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The enumeration of two-dimensional Costas arrays is a problem with factorial time complexity and has been solved for sizes up to
29 using computer clusters. Costas arrays of higher dimensionality have recently been proposed and their properties are beginning
to be understood. This paper presents, to the best of our knowledge, the first proposed implementations for enumerating these
multidimensional arrays in GPUs and FPGAs, as well as the first discussion of techniques to prune the search space and reduce
enumeration run time. Both GPU and FPGA implementations rely on Costas array symmetries to reduce the search space and
perform concurrent explorations over the remaining candidate solutions. The fine grained parallelism utilized to evaluate and
progress the exploration, coupled with the additional concurrency provided by the multiple instanced cores, allowed the FPGA
(XC5VLX330-2) implementation to achieve speedups of up to 30× over the GPU (GeForce GTX 580).

1. Introduction

A two-dimensional Costas array (2DCA) of size N is a
permutation f : N → N such that for every integer h, i, and
j, where 1 ≤ h ≤ N−1 and 1 ≤ i, j ≤ N−h, f (i+h)− f (i) =
f ( j + h)− f ( j), implies that i = j. Thus, informally, a size N
Costas array is defined as N × N matrix containing exactly
N dots, where every row and column contain exactly one
dot and the vectors joining each pair of dots are distinct.
Figure 1 illustrates a Costas array of size N = 6, both as a
matrix and a permutation. The figure also shows the array’s
difference triangle, which organizes the differences between
the various permutation digits in N − 1 rows where each
row corresponds to a fixed h. By definition, each row in the
difference triangle of a Costas array must consist of unique
numbers.

Their definition implies that Costas arrays have perfect
autocorrelation (autocorrelation = 1), which makes them
useful in communications where signals must be recov-
erable even in the presence of considerable noise. Costas
arrays are useful in many security and communication
applications, such as remote object recognition and optical

communications [1]. Furthermore, some special cases of
Costas arrays can be used for digital watermarking [2].

Costas arrays with dimensions higher than two were
introduced in 2008 by Drakakis [3]. These arrays maintain
perfect autocorrelation, which broadens their applicability in
optical communications, for example, 3D optical orthogonal
codes [4]. Multidimensional periodic Costas arrays (MPCAs)
over elementary Abelian groups, introduced by Moreno
and Tirkel , add the property of being periodic over
all dimensions. This extends their applicability to digital
watermarking of video and combined video and audio,
where higher-dimensionality codes are desired [2]. A formal
definition and some of their properties are presented in
Section 3. In this paper, we focus on the latter kind of
multidimensional periodic Costas arrays (MPCAs) due to
their richer application range.

The enumeration of 2D Costas arrays has been a topic of
interest since their discovery by Costas in the 1960s [5]. With
each new size enumerated, new properties and generation
techniques may be discovered [6]. Ortiz-Ubarri et al. pre-
sented MPCA transformations and their first enumeration
in [7]. Given their relatively new discovery, it is expected
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that the enumeration of MPCAs will, as with 2DCAs, help
researchers improve their understanding.

Both 2DCAs and MPCAs can be generated using alge-
braic constructions based on finite fields like the Welch
and Lempel-Golomb constructions [7]. Small sizes can be
enumerated using hand computation, yet the only known
method to guarantee complete enumeration is by exhaustive
exploration. The search space for complete enumeration
of 2DCAs grows factorially with N , thus computer-based
exploration is the only practical approach for medium and
large sizes. The most common approach for the enumeration
of 2DCAs is to use a backtracking algorithm that incorpo-
rates symmetries and other observations to further prune
the search space. This paper presents the first discussion
of search space pruning techniques for MPCAs. Both the
FPGA and GPU implementations utilize these methods to
significantly reduce the search space. Nevertheless, the worst
case timecomplexity is still factorial, requiring tremendous
run times even for small cases of N and m (the dimension).

