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This paper presents a setup for teaching configware to master students. Our approach focuses on experiment and leaning-by-
doing while being supported by research activity. The central project we submit to students addresses building up a simple RISC
processor, that supports an extensible instructions set thanks to its reconfigurable functional unit. The originality comes from that
the students make use of the Biniou framework. Biniou is a research tool which approach covers tasks ranging from describing the
RFU, synthesizing it as VHDL code, and implementing applications over it. Once done, students exhibit a deep understanding of
the domain, ensuring the ability to fast adapt to state-of-the-art techniques.

1. Introduction

Innovative lectures and lab courses are required to offer high
quality training in the field of configware. Being either an
electrical engineer (EE) or a computer scientist (CS) expert
will not be enough to meet the needs we foresee in terms
of interdisciplinary for the future. As teachers, our goal is
not to output Computer-Assisted-Design (CAD) end-users
but highly educated experts, who will easily self-adapt to new
technologies.

Our contribution to this in-depth rethinking of curricula
goes through providing cross expertise training centered
around CAD environments design. CAD tools embed the full
expertise both from an architectural and from an algorithmic
point of view. Affording the design of CAD environments
ensures a full understanding of the domain.

As teachers, we make use of some research tools we
have developed, that offer a full design suite for recon-
figurable accelerators. The key principle behind this is to
let students design and implement simple schemes (pro-
cessors, processor-to-accelerator coupling, etc.) while taking
advantage of research tools that promote high productivity.
After students have manipulated these toys examples, they
show a promising learning curve when addressing state-
of-the-art technology (processor soft cores, Xilinx design
suite, FSL Fast Serial Links, etc.). This second stage is when
performances issue arises. At this point, some discussions
happen: fine-versus coarse-grained accelerators, compiler

friendly architecture, reconfigurable functional unit versus
coprocessor, and so forth.

Splitting the learning activities in such a way emphasizes
simplicity. A first consideration is that a simple design
always takes less time to finish than a complex one, exhibits
more readability, and offers a better support for further
refactoring. Another thing about simple designs is that they
require knowledge to recognize. Knowledge is different from
information. Information is what you get as a student, when
gaining access to a lecture. However, you can have plenty of
information and no knowledge. Knowledge is insight into
your problem domain that develops over time. Our teaching
approach aims at accompanying students from information
to knowledge.

This paper reports this experience. The rest of the paper
is organized as follows: Section 2 introduces the lecture’s con-
text along with the experiment centric approach we followed.
Section 3 focuses on the project we submit to students.
Section 4 shifts from the toy example to a more realistic
scope. Section 5 summarizes the benefits of our approach.

2. Experiment Centric Teaching

2.1. Local Scope

2.1.1. Local Curriculum. The master curriculum “Software
for Embedded Systems” opened two years ago at the
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FiGUre 1: Overview of the Biniou flow.

university of Brest. This curriculum addresses emerging
trends in embedded systems and highly focuses on reconfig-
urable embedded systems, with a set of courses for teaching
hardware/configware/software codesign. The master gathers
students from both CS and EE former curricula. The current
master size is 12, coming from half a dozen countries. Half
of the students are former local students hence own a sound
background in terms of CS but suffer from lacks in electronic
system design.

The reconfigurable computing courses are organized
around two main topics covering the hardware (architec-
tures) and software (CAD tools and compiler basics) aspects.
These courses enable students to build from their previous
knowledge a cross-expertise giving a complete vision of the
domain.

A strength of this teaching approach is to partially rely
on a research environment rather than purely on Xilinx
hands-on tutorials. This offers the opportunity to exercise
internal changes on algorithms and architectures, and to
address both state-of-the art concepts and both some more
prospective topics such as innovative—and still confidential
in the industry—architectural trends.

