
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 236372, 13 pages
doi:10.1155/2012/236372

Research Article

Configurable Transmitter and Systolic Channel Estimator
Architectures for Data-Dependent Superimposed Training
Communications Systems

E. Romero-Aguirre,1 R. Parra-Michel,1 Roberto Carrasco-Alvarez,2 and A. G. Orozco-Lugo3

1 Department of Electrical Engineering, CINVESTAV-GDL, 45019 Zapopan, JAL, Mexico
2 Department of Electronic Engineering, UDG-CUCEI, 44430 Guadalajara, JAL, Mexico
3 Department of Electrical Engineering, CINVESTAV-DF, 07630 Mexico City, DF, Mexico

Correspondence should be addressed to E. Romero-Aguirre, eromero@gdl.cinvestav.mx

Received 4 May 2012; Accepted 17 September 2012

Academic Editor: René Cumplido

Copyright © 2012 E. Romero-Aguirre et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper, a configurable superimposed training (ST)/data-dependent ST (DDST) transmitter and architecture based on
array processors (APs) for DDST channel estimation are presented. Both architectures, designed under full-hardware paradigm,
were described using Verilog HDL, targeted in Xilinx Virtex-5 and they were compared with existent approaches. The synthesis
results showed a FPGA slice consumption of 1% for the transmitter and 3% for the estimator with 160 and 115 MHz operating
frequencies, respectively. The signal-to-quantization-noise ratio (SQNR) performance of the transmitter is about 82 dB to support
4/16/64-QAM modulation. A Monte Carlo simulation demonstrates that the mean square error (MSE) of the channel estimator
implemented in hardware is practically the same as the one obtained with the floating-point golden model. The high performance
and reduced hardware of the proposed architectures lead to the conclusion that the DDST concept can be applied in current
communications standards.

1. Introduction

Presently, there is need to develop communications systems
capable of transmitting/receiving various types of informa-
tion (data, voice, video, etc.) at high speed. Nevertheless,
designing these systems is always an extremely difficult task,
and, therefore, the system must be broken down into several
stages each with a specific task. The complexity of each stage
is higher when the system operates in a wireless environment
because the additional challenges that should be facing due
to the complex nature of the channel and its susceptibility to
several types of interference.

As it is not possible to avoid the influence of the channel
on a transmitted data sent through it, an option is to chara-
cterize the channel parameters with enough precision so that
their effects can be reverted in the receiver. For that reason,
channel estimation stage is a key part of any reliable wireless
system because a correct channel estimation leads to a reduc-
tion of the bit error rate (BER). The channel estimator must

deal with multiple phenomenas, such as multipath propa-
gation and frequency Doppler (due to the mobility of the
users). In order to deal with these problems, current commu-
nication standards specify the transmission of pilot signals
which are known in the receiver, allowing an ease estimation
of the communication channel. The way of transmitting
such pilot signals can be classified in to two major branches:
pilot-assisted transmission (PAT)—where pilot and data
signals are multiplexed in time, frequency, code, space, or
in a combination of the mentioned domains—and implicit
training (IT), a technique proposed recently where the pilot
signal is hidden in the data transmitted. PAT is the technique
implemented in actual standards, such as WiMAX, WiFi,
and Bluetooth. It presents the advantage that pilots and data
relies on orthogonal subspaces allowing a simple separation
of them in the receiver; however, it is necessary to decrease
the available bandwidth for data in order to transmit the
pilot signal. On the other hand, IT overcomes this problem
because all the time, data and pilot signal are transmitted;

2 International Journal of Reconfigurable Computing

nevertheless, it leads to a transmission of such signals into
nonorthogonal subspaces. Despite the aforementioned, IT
has been recognized as a feasible alternative for future
communication standards [1].

The simplest form to carry out IT is to add (superim-
pose) the pilot signal to the data. This approach is known
as superimposed training (ST), first proposed in [2] and
enhanced by diverse authors whose results are summarized
in [3, Ch. 6]. In [4–8] was presented a refinement of ST
known as data-dependent superimpose training (DDST),
this technique makes it possible to null the interference of
data during the estimation process via the addition of a new
training sequence, which depends on the transmitted data,
together with the data and the ST sequence.