This paper discusses our implementations for the enu-
meration of (m + 1)-dimensional Costas arrays in GPUs
and FPGAs and constitutes the first description of such an
enumeration. We present the techniques chosen to prune the
search space as well as the organization of our designs. Our
FPGA implementation achieved speedups of up to 30 times
faster than the GPU. Furthermore, the modules that were
created as part of the design process can easily be adapted to
other constraint satisfaction problems that use backtracking.

The rest of this paper is organized as follows. Section 2
presents the relevant previous work, while Section 3 defines
(m + 1)-dimensional Costas arrays and some of their
symmetries. Section 4 describes the backtracking algorithm
and its use for the enumerations. Section 5 introduces several
techniques that allow us to prune the search space during
the enumerations. Sections 6 and 7 discuss the GPU and
FPGA designs, respectively. Section 8 reports and discusses
the results and Section 9 provides our conclusions.

2. Previous Work

Most recent enumerations of 2DCAs have been com-
pleted using general purpose processors [8, 9]. The latest
enumerations have been achieved by deploying many com-
puter clusters (in all, thousands of cores) to concurrently
explore disjoint parts of the search space. For N = 28 and
N = 29, the time per single CPU was determined to be 70
and 366.55 years, respectively.

To the best of our knowledge, the only reported FPGA-
accelerated 2DCA enumerations have been [10, 11]. Devlin
and Rickard implemented sizes N = 13 through 19 on a
Xilinx Spartan-3 XC3S1000 running at 25 Mhz and extrap-
olated their results to sizes up to N = 32 using the
same device as well as the Virtex-5 XC5VLX110 [10]. The
extrapolated execution times for N = 28 and 29 were 9.26
and 48.45 years, respectively. Arce-Nazario and Ortiz-Ubarri
compared the execution of 2DCA enumeration in an FPGA
(Virtex 5-XC5VLX330-2) and a GPU (GeForce GTX 580).
The FPGA implementation achieved speedups of up to 40×
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Figure 1: The Costas array (1, 3, 2, 5, 6, and 4), its matrix and
permutation representations. The difference triangle confirms that
this is a Costas array since each row h consists of unique numbers.

over the GPU and 4.44× over the fastest reported software
implementation [9].

The first generalizations of Costas arrays were given
by Drakakis in [12]. He defined various classes of multi-
dimensional arrays by modifying the Costas property con-
straints and presented examples. Moreno et al. defined the
(m + 1)-dimensional periodic Costas arrays over elementary
Abelian groups [13] and described algebraic Welch Costas
constructions. More recently, Ortiz-Ubarri et al. presented
symmetries over the MPCAs that allow the expansion of the
families discovered by Moreno [7]. They reported the first
enumeration for sizes (Z2)2, (Z3)2, and (Z5)2, yet no details
are offered regarding enumeration or solution space pruning
techniques.

3. (m + 1)-Dimensional Costas Arrays

We begin by providing the definitions of the (m + 1)-
dimensional periodic Costas arrays over elementary Abelian
groups.

Definition 1. A generic (m + 1)-dimensional periodic Costas
array over the elementary Abelian group (Zp)m is a permu-
tation function f : ((Zp)m)∗ → (Zpm−1), where A∗ means
A-{0}. This function has the distinct difference property: for
any h /= 0, a, b ∈ (Zp)m, f (a + h) − f (a) = f (b + h) − f (b)
implies a = b, where the addition and subtraction operations
are performed in the corresponding Abelian group.

Remark 2. Since, by definition, the (m + 1)-dimensional
periodic Costas arrays over the elementary Abelian group are
fully periodic; the periodic shifts of an MPCA on any of its
(m+ 1) dimensions result in a different (m+ 1)-dimensional
periodic Costas array over the elementary Abelian group.