First an overview of the reconfigurable computing (RC)
landscape is introduced. Both industrial and academic archi-
tectural solutions are considered. This course is structured in
three parts:

(i) overview of RC for embedded systems (2 sessions),
(ii) virtualization techniques for RC (2 sessions),

(iii) Modeling and generation of reconfigurable architec-
tures (1 session). The second item addresses both
state-of-the-art tools and algorithms in one hand
as well as locally designed tools in another hand.
The key idea is that students tend towards learning
classical (or vendors’s) tools so that they can bring a
direct added-value to any employer of the field, hence
get in an interesting and well-paid job.

However, tools obviously encapsulate the whole domain-
specific expertise, and letting students “open the box” closes

the gap between “lambda users” and experts. This takes
up the challenge of providing a valuable and innovative
curriculum. Obviously a single class is not wide enough to
address all the-above mentioned items, but this course is
closely integrated with some others such as “Numeric and
Symbolic synthesis” or “Test & Simulation”.

2.1.2. Legacy CAD Development. The research group behind
this initiative is the Architectures & Systems team from the
Lab-STICC (UMR 3192). This group owns a legacy expertise
in designing parallel reconfigurable processor (the Armen
[1] project was initiated in 1991) but has been focusing on
CAD environment developments (Madeo framework [2])
for the past 15 years. The Madeo framework is an open and
extensible modeling environment that allows to represent
reconfigurable architectures then acts as a one-stop shopping
point providing basic functionality to the programmer
(place&route, floorplanning, simulation, etc.). The Madeo
project ended in 2006 while being integrated as facilities
in a new framework. This new framework, named Biniou,
embeds additional capabilities such as, from the hardware
side, VHDL export of the modeled architecture and, from
the software side, wider interchange format and extended
synthesis support. Biniou targets reconfigurable System-On-
Chip (SOCs) design and offers middleware facilities to favor
a modular design of reconfigurable IPs within the SOC.
Figure 1 provides an overview of Biniou. In the appli-
cation side (right) an application is specified as C-code,
memory access patterns and some optimizing contexts we
use to tailor the application. This side outputs some post-
synthesis files conforming to mainstream formats (Verilog,
EDIF, BLIF, PLA). Results can be further processed by the
Biniou Place and Route (P&R) layer to produce a bitstream.
Of course the bitstream matches the specification of the
underlying reconfigurable target, being the target modeled
using a specific Architecture Description Language (ADL).
A model is issued on which the P&R layer can operate as
previously mentioned, and a behavioral VHDL description
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FIGURE 2: Schematic of the entire reconfigurable processor.

of the target is generated for simulation purposes and FPGA
implementation.

Once a bitstream is generated out of the application
specification, the designer can download it to configure its
platform.

Also some debugging facilities can be added either in the
architecture itself or as parts of the application [3].

2.1.3. From Research to Teaching. Biniou has been exercised
as a teaching platform for Master 2 students. This happened
in a reconfigurable computing course. In addition to lectures,
students practice reconfigurable computing through practi-
cal sessions and exercise their new skills through a project.
This project covers VHDL hand-writing, reconfigurable
architecture modeling and programming, code generation,
and modules assembly in order to exhibit a simple processor
with a reconfigurable functional unit. This extra-unit allows
to extend its instructions set.

2.2. Practical Sessions. Practical sessions are organized as
three activities. The first activity is to gather documentation
and publications related to a particular aspect of the course;
the students have to present their short bibliographic study
individually in front of the whole class.

The second activity is centered around algorithms used
to implement applications over a reconfigurable architecture:
point-to-point and global routers, floorplanners, placers.
Some data structures such as Transitive Closure Graphs
(TCG) are introduced later on in order to point out the need
for refactoring and design patterns use [4]. This bridges the
software expertise to the covered domain (CAD tools for
reconfigurable architecture).

The third activity is related to tools and formats. Three
slots are dedicated to VHDL that most of the students do
not know. Manual description of fine grained reconfigurable
architecture is introduced within this amount of time.

