
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 162404, 12 pages
doi:10.1155/2012/162404

Research Article

HwPMI: An Extensible Performance Monitoring Infrastructure
for Improving Hardware Design and Productivity on FPGAs

Andrew G. Schmidt,1 Neil Steiner,1 Matthew French,1 and Ron Sass2

1 Information Sciences Institute, University of Southern California, 3811 North Fairfax Drive, Suite 200, Arlington, VA 22203, USA
2 Reconfigurable Computing Systems Lab, ECE Department, UNC Charlotte, 9201 University City Boulevard, Charlotte,
NC 28223, USA

Correspondence should be addressed to Andrew G. Schmidt, aschmidt@isi.edu

Received 4 May 2012; Revised 21 September 2012; Accepted 3 October 2012

Academic Editor: René Cumplido

Copyright © 2012 Andrew G. Schmidt et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Designing hardware cores for FPGAs can quickly become a complicated task, difficult even for experienced engineers. With the
addition of more sophisticated development tools and maturing high-level language-to-gates techniques, designs can be rapidly
assembled; however, when the design is evaluated on the FPGA, the performance may not be what was expected. Therefore, an
engineer may need to augment the design to include performance monitors to better understand the bottlenecks in the system
or to aid in the debugging of the design. Unfortunately, identifying what to monitor and adding the infrastructure to retrieve
the monitored data can be a challenging and time-consuming task. Our work alleviates this effort. We present the Hardware
Performance Monitoring Infrastructure (HwPMI), which includes a collection of software tools and hardware cores that can be
used to profile the current design, recommend and insert performance monitors directly into the HDL or netlist, and retrieve
the monitored data with minimal invasiveness to the design. Three applications are used to demonstrate and evaluate HwPMI’s
capabilities. The results are highly encouraging as the infrastructure adds numerous capabilities while requiring minimal effort by
the designer and low resource overhead to the existing design.

1. Introduction

As hardware designers develop custom cores and assemble
Systems-on-Chip (SoCs) targeting FPGAs, the challenge of
the design meeting timing, fitting within the resource
constraints, and balancing bandwidth and latency can lead
to significant increases in development time. When a design
does not meet a specific performance requirement, the
designer typically must go back and manually add more cus-
tom logic to monitor the behavior of several components in
the design. While this performance information can be used
to better understand the inner workings of the system, as well
as the interfaces between the subcomponents of the system,
identifying and inserting infrastructure can quickly become
a daunting task. Furthermore, the addition of the monitors
may change the original behavior of the system, potentially
obfuscating the identified performance bottleneck or design
bug.

In this work, we focus on an extensible set of tools and
hardware cores to enable a hardware designer to insert a

minimally invasive performance monitoring infrastructure
into an existing design, with little effort. The monitors
are used in an introspective capacity, providing feedback
about the design’s performance under real workloads, while
running on real devices. This paper presents our Hardware
Performance Monitoring Infrastructure (HwPMI), which is
designed to ease the identification, insertion, and retrieval of
performance monitors and their associated data in developed
systems.

The motivation for the creation and evaluation of this
infrastructure stems from the inherent need to insert mon-
itors into existing designs and to retrieve the data with
minimal invasiveness to the system. Over the last several
years we have been assembling a repository of performance
monitors as new designs are built and tested. To increase
a designer’s productivity, we have put together a suite
of software tools aimed at profiling existing designs and
recommending and/or inserting performance monitors and
the necessary hardware and software infrastructure. This

2 International Journal of Reconfigurable Computing

work also leverages existing open-source work by including
Torc (Tools for Open Reconfigurable Computing) to provide
an efficient backend for reading, writing, and manipulating
designs in EDIF format [1].

Included in HwPMI are the specific monitors, such as
timers, state-machine trackers, component utilization, and
so forth, along with a sophisticated monitoring network to
retrieve each monitor’s data all while requiring little user
intervention. To evaluate HwPMI, three use cases show how
existing designs can utilize HwPMI to quickly integrate and
retrieve monitoring data on running systems. Moreover,
HwPMI is flexible enough to support both high performance
reconfigurable computing (HPRC), running on the Spirit
cluster as part of the Reconfigurable Computing Cluster
(RCC) [2] project at the University of North Carolina at
Charlotte, and embedded reconfigurable systems running
on a single board with limited compute resources. Several
interesting results are discussed which support the impor-
tance of such a monitoring infrastructure. Finally, the tools
and hardware cores presented here are being prepared
for an open-source release in the hope of increasing and
diversifying the types of monitors and the systems that will
be able to utilize HwPMI.

The remainder of this paper is organized into the follow-
ing sections: in Section 2 the background and related works
are discussed. Section 3 details HwPMI’s design and imple-
mentation, while the results and experiences of integrating
the system into three applications are discussed in Section 4.
Finally, in Section 5 the conclusion and future work are
presented.

2. Background and Related Work

As FPGA resources increase in number and diversity with
each device generation, researchers are exploring archi-
tectures to outperform previous implementations and to
investigate new designs that were previously limited by the
technology. Unfortunately, a designer trying to exploit the
inherent parallelism of FPGAs is often faced with the non-
trivial task of identifying system bottlenecks, performance
drains, and design bugs in the system. The result is often the
inclusion of custom hardware cores tasked with monitoring
key locations in the system, such as interfaces to the network,
memory, finite-state machines, and other resources such as
FIFOs or custom pipelines.

This is especially true in the rapidly growing field of High
Performance Reconfigurable Computing (HPRC). There are
several research projects underway that investigate the use of
multiple FPGAs in a high-performance computing context:
RAMP, Maxwell, Axel, and Novo-G [3–6]. These projects
and others, like the RCC Spirit cluster, seek to use many
networked FPGAs to exploit the FPGA’s potential on-chip
parallelism, in order to solve complex problems faster than
before.