Example 3. The following is a grid defined over Z3 × Z3:

W =
⎛
⎜⎝
w2,0 w2,1 w2,2

w1,0 w1,1 w1,2

w0,0 w0,1 w0,2

⎞
⎟⎠. (1)
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As a shorthand method, we may also enumerate the
elements in a Costas array (Zp)m using the index mapping
(d0, . . . ,dm−1) �→ (d0 + p · d1 + · · · + pm−1 · dm−1)

W =
⎛
⎜⎝
w6 w7 w8

w3 w4 w5

w0 w1 w2

⎞
⎟⎠. (2)

The distinct difference property can be verified, in a
manner similar to 2DCAs, by using difference matrices. The
differences for a (Zp)m array are organized into pm − 1
matrices. For instance, for m = 2, each difference matrix
h = (h0,h1) is p×p and contains at each cell (i, j) the result of
wi+h0, j+h1 −wi, j . The cells for differences that involve position
(0, 0) are represented using ∗.

Figure 2 shows a Z3 × Z3 Costas array along with its
corresponding difference matrices. For example, cell (1, 1)
of the difference matrix h = (0, 1) contains the difference
between w(1+0),(1+1) − w1,1 = w1,2 − w1,1 = 7 − 2 =5. A
MPCA satisfies the distinct difference property if each of its
pm−1 difference matrices contain each number in Zpm−1-{0}
exactly once.

3.1. Addition and Multiplication (Modulo pm−1) Symmetries.
Two algebraic symmetries introduced by Moreno et al. can
be used to significantly reduce the search space for MPCA
enumeration [13].

Theorem 4. Multiplication (modulo pm − 1) of a periodic
Costas array by an integer less than and relatively prime to
pm − 1 generates a new periodic Costas array.

Example 5. Multiplying W, the array in Figure 2, by 7 ≡ −1
mod 8 yields the following MPCA:

⎛
⎜⎝

3 5 2
7 6 1
∗ 0 4

⎞
⎟⎠. (3)

Theorem 6. Addition (modulo pm−1) of any integer less than
pm − 1 to a periodic Costas array generates a new periodic
Costas array.

Example 7. Adding 3 to W yields the MPCA:

⎛
⎜⎝

0 6 1
4 5 2
∗ 3 7

⎞
⎟⎠. (4)

4. Backtracking

Backtracking is a general algorithm for solving a compu-
tational problem by incrementally generating all possible
solutions. The execution of a backtracking algorithm can be
modelled as a search tree where every node is a partial solu-
tion. Moving forward corresponds to approaching a valid
solution, and going backward corresponds to abandoning
a partial candidate that cannot possibly generate a valid
solution.
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Figure 2: A Z3×Z3 MPCA and its difference matrices. The∗ in the
MPCA symbolizes that the mapping for (0, 0) is not defined, that is,
recall the mapping is f : ((Zp)m)∗ → (Zpm−1).

For the purpose of this discussion, we define a subper-
mutation PX

� = (p1, p2, . . . , p�), where pi ∈ X . For MPCAs,
X = Zpm−1 + {∗}. The next subpermutation of size � + k of
PX
� , where k ∈ {−1, 0, 1}, expressed as ℵ(PX

� , � + k) is defined
as the next subpermutation in lexicographical order of size
� + k that conserves the first � + k − 1 elements.

Example 8. For X = Z32−1 + {∗}, let PX
4 = (∗, 0, 4, 3), the

next subpermutation of size 4, ℵ(PX
4 , 4) = (∗, 0, 4, 5). The

next subpermutation of size 5, ℵ(PX
4 , 5) = (∗, 0, 4, 3, 1). The

next subpermutation of size 3, ℵ(PX
3 , 3) = (∗, 0, 5).

Example 9. For X = Z32−1 + {∗}, let PX
4 = (∗, 0, 4, 7).

ℵ(PX
4 , 4) = ε, that is, there is no next subpermutation

beginning with (∗, 0, 4). ℵ(PX
4 , 5) = (∗, 0, 4, 7, 1). ℵ(PX

4 , 3) =
(∗, 0, 5).

Algorithm 1 illustrates the backtracking algorithm used
for enumerating all MPCAs in (Zp)m given a seed permu-
tation Pinit. Figure 3 illustrates the steps in the computa-
tional tree of the backtracking approach, given the seed
(∗, 0, 4, 1, 2, 7) for (Z3)2.