Some sessions are dedicated to practicing required tools;
students manipulate logic synthesis tools (SIS [5], ABC),
file formats conversion (Verilog, EDIF, BLIF, PLA), and
behavioral synthesis according to some data access pattern
(Biniou). We also offer a web-based tool [6] to output RTL
netlist that students use to exercise several options for netlist
generation.

Students create their own FPGA using Biniou, that is
further reused in the project under a tuned up version.

2.3. Project Description. The project consists in designing a
simple RISC processor, that can perform spatial execution
through a Reconfigurable Functional Unit (RFU).



Coupling an RFU along with a processor to get a
reconfigurable processor is one out of other alternatives
for accelerating intensive tasks. The concept of instruction
set metamorphosis [7] is defined and a set of architectures
are described. For example, P-RISC [8], Garp [9], XiRISC
[10], and Molen [11]. A specific focus is set on the Molen
programming model and its architectural organization. The
Molen approach is presented as a meeting point between the
software domain (sequential programming and compiler)
and the hardware domain (specific instruction designed in
hardware).

Figure 2 illustrates the schematic view of the whole
processor, including the RFU.

The processor supports a restricted instructions set,
that conforms to a SET-EXECUTE-STORE Molen paradigm
[11]. In order to keep the project reasonably simple, we
restrict the use of the RFU to implementing Data Flow
Graphs (DFGs) on one hand, and we provide students with
the Biniou framework on the other hand. Restricting the use
of the reconfigurable part as a functional units also mitigates
the complexity of the whole design. However, this covers the
need for being reachable by average students while preserving
the ability to arouse’s top students curiosity, by offering a set
of interesting perspectives for further developments.

This project let students build and stress new ideas
in many disciplines related to reconfigurable computing
such as spatial versus temporal execution, architectures,
programming environments, and algorithms.

2.3.1. Context. This project takes place during the fall
semester, from mid October to early January. A noticeable
point is that almost no free slots within the timetable are
dedicated to this project, that overlaps with courses as well
as with “concurrent” projects. This intends to stress students
and make them aware of handling competing priorities.

2.3.2. Expected Deliverables. We define three milestones and
three deliverables. The milestones are practical sessions in
front of the teacher.

Three main milestones are as follows.

MI1: RISC processor, running its provided test programs.

M2: RFU, with Galois Field-based operations imple-
mented as bitstream.

M3: Integration, final review.

2.3.3. Schedule. The schedule is provided during the project
“kick-oft”. To prevent students from postponing man-
aging this project we use the collaborative platform to
monitor activities, to specify time-windows for uploading
deliverables, and to broadcast updates/comments/additional
information. Reminders can be sent by mail when the
deadline is approaching. Once the deadline expires, over-due
deliverables are applied a penalty per extra half-day.
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3. Project

3.1. Processor Soft-Core. Designing such a simple processor
carries no extra value and several teaching experiments
are reported [12]. However, keeping in mind that half the
students have never exercised writing VHDL description,
and given practice makes success, we decided to let students
design their own processor. Although, a preliminary version
with missing control structures was provided in order
to ensure a minimal compatibility through the designs.
Obviously, the matter here was to ease evaluation from
a scholar point of view as well as to force students to
handle kind of legacy system and refactoring rather than full
redesign.

We also provided the instruction set and opcode. In
an ideal world, and with a more generous amount of time
to spend on the project, as the design is highly modular,
building a working design by picking best-fit modules out
of several designs would have also been an interesting issue.

3.1.1. Decoder. It outputs signals from input instruction
according to the layout on Table 1. This information is
provided to ensure compatibility as well as programmability
(as no compiler support is considered).

3.1.2. Test Bench Program. Students are familiar with agile
programming, test-driven development and characterization
tests. When designing a processor, the same approach applies
but at a wider granularity (program execution instead of
unit test). Hence, we distributed some test bench programs.
Analyzing at specific timestamps (including after the appli-
cation stops) the internal states (some signals plus registers
contents) leads to design scoring.