2.1. Productivity and Monitoring Tools. Tools of some form
are needed to help the designer manage the complexities
associated with hardware design, such as timing require-
ments, resource limitations, routing, and so forth. FPGA

vendors provide many tools beyond synthesis and imple-
mentation that reduce development time, including com-
ponent generators [7] that build mildly complex hardware
cores, that is, single-precision floating point units and FIFOs.
System generator tools like the Xilinx Base System Builder
(BSB) Wizard [8] and the Altera System-on-Programmable-
Chip (SoPC) Builder [9] help the designer construct a cus-
tomizable base system with processors, memory interfaces,
buses, and even some peripherals like UARTs and interrupt
controllers. There are even tools that can help a designer
debug running hardware in the same manner as with logic
analyzers in a microelectronics lab [10, 11]. However, these
virtual logic analyzers do not provide runtime feedback
on the system’s performance, and furthermore require
specialized external equipment. In the case of ChipScope,
each FPGA must be connected to a computer through JTAG.
This limits its use in large scale designs, where debugging
hundreds to thousands of FPGAs is a daunting task. While
JTAG can support multiple devices in a single chain, there
is additional latency as the number of devices in the chain
increases. Of course, if JTAG were the only option, HwPMI
could be inserted into the JTAG chain; at this time no such
integration has been performed.

There are also several projects investigating ways to mon-
itor FPGA systems. The Owl system monitoring framework
presented in [12] uses hardware monitors in the FPGA fabric
to snoop system transactions on memory, cache, buses, and
so forth. This is done to avoid the performance penalty and
intrusiveness of software-based monitoring schemes. Along
similar lines [13] presents a performance analysis framework
for FPGA-based systems that automates application-specific
run-time measurements to provide a more complete view of
the application core’s performance to the designer. Source
level (HDL) instrumentation is used to parse code and insert
logic to extract desired data at runtime. The University of
Florida proposed CARMA [14] as a framework to integrate
hardware monitoring probes in designs at both the hardware
and software layer. TimeTrial [15, 16] explores performance
monitoring for streaming applications at the block level,
which keeps it language agnostic and suitable for dealing with
different platforms and clocks. FPGAs have also been used to
emulate and speed up netlist level fault injection and fault
monitoring frameworks to build resilient SoCs [17].

2.2. Tools for Open Reconfigurable Computing. Torc (Tools
for Open Reconfigurable Computing) is a C++ open-source
framework designed to simplify custom tool development
and enable new research [18]. Torc’s capabilities are built
upon industry standard file formats, including EDIF and
XDL, and come with support for a broad range of Xilinx
devices. Research into reconfiguration or CAD tools with
Torc can be validated in hardware or compared to main-
stream tool performance. Developing and debugging these
capabilities from scratch would take a significant amount of
effort, but Torc provides them for free. Furthermore, the user
can pick and choose the parts of Torc that are of interest
to them, and ignore the rest. In fact, Torc was developed
for precisely the kinds of research purposes that HwPMI is

International Journal of Reconfigurable Computing 3

File size (bytes)
R

at
e

(u
n

it
s/

s)

Write bytes per second
Read bytes per second

Write lines per second
Read lines per second

1 kB 10 kB 100 kB 1 MB 10 MB 100 MB 1 GB

107

106

105

104

103

Figure 1: Torc’s Generic Netlist API I/O Performance. This log-log plot shows reasonably linear I/O performance for EDIF file sizes ranging
from 1 KB to 175 MB. On a 2.8 GHz quad-core Xeon, the API reads 45-thousand lines per second, and 2.3 Megabytes per second on average.
The largest of these files contains over 150,000 instances and over 200,000 nets. Shape differences between the two curves are most likely due
to different name lengths in the EDIF files.

aimed at addressing—situations in which the mainstream
tools could not provide the required functionality.

Torc consists of four core Application Programming
Interfaces (APIs) and a collection of CAD tools built upon
them. The APIs are the Generic Netlist API, the Physical
Netlist API, the Device Architecture API, and the Bitstream
Frames API. The main CAD tools are the router and placer.
For HwPMI, the appeal of Torc’s generic netlist is that it
allows us to insert performance monitors without having to
modify the design’s HDL source. The Generic Netlist API
supports netlists that are not mapped to physical hardware
and provides full EDIF 2.0.0 reading, writing, and editing
capability. The internal object model is flexible enough to
support other netlist formats, if parsers and exporters are
provided. Because the Generic Netlist API supports generic
EDIF, it is usable for Xilinx FPGAs, non-Xilinx FPGAs,
ASICs, or even circuit boards.

Early versions of HwPMI interacted with VHDL source
to identify and insert performance monitors and the neces-
sary infrastructure into existing designs. Torc is being added
to expand beyond VHDL and to ensure that the original
source remains unmodified after it has been profiled and
evaluated—only the resulting synthesized netlists are mod-
ified. Another reason for migrating to Torc is its efficiency
and scalability: a plot of EDIF read and write performance
is provided in Figure 1. Using Torc to interact with EDIF has
been shown to be far more efficient than using VHDL parsing
and insertion tools.

Another well-established CAD tool for reconfigurable
computing is VPR [19, 20], a place-and-route tool that
remains widely used more than a decade after its incep-
tion, and now forms the base of the broader VTR [21].
However, VPR has traditionally not supported EDIF, XDL,
or actual device architectures. Some of those pieces—EDIF
in particular—are available from Brigham Young University
(BYU), albeit in Java rather than C++. More recently, BYU
developed an open-source Java tool named RapidSmith that
fully supports XDL and Xilinx device databases [22].

3. Design

The performance monitoring infrastructure assembled as
part of this work builds upon our previous research in
the area of resilient high-performance reconfigurable com-
puting. In [23] a System Monitoring Infrastructure was
developed and a proof-of-concept was presented to address
the question: “how do we know when a node has failed?”
In [24] the System Monitor functionality was significantly
improved, adding a Context Interface (CIF) along with
dedicated hardware cores for checkpoint/restart capability of
both the processor and hardware core’s state. In addition,
a framework for performance monitoring was presented in
[25], which this work extends to provide a designer with the
capability of inserting specific performance monitors into an
existing hardware design. Specifically, this article extends our
previous works with a more thorough design and evaluation
of HwPMI and further discusses how Torc is incorporated
for efficient netlist manipulations.