Because of the benefits that ST/DDST offer, it is necessary
to develop efficient implementations of these algorithms.
Although these techniques have been widely studied, to this
point, there exist few reported practical implementations
in the literature. In fact, almost all of them are approxi-
mations based on floating point and software. In [9],
the algorithms are programmed in a digital signal pro-
cessor (DSP) for a low-rate communication system, while
in [10] the proposed implementation is developed into
an embedded microprocessor with hardware accelerators
inside of a FPGA. At ReConFig 2011, we have presented
a full-hardware architecture—with high throughput, low
hardware consumption, and high degree of reusability—
for the channel estimation stage of an ST/DDST receiver
[11]. Its novelty consisted in that a systolic array processors
(AP) was used for performing the entire estimation process
instead of two separated signal processing modules. In this
paper, we present a extended version of that paper, where
a hardware-efficient architecture for configurable ST/DDST
transmitter that supports 4/16/64-QAM constellations is
used to complement the results presented in [11], because
now, all transmitted data—in each Monte Carlo trial—are
generated by the proposed transmitter hardware instead of
the transmitter simulation model programmed in Matlab.

The rest of the paper is organized as follows. Section 2
presents the system model being considered, the ST/DDST
transmitter structure, the channel estimation algorithm, and
the cyclic mean reformulation onto systolic APs. Section 3
describes in detail the full-hardware architectures for the
configurable ST/DDST transmitter. Section 4 proposes an
architecture based on SA processor for the DDST channel
estimator. In Section 5, the performance evaluation of the
proposed architectures is carried out. Conclusions are set
down in Section 6.

Notation 1. Lowercase (uppercase) bold letters denote col-
umn vectors (matrices). Operators (A)H , (A)T , and (A)−1,
denote the Hermitian, transpose, and inverse operations of
matrix A. 1n represents a column vector of length n with
all its elements equal to one; similarly, 0n represents an all-
zeros column vector of length n. In is the identity matrix
of size n × n. [a]k denotes the kth element of vector a.
[a]m:n denotes a vector conformed with the elements of a
as follows: [[a]m, [a]m+1, . . . , [a]n]T . ⊗ represents Kronecker
product. Finally, E(·) represents the expectation operator.

+

Data

Superimposed
training sequence

Data-dependent
training sequence

Transmitter

+
Received
sequence

Gaussian noise

Channel
b(k)

c(k)

e(k)

s(k)

n(k)

x(k)
h(k)

Figure 1: Digital communication system model considered.

2. System Model

This section is devoted to introduce the DDST algorithm
mentioned previously. Suppose a single carrier, baseband
communication system based on DDST as the one presented
in Figure 1. The transmitted signal x(k) conformed to the
sum of the data sequence b(k), the training sequence c(k)
and the data-dependent training sequence e(k). The index
k helps to enumerate the samples of such signals which are
transmitted at a rate equal to 1/T . c(k), is a periodic sequence
with period equal to P and power equal to σ2

c [12]. It is
assumed that the data sequence is a zero-mean, stationary
stochastic process with power equal to σ2

b , where the symbols
of such process come from a equiprobable alphabet. The
sequence e(k) is constructed as mentioned in [5]. s(k) is
propagated through the communication channel h(k) whose
time impulse response conformed to the convolution of
the system filters and the propagation medium impulse
responses (all of them assumed to be time-invariant). Such
channel can be modeled as a finite impulse response (FIR)
filter with L time-invariant coefficients as much. Finally, the
distorted signal by the channel is contaminated with the
noise n(k) for conforming the received signal x(k). n(k) is
a zero-mean white Gaussian noise, which possess variance
equal to σ2

n . The transmission of blocks of N symbols, which
is preceded by a cyclic prefix of length CP ≥ L is assumed.
Perfect block synchronization, which allows to fix P = L it is
also assumed. For ease of implementation, it is assumed that
N is a multiple of P and P is a power of two.