5. Techniques for Pruning the Search Space and
Efficient Evaluation of Candidate Arrays

MDCA symmetries can be leveraged to reduce the search
space in their enumeration. For instance, it can be deduced
from Theorems 4 and 6 that backtracking exploration
must proceed only through permutations lexicographically
smaller than (∗, 0, 	pm/2
, 	pm/2
 + 1, . . .).

(1) MPCAs with the ∗ in any position other than (0, 0)
are generated by periodic shifts of the arrays with the
∗ in position (0, 0). These include all the geometric
symmetries (horizontal flip, vertical flip, and 900

rotations) of the MPCAs.
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Inputs: p,m: MPCA dimensions
Pinit: initial permutation

Output: Displays all MPCAs in (Zp)m

Perm = Perminit

� = length of Perminit

while (� >= length of Perminit){
if (IsCostas (Perm) {

if (� == pm) {
display Perm
do {

� −−;
} until (Next (Perm, �)!= empty)

}
else

�++; //explore a deeper level
}
else {

// backtrack
do {

� −−;
} until (Next (Perm, �)!= empty)

}
Perm = Next (Perm, �);

}

Algorithm 1: Backtracking algorithm to enumerate all MPCAs in (Zp)m beginning with permutation Perminit.

(∗, 0, 4, 1, 2, 7)

(∗, 0, 4, 1, 2, 7, 3)

(∗, 0, 4, 1, 2, 7, 5)

(∗, 0, 4, 1, 2, 7, 6)

(∗, 0 ,4, 1, 2, 7, 5, 3)

(∗, 0, 4, 1, 2, 7, 5, 6)

Not Costas

Not Costas

Not Costas

(∗, 0, 4, 1, 2, 7, 5, 3, 6)

Costas

Figure 3: Backtracking search tree for MPCAs in (Z3)2 with Pinit = (∗, 0, 4, 1, 2, 7).

(2) Any permutation starting with ∗, 0, and followed
by a 	pm/2
, 	pm/2
 + 1 can be obtained by mul-
tiplying a lexicographically smaller subpermutation
by −1, that is, using Theorem 4. For example, for
(Z3), any permutation including and higher than
(∗, 0, 4, 5, 1, 2, 3, 6, 7) can be obtained by multiplying
a smaller permutation by −1, for instance, (∗, 0,
4, 5, 1, 2, 3, 6, 7) by multiplying (∗, 0, 4, 3, 7, 6, 5, 2, 1)
by −1.

(3) Any permutation starting with ∗, followed by a
nonzero element can be obtained by adding to a per-
mutation that starts ∗, 0, that is, using Theorem 6.
For example, (∗, 1, 5, 4, 0, 7, 6, 3, 2) is obtained from
the addition of 1 to (∗, 0, 4, 3, 7, 6, 5, 2, 1).

Thus, the required exploration is reduced from (p2 − 1)!
to approximately (p2 − 2)!/2 permutations in the worst case.

5.1. Evaluation of Candidate Arrays. Computationally, we
determine if a permutation is an MPCA by using the
distinct difference property. In the backtracking algorithm,
every time the algorithm moves forward by adding a
new element pk to the permutation, the new differences
generated by subtracting pk and p1, . . . , pk−1 are added to the
corresponding arrays. Thus, the difference arrays fill up as
the permutation in the backtracking tree grows and deplete
as the backtracking algorithm moves backward.

From the MPCA definition it can be deduced that only
half of the difference matrices must be maintained. To
understand this, let us define the negative of a distance vector.

Definition 10. Let h = (h0, . . . ,hm−1) be a distance vector of
(m + 1)-dimensional periodic Costas array over the elemen-
tary Abelian group (Zp)m. The negative of the distance vector
h, expressed as −h, is defined as (−h0, . . . ,−hm−1). In other
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words, h is a vector in the direction (h0, . . . ,hm−1) then −h is
a vector of same length in the opposite direction.