Unlike conventional approaches where a designer must
manually create and insert monitors into their design,
including the mechanisms to extract the monitored results,
this work analyzes existing designs and generates the nec-
essary infrastructure automatically. The result is a large
repository of predesigned monitors, interfaces, and tools
to aid the designer in rapidly integrating the monitoring
infrastructure into existing designs. This work also provides
the designer with the necessary software infrastructure to
retrieve the performance data at user defined intervals during
the execution of the system.

3.1. Hardware Performance Monitor Infrastructure. The
HwPMI tool flow, which will be discussed within this
section, consists of several stages, as depicted in Figure 2. In
addition to the tools, the monitoring infrastructure consists
of several hardware cores that, for the high-performance
reconfigurable computing (HPRC) system, spans a variety
of elements both in the system and across the cluster. The
infrastructure to support the HPRC monitoring system is

4 International Journal of Reconfigurable Computing

HDL source
(VHDL or Verilog)

Static

HDL

profiling

Synthesis

synthesis

Synthesis

Synthesis
scripts

.scr

Component

report

parser
report

.srp

Xilinx
netlist
.ngc

System
database

database
Monitors

Monitor
insertion

Monitored
HDL source

(VHDL or verilog)

.vhd/.v

.vhd/.v

Perf. monitor
collection source

.c

System
bitstream

.bit

Monitoring
software

.elf

Collect
monitor

data

Xilinx
synthesis,
map, PAR

Bitgen

Figure 2: Hardware Performance Monitoring Infrastructure’s Tool Flow.

NodeNodeNodeNode

Node Node Node Node

NodeNodeNodeNode

Node Node Node Node

n

n

n

n

2

2

0

0

0, 0, 0 0, 0, 1 0, 0, 2

switch
Server
node

Head
node

NodeNodeNode Node

NodeNodeNode Node

NodeNodeNode Node

NodeNodeNode Node

Ethernet

0, 0, 0 0, 0, 1 0, 0, 2 0, 3, n

0, 1, 0 0, 1, 1 0, 1, 2 0, 1, n

0, 2, 0 0, 2, 1 0, 2, 2 0, 2, n

0, 3, 0 0, 3, 1 0, 3, 2 0, 3, n

Y

X

Z

21

1

1

0

Figure 3: Block diagram of Spirit cluster’s HwPMI.

comprised of three types of nodes and two networks, as
illustrated in Figure 3. Node types include a server node, a
head node, and many worker nodes. With the exception of
the server, all nodes are Xilinx ML410 development boards
with Virtex4 FX60 devices. 64 FPGAs are connected via six
direct-connect links to configure the Spirit cluster’s primary
network as a custom high-speed 3-dimensional torus [26].
Two more links on the custom network board are used to
form the sideband network, which is used by the HwPMI
to send and receive performance monitoring commands and
data. More details regarding the networks are presented in
[24].

Each worker node is running an application-specific SoC
which includes the HwPMI hardware cores. These cores can

be seen in Figure 4 as the System Monitor Hub, HwPMI
Interfaces, Context Interface, Performance Monitor Hub,
and Performance Monitor Cores. The System Monitor Hub
acts as an intermediary to decode incoming requests for
performance data. Each hardware core connects to the Sys-
tem Monitor Hub via a software-generated Context Interface
(CIF). The CIF connects to the Performance Monitor Hub
which in turn aggregates all of the performance monitor core
data within the hardware core.

Initial HwPMI development was targeted to support
high-performance reconfigurable computing systems, such
as Spirit. However, the tools and techniques are also easily
adapted to support more traditional embedded system devel-
opment with FPGAs. In fact, the sideband network can be
replaced with a bus interface to give an embedded system
access to its own performance monitoring data. While this
introspective monitoring does add to the runtime overhead
of the system, designers can now specify the interface
mechanism to HwPMI. PowerPC 405, PowerPC 440, and
MicroBlaze systems are supported through interfaces with
the Processor Local Bus. An embedded system example is
shown in Figure 5, where a separate SoC provides indepen-
dent monitoring of hardware cores. In this case, resources are
required for the extra soft-processor, buses, and peripheral
IP cores, in addition to the monitoring infrastructure.
The benefit of this approach is that no modifications are
necessary in the original Device Under Test (DUT)—no
changes to the software running on the DUT’s processor—
so the performance overhead is minimized.

3.2. Static HDL Profiling. The process of identifying per-
formance monitors to be inserted into an existing design
begins with Static HDL Profiling, shown in Figure 2. To start,
HwPMI parses the existing hardware design’s HDL files in
order to collect information pertaining to the construction
of the system. This includes not only the design’s modular
hierarchy, but also the specific interfaces between compo-
nents. For example, a hardware core may consist of several
FIFOs, BRAMs, and finite-state machines, as well as a slave
interface to the system bus. The Static HDL Profiler identifies
these components and interfaces in order to assemble a
list of recommended performance monitors to be inserted.

International Journal of Reconfigurable Computing 5

connector

connector

connector

connector

connector

connector

core n

PowerPC
405

Hw
core

Aurora

Aurora

Aurora

Aurora

Aurora

connector
HwPMI

HwPMI
DDR2

Ctlr

System
monitor

hub

AIREN
router

Context interface

H
ar

dw
ar

e
co

re

Decode/return
performance data

Performance
monitor hub

Perform PerformPerform
monitor
core 0

monitor monitor
core 1

AIREN cardML-410 development board

V4VFX60 FPGA

Finite
state

machine(s)

· · ·

SATA X−

SATA W−

SATA Z+

SATA X+

core X+

Core Y−
core Y−

SATA Z−
core Z−

SATA W+

core X+

core Z+

if (+)

if (+)

FIFO 0

BRAM
 0

P
LB

Figure 4: Block diagram of FPGA node’s HwPMI.

