the
write activation (7). Signals (1) to (6) carry numerical values
while (7) is an RTL Boolean value.

Comparing Figures 9 and 13 clearly illustrates both the
multilevel simulation, with as an example system activities
(top three lines of Figure 9) on one side and low level and
accurate values manipulation on the other side (Figure 13),
and both the correlating values (line 7, Figure 9 with (7), line
9 with (2) to (4) sampling values).

5.3. Simulation with Third-Party Tools. The generated Ver-
ilog wrapper and the Madeo+ netlist are taken as input of
ModelSim for final validation. Figure 12 shows application
activities at the netlist level. Activities such as DMA (signals
dma) result from interactions between the netlist and the
testbench (Algorithm 4). They also appear in Figures 14 and
13. At a higher abstraction level, read/write requests are
traced on Figure 9. Addresses generated by IOs processes are
ADDR0 and ADDR2; they also appear in Figure 13.

6. Conclusion

This paper introduces a methodology for multi level simula-
tion of applications running on an RSoC. This work focuses
on fast and early verification while preserving the ability
to deeply probe the RTL model. Our debugging scheme
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exploits several object-oriented facilities: agile development,
test-driven design, and abstraction. Multilevel ranges from
behavioral code execution to mainstream simulation engines
(e.g., ModelSim) and addresses both system activities (e.g.,
data moves) and accelerated tasks. The successful design of
significant test cases has confirmed this approach to be very
valuable.

Current on-going work, related to this, addresses imple-
menting the breakpoints as hardware primitives, with a
detailed study on performances and the characterization of
probe-effect in case of synthesized probes.
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Le Prochain Symposium en Architecture de Machines (SympA
’08 ), 2008.

[14] A. Goldberg and D. Robson, Smalltalk-80: The Language
and Its Implementation, Addison-Wesley, Boston, Mass, USA,
1983.

[15] “Visualworks smalltalk,” http://www.cincom.com.

[16] M. Feathers, Working Effectively with Legacy Code, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004.

[17] S. R. Alpert, K. Brown, and B. Woolf, The Design Patterns
SmallTalk Companion, Addison-Wesley, Boston, Mass, USA,
1998.

[18] C. A. R. Hoare, “Communicating Sequential Processes,” 1985.
[19] Part 11: edition 2, “EXPRESS Language Reference Manual,”

ISO 10303-11, 2004.
[20] “Platypus Technical Summary and download,” 2007, http://

cassoulet.univ-brest.fr/mme.
[21] S.-T. M. Limited, OCCAM 2.1 reference manual, 1995.
[22] “Modelsim,” http://www.model.com.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