Example 11. The negative of the difference vector h = (1, 0)
over the elementary Abelian group (Z3)2 is −h = (−1, 0) =
(2, 0).

The difference matrix for a distance vector −h accumu-
lates the negatives of the differences collected by the matrix
for the distance vector h. This is illustrated in Figure 4. The
current subpermutation being evaluated (∗, 0, 4, 1, 2, 7) has
produced the differences shown in the matrices. Notice how
the differences in h = (0, 1) and h = (0, 2) are the negatives
of each other, for example, −4 = 4, −1 = 7, −5 = 3, and −2
= 6. The same behavior is obtained for the rest of the h and
−h pairs, for example, (0, 1) and (0, 2), (1, 1) and (2, 2), and
(2, 1) and (1, 2). Therefore, we only need to keep track of
either the h or −h of each h,−h pair, that is, the other matrix
contains redundant information.

Furthermore, using the index mapping (d0, . . . ,dm−1) �→
(d0 + p · d1 + · · · + pm−1 · dm−1), we can demonstrate that
the (pm − 1)/2 matrices can be completed by computing all
wb −wa, a, b ∈ Zpm−1 where b > a.

Theorem 12. The differences wb − wa, a, b ∈ Zpm−1, where
b > a complete all the differences matrices.

Proof. Without loss of generality, we consider m = 2, that
is, a, b ∈ Zp2−1. The matrix (h0,h1) collects all differences
f ((i, j) + (h0,h1))− f (i, j). If (i+ h0) + p · ( j + h1) > i+ p · j
then b > a. Else, b < a, that is, (i+h0) + p · ( j +h1) < i+ p · j
which implies one of two cases.

(1) j > j+h1. This implies that h1 ≥ p− j, in which case,
for the negative, h1 < p − j and j < j + h1. Thus, the
negative of this case can be found using a difference
covered by b > a.

(2) j = j + h1 and h0 > i + h0. This implies that
h0 ≥ p − h0, in which case, for −h, h0 < p − i and
i < i+h0. Thus, the negative of this case can be found
using a difference covered by b > a.

Example 13. For the difference matrix h = (0, 1) the compu-
tation for f ((2, 2) + (0, 1))− f (2, 2), that is, f (2, 0)− f (2, 2)
can be obtained from−( f (2, 2)− f (2, 0)), that is,−(w8−w6).

In our implementations, the difference matrices are man-
aged as follows.

(i) A hash table of size pm − 1 is used for each of the
(pm − 1)/2 matrices to keep track of its differences.

(ii) Whenever the permutation length increases (PX
� to

PX
�+1), the differences between the last added digit and

the rest of the digits are computed and compared to
the contents of the corresponding hash tables. A hit
in any of the tables indicates a repeated difference
and hence a non-Costas permutation. Otherwise, the
differences are registered in the corresponding tables.

∗

∗ ∗
h = (1, 0)

h = (0, 1) h = (0, 2)

h = (1, 1) h = (1, 2)

h = (2, 0) h = (2, 1) h = (2, 2)

1 2

0

1 5 2

4

∗ 32 ∗ 57 ∗ 61

∗
∗ 6 5 7

∗
∗∗2

∗
13

∗ ∗
6 7 3

4

7

4

Difference matrices

Figure 4: Difference matrices for a subpermutation during enu-
meration of Z3×Z3 MPCAs, to illustrate the behavior of h and −h
matrix pairs.

(iii) Whenever the permutation length decreases (PN
� to

PX
�−1), the differences between the dropped digit and

the rest of the digits are deleted from the hash tables.

6. GPU Design

We perform our computations in a GeForce GTX 580 with
16 multiprocessors, each with 32 cores at 1.54 GHz clock
rate, 1.5 GB of global memory, and 48 K of shared memory
using the CUDA parallel computing architecture. Similar to
many other computational problems where GPUs are used to
accelerate algorithms in parallel, our implementation essen-
tially decomposes the enumeration into many disjoint sub-
spaces, which are deployed as threads to the GPU. Figure 5
illustrates the workflow of the GPGPU implementation. The
Host (CPU) generates a set of K subpermutations PN

m of size
m < N that comply with the Costas property. The set is then
passed to the Device (GPU), where for each subpermutation
a thread is generated to complete the exploration, that
is, each thread determines all (if any) Costas arrays that
begin with its given subpermutation. While the threads are
executing, the Host is generating the next set of K sub-
permutations. When all threads complete, the results are
passed to the Host, and the next set of K subpermutations
is transferred to the GPU.