FPGA
Xilinx

V4FX60

HwPMI controller SoC

Processor local bus 2

On-chip
memory

On-chip
memory

On-chip
memory

2

0 0 0 0 1 1 1 1

2 2 2

Timer

Timer Timer

Monitoring
processor

Interrupt
controller

Interrupt
controller

Interrupt
controller

controller
UART

controller
UART

controller
UART

System
monitor

hub

HW HW
core 0

PPC405
processor
(DUT 0)

DDR2
memory

controller

PPC405
processor
(DUT 1)

core n

Processor local bus 0 Processor local bus 1

Figure 5: Block diagram of HwPMI System-on-Chip running on embedded device under test.

Static HDL profiling is similar in principle to software
profiling (i.e., gprof) in that all of the critical information
is collected in advance, and the system runtime performance
information is captured during execution.

The Static HDL Profiler is comprised of three software
tools written in Python, to more autonomously profile

the original design. Presently, HwPMI supports the Xilinx
Synthesis Tool (XST) and designs written in VHDL; however,
work is underway to extend beyond XST and VHDL through
the use of Torc. The first tool, HwPMI Core Parser, provides
parsing capabilities for VHDL files. The designer invokes
the parser on the specific design through the command

6 International Journal of Reconfigurable Computing

Collatz core 0 wrapper:
Interfaces:

(1) plb slave
Components:

(1) plb slave attachment
(2) user logic
(3) collatz kernel

Registers (collatz kernel):
64-bit register for signal <n>
32-bit register for signal <steps i>

FSMs:
<FSM0> for signal<fsm cs >

Signals:
(1) PLB IPIC Signals

Figure 6: Sample output of HwPMI System Analyzer tool on the
Collatz Design, identifying the components, registers, statements,
and interfaces to the core.

line and can specify a specific VHDL source to evaluate.
The parser identifies the entity’s structure in terms of ports,
signals, finite-state machines, and instantiated components.
The parser works by analyzing the VHDL source file and uses
pattern matching to decompose the component into its basic
blocks. The parser is only responsible for the identification
of the VHDL component’s structure. The results are then
passed into a Python Pickle for rapid integration with the
remaining tools.

Next, the HwPMI System Analyzer tool iteratively parses
the design to identify the different interfaces, such as bus
slaves, bus masters, direct memory access, and Xilinx LocalL-
ink. This is done at a higher level than the HwPMI Core
Parser which more specifically analyzes individual IP Cores.
Figure 6 shows the output of the HwPMI System Analyzer for
one of the systems evaluated in this work, the Collatz Design.
More commonly a designer would use the System Analyzer
because it can support iterating through an entire design,
once given a list of all of the source files. On the command
line the designer invokes the tool with a project file that lists
all of the VHDL source file locations. The user also specifies
the top-level entity for the design.

To support Xilinx Platform Studio (XPS) IP core devel-
opment, the HwPMI Parse PCORE tool is used to parse
Xilinx PCORE directory files: The Microprocessor Descrip-
tion (MPD), Peripheral Analysis Order (PAO), and Black
Box Description (BBD) files, along with any Xilinx CoreGen
(XCO) project files. This enables a designer to migrate
profiled cores to other XPS systems with minimal effort.
Furthermore, monitors can be written based on the Xilinx
CoreGen project files to provide monitoring of components
such as generated FIFOs, memory controllers, or floating
point units, if so desired.

3.3. Component Synthesis. The next stage is Component
Synthesis where the original hardware design is synthesized
prior to any insertion of performance monitors. The purpose
of synthesizing the design at this point is to retrieve

Recommended Performance Monitors:
Top-Level Entity: collatz core
collatz core:

plb46 slave single i
NONE

user logic
Utilization Monitor
Interrupt Timer Monitor
PLB SLV IPIF Monitor

collatz kernel
Finite State Machine Profiler

Figure 7: Sample output of performance monitor recommendation
tool.

additional design details from the synthesis reports including
subcomponents, resource utilization, timing requirements,
and behavior. This leverages the synthesis tool output to
supplement the Static HDL Profiling stage by more readily
identifying finite state machines and flip-flops in the design.
All of the configuration information and synthesis results
are available for performance monitor recommendation/
insertion.

Three tools have been developed to specifically support
the designer in the Component Synthesis stage. These tools
automatically synthesize, parse, and aggregate the individual
component utilization, resource utilization, and timing
information data for the designer. The first tool is the
Iterative Component Synthesis tool which runs the synthesis
scripts for each of the components in the design. The
second tool is the Parse Component Synthesis Reports
tool: it runs after all of the system components have been
synthesized, and collects a wealth of information about
each component from the associated synthesis report file
(SRP). This information includes the registers, FIFOs, Block
RAMs, and finite-state machines (FSM), in addition to all
subcomponents. The third tool is the Aggregate System
Synthesis Data tool which is used to aggregate all of the
data collected as part of the Parse Component Synthesis
Reports tool. These tools collectively identify the system’s
interconnects, processors, memory controllers, and network
interfaces, in addition to the designer’s custom compute
cores.