3.2. Reconfigurable RFU Design

3.2.1. Background. In order to give to students the main
architectural concepts behind FPGAs, we first focus on a
simple mesh of basic processing elements composed of one
4 entries Look-Up Table (LUT) each. Combination of the
basic blocks (LUT, switch, buses, and topology) is presented
as a template to be extended (in terms of routing structure
and processing elements) for building real FPGA. A more
realistic example from the industry (a Xilinx Virtex-5) is
considered with a highlight on template basic blocks in
Xilinx schematics. As a result, students are able to locate the
essential elements for a better understanding of state-of-the-
art architectures. Drawbacks of fine-grained architectures
such as low computation density and routing congestion are
highlighted to introduce coarse-grained architectures. This
type of reconfigurable architecture is firstly presented as a
specialization of FPGA suited for DSP application domain.
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FIGURE 3: On the right, view of the different cell types composing the matrix (border cells, middle cells, IO cells). On the left, configuration
domains are defined as a set of rectangular boxes. They can be reconfigured independently from each other.

Architectures presented are Kress-Array [13], Piperench
[14], PACT XPP [15], and Morphosys [16]. Programming
model issues are discussed with a comparison between
software oriented approach (generally using subsets of C)
and hardware approach (netlist based descriptions). A case
study of the DREAM architecture is presented with an
emphasis on the compiler friendly approach of the tools
targeting the PiCoGA [17, 18].

3.2.2. Modeling. Before entering the generation phase, stu-
dents learn to hand-design an FPGA. Every elements of a
basic FPGA are detailed and a corresponding VHDL behav-
ioral description is provided. The bottom-up description
starts from atomic elements, such as pass gates, multiplexers,
that are combined to form input/output blocks and config-
urable logic blocks. A daisy chain architecture is detailed as
well as a configuration controller.

Then, the second part describes the Biniou generation
of the architecture from an ADL description. An FPGA is
described using an ADL increasing the level of abstraction
compared to a VHDL description. The configuration plan
is described as a set of domains to support partial recon-
figuration. The approach relies on model transformation,
with an automatic VHDL code generation from a high-level
description.

3.2.3. RFU Structure. As a preliminary approach, students
have to design an island style mesh architecture, what means
sizing the matrix, defining a basic cell, and isolating border
cells that deserve special attention. The basic cell is either
used as is for the internal cells and tuned to generate the
border cells because their structure is slightly different from

the common template. Defining the domains appears as
shown by Figure 3.

The basic cell schematic view is provided by Figure 4.

Ultimately, the full matrix appears as an array of N2
cells as illustrated by the snapshot of the Biniou P&R layer
(Figure 5).

3.3. Reconfigurable Functional Unit Integration. The recon-
figurable functional unit (RFU) is composed of three main
components: the reconfigurable matrix (RM) generated by
Biniou, a configuration cache, and the RFU controller both
hand-written (see bottom right in Figure 2).

Configuration is triggered by the processor controller
which reacts to a SET instruction by sending a signal to the
RFU controller. The RFU controller drives the configura-
tion cache controller, which provides back a bitstream on
demand.

The processor controller gets an acknowledgment after
the configuration completed.

One critical issue about the processor-RFU coupling lies
in data transfers to/from the RFU. Students have to design
a simple adapter which connects a set of RFU’s iopads to
the processor registers holding input and output data (Opl,
Op2, and Res in Figure 2).

Figure 6 gives a detailed view of the adapter.

3.4. Application Synthesis over the RFU. To let students
figuring out the benefit of adding the RFU to the processor
design, it is desirable that students can assess and compare
the impact of several options. One classical approach lies
in isolating a portion of the application to be further
converted into an accelerated function. In this case, we
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implement a DFG to exhibit spatial execution. Another
option consists in defining novel primitive operators. As an
example, defining a multiplier instead of performing several
processors instructions (addition, shifts, etc.) can make sense
due to a high reuse rate.