Two quite similar versions of Algorithm 1 run in the Host
and each of the threads of the GPU. In the Host, Algorithm 1
is used to generate all subpermutations of length M com-
pliant with the Costas property. As each subpermutation is
found it is added to an array of size K of the data type shown
in Algorithm 2 . When the array is full it is copied to the
GPU global memory and the K CUDA threads are deployed
to process the copied subpermutations.

Each CUDA thread runs a version of Algorithm 1 that
takes one of the subpermutations as Pinit and copies any
found Costas arrays back to the GPU global memory. When
all the GPU threads are done, the found Costas arrays of size
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Host: K sub
permutations of size M

GPU: for each p in K compute Costas
from M to N

(∗, 0, 4, 7, 6, 1, 3, 5, 2) }

{ (∗, 0, 4, 1), . . ., (∗, 0, 4, 7)}

{ (∗, 0, 4, 1, 2, 7, 5, 3, 6) . . .

Host: accumulate GPU

results

Figure 5: Simplified workflow of the GPGPU implementation. The Host generates a list of subpermutations, the GPU completes the search
for the full permutations, then sends them back to the Host. The process repeats until no more subpermutations exist.

typedef struct{
char counter;
char subcostas[M];
char costas[MAX COSTAS PT][N–M];

} CostasData;

Algorithm 2: The array of K permutations used between the Host and GPU is an array of size K of type CostasData counter stores the
number of Costas array of size N found in each thread of the GPU, subcostas stores one of the subpermutations of size M computed in the
Host, and costas stores a maximum number of the remaining (N–M) elements of the Costas arrays of size N found in each thread of the
GPU.

N are copied to the Host. The number of subpermutations
(K) to be passed to the GPU is determined by the number of
cores of the GPU. In our experiments we obtained the best
performance with K = number of cores × 128.

7. FPGA Design

Many FPGA implementations obtain their impressive perfor-
mance by exploiting fine-grained parallelism through deep,
custom pipelines. However, backtracking is in essence a
serial process, that is, generates permutation, then evaluates,
then accepts or backtracks. Given this scenario, we opted
to implement a highly tuned, low-resource serial MPCA
enumeration (MPCAEn) core that can be instantiated many
times inside the FPGA. Hence, the acceleration provided by
our design comes mainly from two factors: (a) the rapid
generation of candidate permutations and their evaluation
within each core and (b) the high number of cores working
in parallel on subsets of the enumeration.

7.1. Backtracking Functionality and Array Evaluation. Figure
6 illustrates the basic blocks of our MPCAEn core. A shift
register is used for constructing or reversing the candidate
permutation. The candidate permutation is constructed by
shifting left and concatenating a new digit in the right-most
position. As a permutation is generated, its compliance with
the Costas array definition is verified by the Costas evaluation
block. If the candidate complies, the next permutation PN

m+1

is generated by shifting left and concatenating the lowest
available digit to the right-most position. If not, then one of
two cases may occur.

(1) There is an available digit d that is higher than the
rightmost digit. In this case, the rightmost digit is

substituted by d. For example, (∗, 0, 4, 1, 2, 6) is eval-
uated and does not comply. Since the available digits
are 3, 5, and 7, then 6 is substituted by 7 to compose
the next candidate permutation (∗, 0, 4, 1, 2, 7).