3.4. Insertion of Performance Monitors. At this point the
design has been analyzed in order to recommend specific per-
formance monitors for insertion. The designer can choose
to accept any number of these recommendations, from a
report like that shown in Figure 7 The monitors are stored
in a central repository which can be augmented by the
designer if a specific monitoring capability is not available.
The monitors all are encapsulated by a Performance Monitor
Interface, shown in Figure 8, which connects the monitor
to the Performance Monitor Hub and includes a finite-state
machine to retrieve the specific performance monitor data
and forward it to the hub. To aid in the insertion of HwPMI
into existing hardware designs, a software tool has been

International Journal of Reconfigurable Computing 7

FIFO util. performance monitor

Data in

Write enable

Full

Control FSM

Data in

Write enable

Full

FIFO

IDLE

DIS ENA

Full timer

Empty timer

In use timer

WE counter

RE counter

Data counter

ll tx sof n

ll tx eof n

ll tx src rdy n

rdy nll tx dst

ll tx data

ll tx data

ll tx sof n

ll tx eof n

ll tx src rdy n

ll tx dst rdy n

D
at

a
m

u
x Pe

rf
 if

Figure 8: Block diagram of performance monitor interface connecting to a simple configurable timer monitor.

developed, the HwPMI System Insertion tool. The purpose
of this tool is to insert the System Monitor Hub and Sideband
Network Interface cores into the top-level design. The tool
inserts the monitors directly into the VHDL source, prior to
synthesis, MAP, and PAR.

It is important to emphasize that the HwPMI flow does
not intelligently insert a subset of monitors when the avail-
able resources are depleted. Future work is looking into ways
to weight monitors such that HwPMI can insert more impor-
tant monitors; however, presently HwPMI recommends the
available monitors that can be inserted into the design and
it is up to the designer to choose the subset that will provide
the best feedback versus resource availability trade-off.

When a performance monitor is created there is a set
of criteria that must also be included to allow the recom-
mendation to take place. For example, there is a PLB Slave
Interface performance monitor which specifically monitors
reads and writes to the hardware core’s slave registers. All
signals are identified during profiling, but until these signals
are matched against a list of predetermined signals, there
is no specific way to identify when those signals are being
written to. Another example considers finite-state machines:
once an FSM has been identified by the system, it is trivial for
the respective performance monitor to be recommended for
insertion. The actual insertion of the performance monitors
is done at the HDL level. Each performance monitor’s entity
description and instance are automatically generated and
inserted in the HDL.

3.5. Torc Netlist Modifications. The initial development of
HwPMI focused on parsing designs written in VHDL and
inserting monitors directly into the VHDL source. The
advantage of this approach is the portability of the monitored
design. However, by leveraging tools such as Torc, the

.c.edf

.edf .edf

Xilinx
synthesis,
map, PAR

BitgenFrom
the

existing
HwPMI

HwPMI

flow

System
database

database
Monitors

synthesis

Monitor

monitor HwPMI
monitor

netlists

Design
netlists

insertion
(Torc)

Monitored
netlists

Perf. monitor
collection source

Figure 9: Insertion of Torc into Hardware Performance Monitoring
Infrastructure’s Tool Flow.

insertion can be performed at the netlist level. The HwPMI
tool flow has now been augmented to support inserting
the monitoring infrastructure into either the VHDL source
or into synthesized netlists, based on a user parameter.
Continued work is underway to perform the netlist profiling
with Torc instead of relying on the HDL parsing tools.
Specifically, Torc inserts the monitors into the EDIF design.
Figure 9 illustrates how Torc is currently used in the HwPMI
flow to avoid modifying the VHDL source. The HwPMI flow
remains identical throughout the initial stages, but once the
monitors have been selected for insertion, Torc is used to
merge them into the synthesized netlists. Torc provides a fast
and efficient mechanism to generate modified design netlists
with the monitoring infrastructure inserted.

3.6. Retrieval of Monitored Data. Once the design is running,
it is necessary to retrieve the performance monitoring data
with minimal invasion to the system. This is accomplished
through the use of the sideband network in the HPRC system

8 International Journal of Reconfigurable Computing

Smith/Waterman core

Master bus requests

MST
mon.

mon.
SLV

Query FIFO

FIFO util. monitor

FIFO util. monitor

FIFO util. monitor

DB FIFO

Scores FIFO

FSM

Partial
score
table

Smith/Waterman
finite-state

machine

FSM
profiler
monitor

S0

S1

Performance
monitor hub

C
IF

SL
V

IP
IF

P
LB

M
ST

IP
IF

Sn

Figure 10: Smith/Waterman core’s performance monitors.

or the HwPMI SoC in an embedded system. The head node
issues requests to retrieve data from a node, core, or a specific
hardware monitor anytime the application is running. To
aid in the retrieval, the Performance Monitor Collection
tool assembles the entire system’s performance monitoring
data structure for the head node to use for runtime data
collection. This data is stored in a C struct that is generated
for the specific design. Also available are subroutines for the
head node to automatically collect and report each monitor’s
data back to the designer. Presently, the data that is retrieved
must be manually evaluated by the designer to make design
modifications, if deemed necessary. In HPRC systems this
monitoring data can be fed into SDAflow, a tool developed in
[27] to reallocate the resource utilization along with memory
and network interfaces.

4. Results

Three applications are used to demonstrate our HwPMI
tool flow: single precision matrix-matrix multiplication, a
hardware implementation of the Smith/Waterman FLOCAL
ALIGN(), and a hardware implementation of the Collatz
Conjecture core. This section will highlight different use
cases of HwPMI in these applications.

4.1. Matrix-Matrix Multiplication. Matrix-Matrix Multipli-
cation (MMM) is a basic algebraic operation where two
matrices, A and B, are multiplied together to form the
resultant matrix C. This operation is highly parallel but
is very demanding upon the memory hierarchy. During
Static HDL Profiling the MMM hardware core successfully
identified the following subcomponents: plb slave ipif,
user logic, mac array, thirty-two mac units, and
eighteen 32-bit × 512 deep FIFOs. From these components
the static HDL parser correctly identified 25 software-
addressable registers that were connected via the PLB’s

IPIF by tracing from the PLB’s address and data signals to
the core’s registers set and accessed by these signals. These
registers are used partly for control and also for data inputs
and outputs which can be monitored via HwPMI to provide
processor and hardware accelerator interface efficiency.