In both cases, the RFU extends the instructions set.

Additionally, the underlying arithmetic can vary keeping
the instructions set stable despite adding new variants for
implementing these instructions. This goes through either a
library-based design or dedicated synthesizers. Libraries are
typically targeted to a reduced set of predefined macroblocks,
and they are not easily customizable to new kinds of
functions or use-cases.

We chose to focus on the second topics as this seems to
carry extra added-value compared to classical flows, while
reducing the need for a coding extra effort thanks to provided
synthesis facility.

Figure 7 illustrates the Biniou behavioral application
synthesizer. The optimizing context here is made up of typing
as Galois Field GF16 values the two parameters. A so-called
high-level truth table is computed per graph node for which
values are encoded and binarized. The logic minimization
[19] produces a context-dependent BLIF file.

This BLIF file is further processed by the Biniou P&R
layer. As application is simple enough to keep the design
flatten, no need exists for using a floorplanner. However,
for modular designs, a TCG-based floorplanner [20] is
integrated within Biniou.

Some constraints are considered, such as making some
location immutable to conform to the pinout of the adapter
(Figure 6) with regards to the ones assigned to the I/O of a
placed and routed application (see Figure 8).

Once the P&R process ends, a bitstream is generated.
Each element of the matrix both knows its state (used, free,
which one out of N, etc.) and its layout structure. The full
layout is gained by composing recursively (bottom up) these

sub-bitstreams. An interesting point is that the bitstream
structure can vary independently from the architecture by
applying several generation schemes. As a result, in a partial
reconfiguration scope, the students benefit from enriched
architectural prospection capabilities. In the frame of the
project an example of bitstream structure is provided by
Figure 9.

3.5. Reports and Oral Defense. Students had to provide three
reports, one per milestone. The reports conformed to a
common template and ranged from 10 to 25 pages each.
The last report embedded the previous ones so that the
final document was made available straight after the project
and students were given second opportunity to correct their
mistakes.

Some recommendations were mandatory such as embed-
ding all images as source format within the package, so that
we could reuse some of them. As an illustration, more or
less half of the figures in this papers come from students
reports. The students had no constraints over the language
but some of them chose to give back English-written reports.
We selected some reports to be published on line as examples
for next year students.

The last deliverable was made up of a report, working
VHDL code and an oral defense. Students had to expose
within 10 minutes, in front of the group, course teachers,
and a colleague responsible for the “communication and job
market” course.

Some students chose to center their defense around
the project and the course versus project adequation, some
others around the “product”, that was their version of the
processor.

3.6. Results Coming out of the Project. The simulation
environment is ModelSim [21] as illustrated by Figure 10.
The loader module—that loads up the program—was not
provided but students could easily get one by simply reusing
and adapting the generated test bench. Only one group out
of five got it right.

This allowed to set a properly initialized state prior to
execution’s start. Of course, this was a critical issue, and
students would have done well to fix it in an early stage as
tracing values remained the one validation scheme. This was
all the more important as the full simulation took a long time
to complete and rerun had a real cost for students.

The simulation of the processor itself is time-affordable
but the full simulation takes around 4 hours, including
bitstream loading, and whole test bench program execution.

3.6.1. Optimizations. Students came to us with several
policies to speed up the simulation. A first proposal is to
let simulation happen at several abstraction levels, with a
high rate of early error detection. Second, some modules
have been substituted by a simpler version. As an example,
by providing a RFU that only supports 8 bits ADD/SUB
operations, the bitstream size is downscaled to 1bit with
no compromise on the architecture decomposition itself.
This approach is very interesting as it confines changes to
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the inside of the RFU while still preserving the application
programming interface. In addition, it joins back the concern
of grain increase in a general scope (i.e., balancing the
computation/flexibility and reducing the bitstream size).
Also this approach must be linked to the notion of “mock
object” [22], software engineers are familiar with, when
accelerating code testing.