(2) There are no digits available higher than the right-
most digit. In this case the shift register is shifted right
and the digit that is shifted out is added to the avail-
able digits. This is repeated until there is an available
digit that is higher than the current rightmost digit, at
which case we perform the substitution described in
the first case. For example, (∗, 0, 4, 3, 7) is determined
to not comply with the MPCA difference property;
the available digits are 1, 2, 5, and 6 but none of them
is higher than 7 so the permutation must backtrack
to (∗, 0, 4, 3). The available digits are now 1, 2, 5, 6,
and 7, thus 3 is substituted by 5 to form the next
permutation (∗, 0, 4, 5).

Figure 7 illustrates the operation of the MPCA evaluation
block. When a new digit is added to the current permutation,
for example, p4 in the figure, the differences between the
new digit and the rest are computed. The negatives of the
differences are also computed, since they might be used
to update some of the difference matrices (as explained in
Section 5.1). Depending on the index of the newly added
digit, the encoder/mux block routes the results of the
differences to the corresponding hash tables. For the example
in the figure, the result from Diff2 corresponds to p4 − p2,
that is, p(1,1) − p(0,2); thus it will update the hash table
for the difference matrix h(1, 2). When p5 is added to the
permutation, Diff2 corresponds to p5 − p3, that is, p(1, 2) −
p(1, 0); thus its negative will be used to update the hash table
for the difference matrix h(0, 1).
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Left/right shift register

Eval. Costas

Control
unit

Is Costas

Shift left right
or stay Candidate

Lowest
Lowest

avail
avail higher
than

Clear or set entry

Digit availability
hash table

1

1

1
1
1

1

2

2

3
4

4

5
6
7

7

0

0

0

0
0
0

Figure 6: In the illustration, the permutation (∗, 0, 4, 1, 2, 7) has
just been generated. The hash table keeps record of the digits that
are in use in the current permutation (indicated by 1) and outputs
two digits, the lowest available and the lowest available higher than
the current input.

For 2DCAs, the deeper rows of the difference triangle are
responsible for the detection of only a small percentage of the
rejected arrays, as confirmed in [10, 11]. Our enumeration
core for MPCAs is parameterizable in the number of distance
vectors that are used to evaluate whether an array is an
MPCA. The designer may choose to implement less than
(p2 − 1)/2 distance vectors to save FPGA resources. If so,
the few false positives that will come out from the FPGA
enumeration can be eliminated in software once they are
communicated to the general purpose processor (GPP).

7.2. Resource Utilization and Core Organization. Figure 8
shows the amount of FPGA LUTs required by the MPCAEn
core for (Z5)2 and (Z7)2, implementing various amounts of
vector differences. LUTs are the most strained resource in the
MPCAEn implementation (versus registers). The resource
utilization results were obtained from the synthesis process
using Xilinx ISE 11.5 targeting a Virtex5-XC5VLX330-2
FPGA. It was found through experimentation that keeping
track of more than 7 differences for (Z5)2 and 14 differences
for (Z7)2 did not significantly reduce enumeration times. The
enumerators that were implemented for obtaining the results
used those amounts of differences, for example, 7 for (Z5)2

and 14 for (Z7)2.
Since resource utilization per enumerator is low, mul-

tiple MPCAEn modules were instantiated in the FPGA as
illustrated in Figure 9. The transfer of subpermutations and
collection of results is performed by the transfer/collector
module, which is connected through low-width data lines
to the enumerators in order to save connection resources.
MPCAs are so scarcely found during the enumeration
that, regardless of the bandwidth between enumerators and
transfer/collector module, these connections never become a
bottleneck.

8. Results and Discussion

To compare GPU and FPGA performance, we implemented
sizes 3 × 3, 5 × 5, and 7 × 7 of our MPCA enumeration

designs in GPU (GeForce GTX 580) and FPGA (one Xilinx
XC5VLX330-2 device of the four provided in a Convey HC-1
Server). Table 1 shows the number of found MPCAs starting
with (∗, 0), the execution times for both designs as well as
the growth rate as a function of p, and the speedup of FPGA
versus GPU. Results for 3 × 3 and 5 × 5 are wall clock times
while 7× 7 is the worst case estimation of the run time based
on sample runs.