Three sets of performance monitors were selected and
inserted into the MMM core: Firstly, for the PLB slave
IPIF, to monitor the efficiency of the transfers from the
processor. Secondly, for the eighteen FIFOs to monitor
capacity and determine if more buffer resources should
be allocated in the future to improve performance. And
thirdly, for the utilization of the core itself, to monitor
performance and determine how much time the core spends
on actual computation versus I/O. The results indicate the
largest bottleneck in the current design is the PLB slave IPIF.
The processor spends over 98% of the total execution time
transferring the matrix data and results into and out of the
MMM hardware core. Furthermore, the results for the FIFOs
showed very low overall utilization, which indicates that the
FIFO depth can be reduced.

4.2. Smith/Waterman. The second design evaluated with
HwPMI is a hardware-accelerated implementation of the
Smith/Waterman algorithm, commonly used in protein and
nucleotide sequence alignments [28]. The particular imple-
mentation on the FPGA was developed as a proof of
concept [29] for accelerating the FLOCAL ALIGN() function
of the SSEARCH program—an implementation of the
Smith/Waterman algorithm from the FASTA35 code package
[30].

From the Static HDL Profiling and Component Syn-
thesis stages, six performance monitors were identified for
inclusion into the Smith/Waterman hardware core. Figure 10
shows a high-level block diagram of the performance
monitors in their locations relative to the Smith/Waterman
hardware core.

International Journal of Reconfigurable Computing 9

Table 1: Performance monitor results for PLB SLV IPIF.

Register Original Modified

name # Reads # Writes # Reads # Writes

Control reg 0 186 0 186

Core status 29540 0 29540 0

aa1 0 2095745 0 2095745

n1 0 2095838 0 93

n0 0 2095838 0 93

GG 0 2095838 0 93

HH 0 2095838 0 93

f str waa s 0 2095838 0 93

score 186 0 186 0

ssj 0 2095838 0 93

Counter idle 186 0 186 0

Counter work 186 0 186 0

ssearch->aa1 = ∗aa1p;
if (only once == 0) {

ssearch->n1 = n1;
ssearch->n0 = n0;
ssearch->GG = GG;
ssearch->HH = HH;
ssearch->f str waa s = PWA BASE;
ssearch->ssj = SS BASE;
/∗ ADDED MISSING GUARD HERE:∗/
only once = 1;

}

Figure 11: Modification made to original dropgsw2.c.

The first performance monitor identifies the number of
writes to the software-addressable registers in the Smith/
Waterman hardware core via the PLB Slave interface (PLB
SLV IPIF), the results of which are listed in Table 1. In
addition to the register name, number of reads and number
of writes, Table 1 also presents these reads and writes when
run in Original and Modified modes. The performance
monitoring data indicated that several software registers
were being written to unnecessarily, and the modified
version of the application eliminates these extra writes. This
demonstrates the benefit of HwPMI for debugging: the
results quickly revealed that the software application was
missing a guard, as shown in Figure 11.

Also identified by HwPMI were additional performance
monitors to evaluate the PLB Master interface (PLB MST
IPIF), which identified that only off-chip memory trans-
actions were performed by the core. Moreoever, the off-
chip memory transactions were 118,144 read-only requests,
which is a significant number of transfers and warrants the
evaluation of a DMA interface. The designer could also adapt
the core to leverage an alternative interface, such as the
Native Port Interface (NPI), to reduce memory access latency,
increase bandwidth, and reduce the PLB contention.

 E
xe

cu
ti

on
 t

im
e

(%
)

0

10

20

30

40

50

60

70

80

90

100

Smith/waterman finite-state machine
profiler performance monitor

State

Transaction switch
Build gap
Read SSJ again
Delay
Start loop

Update up gap
Others
Wait for data
Pop PWA

Build switch
Read SSJ
Build score
Build

Figure 12: Smith/Waterman core’s FSM profiler monitor results.

An FSM profiler performance monitor was added that
provides feedback in the form of a histogram, to identify the
percentage of time each FSM state is active. Figure 12
presents the breakdown of the time in each state. This
shows that BUILD is the longest running state, accounting
for 27.67% of the execution time. The next four states,
BUILD SCORE, READ SSJ, BUILD SWITCH, POP PWAA,
each occupies ∼13.8%. Thirteen of the remaining states
account for less than 1% each, and have been group together
in the OTHERS category. Overall, this profiling data should

10 International Journal of Reconfigurable Computing

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

E
xe

cu
ti

on
 T

im
e

(s
)

Databases

Smith/Waterman execution time with varying FIFO sizes

FIFO depth 128
FIFO depth 512

FIFO depth 2048
FIFO depth 4096

M
Y

D
B

Lo
n

g

M
Y

D
B

LA
R

G
E

M
Y

D
B

E
X

PA
N

D
E

D

Y
E

A
ST

R
E

D
U

C
E

D
.A

A

M
IT

O
R

E
D

U
C

E
D

.A
A

Figure 13: Smith/Waterman’s performance with varying FIFO
depths.

more quickly focus the designer’s attention on the BUILD
state, to determine if there is a more efficient way to
implement this state.

Another useful feature of HwPMI is its ability to evaluate
designs with different resource utilizations. Designers often
find themselves adding buffers or FIFOs into designs without
knowing a priori how large they should be. In these
cases, HwPMI can collect run-time data as a designer
modifies the FIFO depth. Sometimes these modifications can
reveal interesting design tradeoffs, such as those shown in
Figure 13, where a design utilizing smaller parallel buffers
runs more efficiently than one using fewer larger buffers. In
order to collect this data, a designer simply modifies the FIFO
depth, and HwPMI collects the information at user defined
intervals.

4.3. Collatz Conjecture. The third application used in our
HwPMI evaluation is Collatz. The Collatz Conjecture states
that given a natural number, it is possible reduce that number
to one, by either dividing by two when even, or multiplying
by three and adding one when odd [31]. For even numbers
the resulting calculation reduces the size in half; however, for
odd numbers the new number produced is greater than the
original number. Thus, it is not obvious that it will converge
to one. For example, given a small number such as n = 3,
seven iterations are required to reduce n to one.