Third, as the application is outputed as RTL code, the
code can be used as a hard FU instead of using reconfigurable
one. In this way, the students validated the GF-based
synthesis. Grabbing these last two points, the global design
can be validated very fast, being the scalability issue. This
issue has been ignored during the project, but is addressed
as the global design is given a physical implementation.

3.6.2. Analysis. The students sampling cannot be considered
representative from a statistical point of view. However, some
preliminary remarks seem to make sense.

Figure 11 shows that the deliverable 2 is harder to
complete than the first one, but that more than half of the
students got a success rate between 70% and 90%.

We chose to make students pair-achieve the project. In
this way, beyond simply averaging the prerequisites matching
so that the pairs are equally offered a chance to succeed,

we intended to favor incidental learning as pointed out by
chanck [23].

The increase of the standard deviation (Figure 12) high-
lights that one group failed in properly using the toolset (left
border, Figure 11); another way to analyze this is that the
toolset allowed to overcome the complexity of deliverable 2.
Another interesting point is that the global understanding
raises up during the full project, being the group who
gave up after the first milestone (right border, Figure 11).
The difference between regular and restricted lines is that
restricted lines ignore this group. Finally, the standard
deviation line points out that most homogeneous results
came from integration, manual design of the processor, and
last using the tool set.

4. Real Case Study

4.1. Experimentation Platform. The physical implementation
was out of the scope of this project mainly due to some
timetable hard constraints. Not all of the students proceeded
in implementing their circuits. But the lessons we have
learned are really inlined with the feedback we got from those
of our students who applied for an internship in another lab.

The development platform we use for this demonstrator
is a Virtex-5 FXT ML510 Embedded Development Platform
from Xilinx.
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4.2. Processor. A first noticeable difference between their
former experience and the real case implementation lies
in abandoning their hand written processor. Instead, the
students had to instantiate a soft core.

4.2.1. Soft-Core. The soft-core processor is a Micro-Blaze
and comes along with a full software environment.

4.2.2. Programmability. Not only, using this soft-core ensures
a knowledge of state-of-the-art techniques but also it eases
porting application. On the other hand, mixing soft and
hard components within a single application is pretty clear to
students who extended by hand the ISA of the toy processor.

4.2.3. Simulation. Another interesting features is the observ-
ability the simulation environment provides. On the oppo-
site, gaining visibility during ModelSim simulation required
to group/color/rename signals in the first processor. This is
also important for performances extraction as scanning a
done signal was used for time measurement.

4.3. Accelerator. The first version of the accelerator was a
fine grained mesh. However, these architectures suffer from a
long synthesis process, hence some coarser-grained architec-
tures have been proposed in the literature to overcome this
limitation. The second version reflects this architectural shift
by exhibiting coarse-grained elements.
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Ficure 10: Modelsim simulation.
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4.3.1. Grain Considerations. In addition to these general
considerations, students faced a performance issue when
implementing fine-grained mesh over an FPGA. First, the
synthesizer exhibited very low frequency. Secondly, the
placement efficiency was unsurprisingly very poor.

At this point, another option emerged. A coarser grained
architecture, inspired of PicoGA [24] but not as complex, was
considered. The new architecture is organized as pipelined
stripes. Logic elements are ALUs.

4.3.2. Impact over the Software Environment. The Biniou
P&R relies on a Pathfinder [25] algorithm. The students got
wrong configuration until we provided them a refactored

version of the placer, that conforms to the stripe-based
organization.

4.4. Processor-Accelerator Pairing. The third move between
the project and the real case lies in changing the way
the processor and the accelerator are connected to each
other. The processor must support non blocking accelerated
function calls which prohibits the former coupling scheme.