We attribute the speedup mainly to the fact that the
FPGA implementation was able to exploit the following two
levels of parallelism, whereas the GPU could only make use
of the highest level:

(1) coarse-grained level parallelism, which is achieved by
splitting the solution space into multiple disjoint sets;

(2) fine-grained parallelism at the level of individual
candidate evaluations, that is, the operations for the
evaluation of each (sub)permutation are performed
in parallel (as discussed in Section 7 and illustrated
in Figure 7). An analogous, low-level technique could
be used in general purpose processors by utiliz-
ing SIMD instructions. However, CUDA programs
compile to the PTX instruction set, which does not
contain SIMD instructions.

The GPU (Z3)2 was greatly overshadowed by the data
transfer times between FPGA/GPP; therefore, we only con-
sider for fair comparisons the cases (Z5)2 and (Z7)2. For these
larger cases we observe FPGA versus GPU speedups similar
to those reported for 2DCAs in [11]. The enumeration of
MPCAs exhibits a slower growth rate (approximately 3) per
additional permutation digit as compared to the reported for
two-dimensional Costas arrays (approximately 5) [8, 11]. We
conjecture that the reason for the slower growth rate is that
the conditions imposed in the MPCA definition are more
strained, thus eliminating more candidate subpermutations
earlier than the case of 2D Costas arrays.

All enumerated MPCAs turned out to be either Welch
Costas constructions as presented in [13] or their symmetries
introduced in [7], that is, no spurious MPCAs were found
similar to some sizes of 2DCAs. These results support the
conjecture that MPCAs (of all sizes and dimensions) are
fully characterized by multidimensional Welch Costas arrays
along with their symmetries.

9. Conclusions

In this work, we presented designs for the enumeration
of multidimensional periodic Costas arrays in GPUs and
FPGAs. Also, we introduced several MPCA symmetries and
showed how they are used in our designs to significantly
prune the search space. Both GPU and FPGA implementa-
tions rely on the concurrent exploration of multiple disjoint
areas of the search space. In the GPU implementation, hun-
dreds of threads are deployed to complete the search using
the many GPU cores. For the FPGA, a multidimensional
periodic Costas arrays enumeration core was designed taking
into consideration pruning techniques while maintaining a
low use of logic resources. Multiple cores were instantiated
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Figure 7: Detail of the Costas evaluation block.

Table 1: Experimental results for MPCA enumerations.

N
GPU FPGA Speedup

MPCAs found† Time (secs) Growth rate� Time (secs) Growth rate FPGA versus GPU

(Z3)2 12 3.626 — 1.24e − 4 — 29241

(Z5)2 80 20389 1.72 662 2.63 30.76

(Z7)2 336‡ 1.87e14 3.15 7.42e14 3.18 25.21
†

MPCAs starting with (∗; 0). As explained in Section 5, the rest of the MPCAs can be obtained using symmetries.
�Growth rate is computed as:

(p2
(n+1) − p2

(n))
√

T (Zp(n+1) )2/T (Zp(n))2.

‡Lower bound of MPCAs based on Welch Costas construction and symmetries presented in [13].
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Figure 8: LUT utilization by the Costas enumeration module for
various differences in the evaluation block. The target device is a
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in the FPGA to provide further acceleration. The fine grained
parallelism utilized to evaluate and progress the exploration,
coupled with the additional concurrency provided by the

collector
Transfer/
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Enum Enum Enum
k

Results

GPP/
FPGA

interface

To/from

GPP

1 2

Figure 9: FPGA design. The transfer/collector (T/C) block receives
a set of subpermutations from the GPP and schedules them among
the various MPCA enumerators. Whenever an enumerator finds an
MPCA it is sent back to the T/C and back to the GPP for validation.

multiple cores allowed the FPGA implementation to achieve
speedups of up to 30× over the GPU. The implementations
completed the first reported enumeration for MPCAs. Fur-
thermore, the MPCA properties and symmetries discovered
throughout the process help improve our understanding of
these new structures.
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