The performance monitor data is collected with the
assistance of HwPMI. In addition to the utilization and
interface performance monitors, an additional monitor was
added that yielded a highly beneficial result. This is an
example of supplemental data collection. When a designer
needs to collect additional information, HwPMI offers the
ability to add custom monitors without the need to augment
how the system will retrieve the data. This can be especially

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140 160 180

Number of steps

Collatz core’s steps histogram

B
in

 d
ep

th
 (

n
u

m
be

r
of

 e
n

tr
ie

s)

Figure 14: Collatz core’s histogram of steps.

useful for quick one-off data that might only be useful for
a short period of time. Rather than manually adding the
infrastructure to the original core, only to remove it later—or
retain it and waste resources—HwPMI can collect the data
quickly and efficiently. Figure 14 shows a histogram of the
number of steps taken for each input number to be reduced
to one.

Another interesting monitor is the processor interrupt
monitor. For latency sensitive applications with processor-
to-hardware core communication, an interrupt is often
used. However, configuring the interrupt or optimizing the
interrupt service routines is critical. In the case of Collatz the
time for the processor to respond to a single interrupt was
measured as ≈11.12 µs.

4.4. Resource Utilization. Finally, we present the resource
utilization of HwPMI. Our goal is to be minimally invasive
both in terms of processing overhead and resource utilization
overhead. Listed in Table 2 are some of the performance
monitor cores that have been used in the three applications.
This includes varying sizes of the monitors to show the
overall scalability. While the individual monitor’s utilization
is heavily dependent on the function of the monitor, we
show that with very low overhead HwPMI can be added
to a design. Especially when compared to a design that
requires the addition of a bus interface to a hardware core for
performance data retrieval, HwPMI offers an attractive alter-
native. Furthermore, the overhead of the hardware monitor
interface, which is 34 Slice FFs and 74 4-input LUTs on the
V4FX60 FPGA, makes the standard monitor infrastructure
of HwPMI very appealing compared to custom monitoring
cores.

5. Conclusion

The Hardware Performance Monitoring Infrastructure
(HwPMI) presented in this work expedites the insertion of
a minimally invasive performance monitoring networks into
existing hardware designs. The goal is to increase designer

International Journal of Reconfigurable Computing 11

Table 2: Example of HwMPI’s resource utilization on V4FX60.

Component Configuration FFs (%) LUTs (%)

Performance monitor hub 1 port 14 (0.03%) 70 (0.14%)

Performance monitor hub 2 ports 17 (0.03%) 78 (0.15%)

Performance monitor hub 4 ports 21 (0.04%) 153 (0.30%)

Performance monitor hub 8 ports 21 (0.04%) 250 (0.49%)

Performance monitor hub 16 ports 23 (0.05%) 419 (0.83%)

Timer monitor 1 32-bit timer 37 (0.07%) 96 (0.19%)

Match counter monitor 1 64-bit counter 67 (0.13%) 109 (0.22%)

Match counter monitor 2 64-bit counters 132 (0.26%) 207 (0.41%)

Match counter monitor 16 64-bit counters 1034 (2.05%) 1593 (3.15%)

FIFO monitor 1 32-bit FIFO 402 (0.80%) 594 (1.17%)

Histogram monitor 512 Bins 20 (0.04%) 3207 (6.34%)

Finite state machine monitor 12 states 775 (1.53%) 1266 (2.50%)

Finite state machine monitor 64 states 4116 (8.14%) 6332 (12.52%)

System monitor hub 1 port (1 Hw Core) 212 (0.42%) 513 (1.01%)

System monitor hub 2 ports (2 Hw Cores) 213 (0.42%) 565 (1.12%)

System monitor hub 4 ports (4 Hw Cores) 216 (0.43%) 691 (1.37%)

System monitor hub 8 ports (8 Hw Cores) 224 (0.44%) 911 (1.80%)

System monitor hub 16 port (16 Hw Cores) 230 (0.45%) 1369 (2.71%)

productivity by analyzing the existing design and automat-
ically inserting monitors with the necessary infrastructure
to retrieve the monitored data from the system. As a result
of HwPMI the designer can focus on the development of
the hardware core rather than trying to include front-end
application support to monitor performance. Toward this
goal, a collection of hardware cores have been assembled,
and a series of software tools have been written to parse
the existing design and recommend and/or insert hardware
monitors directly into the source HDL.

HwPMI also integrates with an existing sideband net-
work to retrieve the performance monitor results in High
Performance Reconfigurable Computing without requiring
modifications to the original application. Embedded systems
can leverage HwPMI through a dedicated System-on-Chip
controller which reduces run-time overhead on existing
processors in the system. This work demonstrated HwPMI’s
capabilities across three applications, highlighting several
unique features of the infrastructure.

This work also leverages Torc to provide netlist manipu-
lations quickly and efficiently, in place of the original HDL
modifications [25] which were limited to VHDL and were
less efficient. Future work will integrate Torc more fully into
the tool flow, replacing the static HDL analysis in favor
of netlist analysis. In addition, HwPMI is being prepared
for an open-source release which includes the tool flow
and hardware IP core repository of both the monitoring
infrastructure and performance monitor cores.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001-11-C-0041. Any opinions, findings and
conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency
(DARPA). DARPA Distribution Statement A. Approved for
Public Release, Distribution Unlimited.

References

[1] “Torc: Tools for Open Reconfigurable Computing,” 2012,
http://torc.isi.edu/.

[2] R. Sass, W. V. Kritikos, A. G. Schmidt et al., “Reconfigurable
Computing Cluster (RCC) project: investigating the feasibility
of FPGA-based petascale computing,” in Proceedings of the
15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM ’07), pp. 127–140, IEEE Com-
puter Society, April 2007.

[3] D. Burke, J. Wawrzynek, K. Asanovic et al., “RAMP Blue:
implementation of a Manycore 1008 Processor System,” in
Proceedings of the Reconfigurable Systems Summer Institute
2008 (RSSI ’08), 2008.