4.4.1. Coupling. Instead we asked the students to isolate
the accelerator as an autonomous entity (coprocessor). The
implementation was realized using FSLs, which is a classical
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FiGURE 12: Global results.

option. Combining network concerns (FIFO, hand-shake,
negotiation, etc.) with the simple adapter (Figure 6) made
FSL a very natural concept to computer engineers.

4.4.2. Timing Constraints. Gaining high performances
requires to force constraints when calling the ISE synthesizer.

4.4.3. Layout. Figure 14 illustrates a layout of a coarse-
grained reconfigurable architecture (see Figure 13) acting as
an accelerator for a Micro-Blaze.

4.5. Manual Domain Space Exploration. Once acquired a
sound knowledge of the domain (architecture, platform,
tools), students started to address Domain Space Exploration
(DSE). First, this stage was kept manual still following the
precept of “simplicity” and “just-fit approach”

4.5.1. Considered Cases. The first dimension for variability
is the matrix sizing. Several instances have been designed
(5% 2,5 % 4,5 % 10, 40 * 40). The second axis is the
reconfiguration grain. For a similar matrix, several instances
are issued with a different partial reconfiguration page size
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F1GURre 13: The view Biniou provides over a Coarse Grained Reconfigurable Architecture under use.
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FIGURE 14: A resulting layout with a MicroBlaze connected to a coarse grained reconfigurable architecture through FSL.

each. Then, the last measured impact is related to the number
of configuration contexts.

4.5.2. Metrics. Tt is important to measure the quality of
solutions, especially the specific amount of a certain resource
and architectural solution needs. Examples of such resources
would be area, time, or memory storage.

4.5.3. Speed up Measurements. Computing a speed up
requires two things: first, measuring an execution time, then
comparing versus a reference execution time. A nonobvious
point to students is how to make a fair measurement. As
an example, the coarse grained architecture may affect the
processor’s frequency. Hence, two speed-up must be ana-
lyzed. The first one makes use of a pure software execution
time whereas the second one considers the execution time of
a full software variant running on a processor/coprocessor
architecture.

Of course, this speed-up remains highly application
dependent. A FIR execution has been considered as this was

enough for teaching purposes; as an example, the speed up
factor for an FIR with 8 coefficients and 6500 data hits 31.6.

4.6. Towards an Automatic DSE. Creating spike solutions
helps to figure out answers to tough technical or design
problems. A spike solution is a very simple program to
explore potential solutions. Students are encouraged to
design spike solutions to stress some hypothesis before any
announcement. The spike must be built only to address the
problem under examination and ignore all other concerns.
The goal is to reduce the risk of a technical problem or to
increase the reliability of their feelings and estimate.

Spike solutions are applied for grabbing synthesis infor-
mation and scripting the design tool suite.

4.6.1. Synthesis Report Analysis. The synthesis reports pro-
vide a set of information for quality measurement. The first
metric is the amount of used resources. This appears as
used Luts/FlipFlops pairs, plus internal fragmentation. The
students have no control over the algorithms, and some
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TABLE 2: Sizing matrix impact over frequency, resources, and
synthesis time.

Dimensions 5%x2 5x4 5x10 40 x 40
Freq. 102.8 102.8 101.7 53.8
# Slices 492 969 2397 4999
Cpu 35 45 100 47355

TaBLE 3: Multiple context impact over frequency, resources, and
synthesis time.

dimensions # Contexts Freq. # Slices Cpu
1 102.8 969 45

554 2 99.8 1105 55
5 99.8 1423 83

10 98.0 2184 128

101.7 2397 100

5% 10 99.7 2747 137
100.2 3522 238

10 99.2 5415 468

results are difficult to analyze. As an example, in Figure 12,
the depopulated center of the coprocessor may reflect the
torus nature of the coarse-grained architecture. Nevertheless,
stressing the constraints change the topology at the expense
of a frequency scaling down.

Frequency is the second metric that the students con-
centrated on, all the more so as violations can occur which
invalidate the full design.

The students knew how to find the relevant information.
Going further though would have required to write a parser,
then to extract scoring out of generated reports. This would
be an interesting step forward command/scoring the tool
suite.

4.6.2. Xilinx SDK Scripting. In order to detect the system files
that are involved in a potential scripting, a first design is
done through the user interface. Then, all modified files are
reported, and a diff command is issued to let the students
precisely locate internal changes. Then, code generation
happens and recompiling the projet results in refactoring the
design.

4.6.3. DSE Results. Tables 2 and 3 summarize for illustration
purposes some of the DSE results the students collected.

5. Conclusion

This paper presents an experience report of course setup for
master students discovering configware. This course tends
to overcome the information pick-up limit to offer a real
knowledge to students. This goes through manual design
of toy examples that forces students to emphasize simple
designs. Once acquired such an insight, commercial design
suite are introduced for up-to-date training. Beside, research
tools support complex tasks such as reconfigurable platform
design, and DSE in a general way.
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5.1. Forces. One interesting point regarding this project lies
in the change in the students feeling. When we presented
at the first time the project, they thought they would never
complete the goals. After the first milestone, one group
gave up to avoid paying the over due penalty and bounded
their work to the first deliverable. They finally reached 7
points out of 20. The other groups faced the challenge and
discovered that the key issue lies in getting proper tools to
free oneself from manually developing both architectures
and application mapping. The final results were very likely
acceptable and we collected several working packages.

With this experience in mind, students are now ready for
entering a very competitive job market. They share a deep
understanding of both hardware design over reconfigurable
architecture, microprocessors, reconfigurable cross integra-
tion, and tools and algorithms development.

This effect has been clearly pointed out when migrating
from a toy example to real design environment. This move
has offered several dimensions for DSE: reconfigurable unit
grain, processor, coupling, and so forth.

5.2. A Very Positive Feedback. The actual success of this
teaching experience lies in the highly efficient learning curve
we noticed when students started to experience Xilinx design
Kit. Obviously, neither the test bench examples we first
provided nor the students population size are sufficient to
practice real metrics-based measurements. Exploring the
benefits of this approach (e.g., measuring speed-up) requires
an easy path from a structured programming language such
as C to the processor execution. Hence, the application’s
change would carry no need for hand-written adjustments.
From our point of view, such an add-on in the project would
be a fruitful upgrade to the course, and would spawn new
opportunities for cross H/S expertise; keeping in mind that
the reconfigurable computing course intends to get out with
highly trained students sharing skills in both area.

Developing a small compiler was out of the scope of this
project due to some timing constraints, but remains one hot
spot to be further addressed. This could benefit from some
Biniou facilities such as the C-entry synthesizer.

An open option is then to benefit from another course
and invited keynoters to fulfill the prerequisites so that
adapting/developing simple C parser becomes feasible in the
scope of our project, at the cost of around an extra week.

5.3. Going Further. The second very positive feedback we got
is that students are ready for new experiences, even with
research tools that do not offer the same QoS than commer-
cial design suite. This offered a path to reconfigurable units
design with a full high level synthesis support.

Now, an interesting option is to introduce more efficient
RFU, by generating coarse-grained architectures that support
virtualization. Applying virtualization techniques allows to
leverage some well-known limitations of reconfigurable
architectures: limited amount of resources, lack of high-level
programming model, and nonportability of bitstream.

Biniou offers a smart framework for design-space explo-
ration of reconfigurable IPs. Fine-grained architectures offer
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a nice teaching testbed, but shifting from fine to coarse-
grained architecture rather make sense for current technolo-
gies. This brings no extra cost as Biniou fully supports this
architectural scheme. Instead, this carries extra value as it
underlines the resulting shift from “hardware” netlist design
to “software” operation graphs editing.

Ensuring students will get the appropriate strength to
self-adapt to such changing environment remains our edu-
cational goal. Once done, hard-soft co-design and applicative
needs adequation driven platform development are on their
way.
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