[4] R. Baxter, S. Booth, M. Bull et al., “Maxwell—a 64 FPGA
supercomputer,” in Proceedings of the 2nd NASA/ESA Confer-
ence on Adaptive Hardware and Systems (AHS ’07), pp. 287–
294, August 2007.

[5] P. P. Kuen Hung Tsoi, A. Tse, and W. Luk, “Programming
framework for clusters with heterogeneous accelerators,” in
International Workshop on Highly-Efficient Accelerators and
Reconfigurable Technologies, 2010.

[6] NSF Center for High Performance Reconfigurable Computing
(CHREC), “Novo-g: Adaptively custom research supercom-
puter,” April 2005.

[7] Xilinx, Inc., “Xilinx CORE Generator System,” July 2011,
http://www.xilinx.com/tools/coregen.htm.

[8] Xilinx, Inc., Embedded System Tools Reference Manual EDK
10.1, 2010.

[9] Altera Corporation, System-on-Programmable-Chip (SOPC)
Builder User Guide (UG-01096-1.0), 2010.

12 International Journal of Reconfigurable Computing

[10] Xilinx, Inc., “ChipScope Pro and the Serial I/O Toolkit,” http://
www.xilinx.com/tools/cspro.htm.

[11] Altera Corporation, “Design Debugging Using the SignalTap
II Embedded Logic Analyzer,” http://www.altera.com/litera-
ture/hb/qts/qts qii53009.pdf.

[12] M. Schulz, B. S. White, S. A. McKee, H.-H. S. Lee, and J. Jeitner,
“Owl: next generation system monitoring,” in Proceedings
of the 2nd Conference on Computing Frontiers, pp. 116–124,
ACM, May 2005.

[13] S. Koehler, J. Curreri, and A. D. George, “Performance analysis
challenges and framework for high-performance reconfig-
urable computing,” Parallel Computing, vol. 34, no. 4-5, pp.
217–230, 2008.

[14] R. A. Deville, I. A. Troxel, and A. D. George, “Performance
monitoring for run-time management of reconfigurable
devices,” in Proceedings of the 5th International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA
’05), pp. 175–181, June 2005.

[15] J. M. Lancaster, J. D. Buhler, and R. D. Chamberlain, “Efficient
runtime performance monitoring of FPGA-based applica-
tions,” in Proceedings of the IEEE International SOC Conference
(SOCC ’09), pp. 23–28, September 2009.

[16] J. M. Lancaster and R. D. Chamberlain, “Crossing timezones
in the timetrial performance monitor,” in Proceedings of the
Symposium on Application Accelerators in High Performance
Computing, 2010.

[17] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V.
Bertacco, and T. Austin, “Crash test: a fast high-fidelity FPGA-
based resiliency analysis framework,” in Proceedings of the 26th
IEEE International Conference on Computer Design (ICCD ’08),
pp. 363–370, October 2008.

[18] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and
M. French, “Torc: towards an open-source tool flow,” in
Proceedings of the 19th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA ’11), pp. 41–44,
March 2011.

[19] V. Betz and J. Rose, “VPR: a new packing, placement and
routing tool for FPGA research,” in Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications, W. Luk, P. Y. K. Cheung, and M. Glesner, Eds.,
vol. 1304 of Lecture Notes in Computer Science, pp. 213–222,
Springer, 1997.

[20] J. Luu, I. Kuon, P. Jamieson et al., “VPR 5.0: FPGA CAD
and architecture exploration tools with single-driver routing,
heterogeneity and process scaling,” in Proceedings of the 7th
ACM SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’09), pp. 133–142, February 2009.

[21] J. Rose, J. Luu, C. W. Yu et al., “The VTR project: architecture
and CAD for FPGAs from verilog to routing,” in Proceedings
of the 20th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 77–86, 2012.

[22] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutch-
ings, “Rapid prototyping tools for FPGA designs: Rapid-
Smith,” in Proceedings of the 2010 International Conference
on Field-Programmable Technology (FPT ’10), pp. 353–356,
December 2010.

[23] B. Huang, A. G. Schmidt, A. A. Mendon, and R. Sass, “Inves-
tigating resilient high performance reconfigurable computing
with minimally-invasive system monitoring,” in Proceedings of
the 4th International Workshop on High-Performance Reconfig-
urable Computing Technology and Applications (HPRCTA ’10),
pp. 1–8, November 2010.

[24] A. G. Schmidt, B. Huang, R. Sass, and M. French, “Check-
point/restart and beyond: resilient high performance com-
puting with FPGAs,” in Proceedings of the 19th IEEE Interna-
tional Symposium on Field-Programmable Custom Computing
Machines (FCCM ’11), pp. 162–169, May 2011.

[25] A. G. Schmidt and R. Sass, “Improving design productivity
with a hardware performance monitoring infrastructure,” in
Proceedings of the 6th Annual International Conference on
Reconfigurable Computing and FPGAs, 2011.

[26] A. G. Schmidt, W. V. Kritikos, R. R. Sharma, and R. Sass,
“AIREN: a novel integration of on-chip and off-chip FPGA
networks,” in Proceedings of the IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM ’09), pp.
271–274, April 2009.

[27] A. G. Schmidt, Productively scaling hardware designs over
increasing resources using a systematic design analysis approach
[Ph.D. thesis], The University of North Carolina at Charlotte,
2011.

[28] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[29] S. Ganesh, Implementation of the smith-waterman algorithm on
fpgas [Ph.D. thesis], University of North Carolina at Charlotte,
2009.

[30] W. R. Pearson, “FASTA Sequence Comparison at the Uni-
versity of Virginia,” July 2011, http://fasta.bioch.virginia.edu/
fasta www2/.

[31] J. C. Lagarias, “The 3x+1 problem and its generalizations,”
American Mathematical Monthly, pp. 3–23, 1985.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