Thus, the received signal after removing the cyclic prefix
can be expressed in a matrix form as follows:

x = H(b + c + e) + n, (1)

where H is a circulant matrix whose first row is given by
[hT , 0T

N−L], where h is a vector containing the coefficients
of the channel impulse response (CIR). Similarly, x, b, c,
e, and n are vectors equal to [x]k = x(k), [b]k = b(k),
[c]k = c(k), [e]k = e(k), and [n]k = n(k), respectively, with
0 ≤ k ≤ N − 1.

2.1. Digital Transmitter with ST/DDST Included. Figure 2
depicts the discrete-time baseband block diagram of the

International Journal of Reconfigurable Computing 3

Mapper
parallel

Superimposed
training

Parallel/
serial

Sequence transformation

Symbol
conformer

Bits Serial/b(k) b s s(k)

A c

Figure 2: Block diagram of the digital baseband (data-dependent) superimposed training transmitter.

(data-dependent) superimposed training transmitter. This is
a modified version of the IT transmitter presented in [3].
From Figure 2, it can be noted that the key component of the
transmitter is the sequence transformation block. It serves to
implicitly embed the training sequences onto data sequence
b by the affine transformation expressed as

s = Ab + c, (2)

where s represent the complex baseband discrete-time
transmitted signal, A is a precoding matrix, and c refers to
vector obtained by replicating NP times one period of the
training signal cOCI of size P, that is,

c = 1NP ⊗ cOCI , (3)

where NP = N/P, [cOCI]n = cOCI(n) and such sequence is
given by [12]:

cOCI(n) = σce
j(π/P)(n(n+v)) (4)

with v = 1 when P is odd, v = 2 if P is even, and n =
0, . . . ,P − 1.

The precoding matrix allows to modify the training
technique according to

Training =
{

A = IN , c /= 0 for ST,

A = IN −G, c /= 0 for DDST
(5)

with

G = 1
Np

(
1NP×1 ⊗ K

)
, (6a)

K = 11×NP ⊗ IP , (6b)

where G and K are matrices of sizes N × N and P × N ,
respectively.

In the DDST case, the N-length vector e containing the
data-dependent sequence (DDS) can be obtained from (2)
and using (5)–(6b) as follows:

e = Gb. (7)

2.2. Channel Estimation Using DDST. It is possible to
observe that due to the periodicity of c(k), s(k) will have a
periodic signal embedded with a period equal to P. Taking
advantage of this characteristic, an estimated of the cyclic
mean of the received signal is utilized for performing the

estimate of the channel. Such cyclic mean estimator can be
defined as:

y = Jx, (8)

where y is a column vector of length P whose elements are
the estimated coefficients of the cyclic mean of x and J given
by

J = 1
NP

(
1T
NP
⊗ IP

)
. (9)

According to [4], the estimation of the CIR is given by

ĥ = Γy, (10)

where ĥ is a vector containing the estimated CIR coefficients,
Γ is a matrix formed by the first L rows of C−1, and
C is a circulant matrix of size P × P formed by vector
[c(0), c(1), . . . , c(P − 1)]T .

2.3. Cyclic Mean Algorithm Using Array Processors and Parti-
tioning. The next analysis describes how the cyclic mean is
obtained using a systolic array that computes a matrix-vector
multiplication (MVM). Consider (8), where it is not possible
to perform directly the MVM operation due to the Kronecker
product involved. To avoid this cumbersome operator, the
same equation can be reformulated as follows:

y = 1
NP

(ℵ1NP

)
, (11)

where ℵ is a matrix of size P×NP which is defined as follows:

ℵ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x]0 [x]P [x]2P · · · [x](NP−1)P

[x]1 [x]P+1 [x]2P+1 · · · [x](NP−1)P+1

[x]2 [x]P+2 [x]2P+2 · · · [x](NP−1)P+2

...
...

...
...

[x]P−1 [x]2P−1 [x]3P−1 · · · [x]NPP−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

An architecture based on AP for computing (11) would be
impractical from the point of view of hardware consumption
because it will need NP processor elements (PEs). This
problem is known as problem-size-dependent array where
the algorithm requires a systolic AP whose size depends on
the complexity of the problem to be solved. However, it is
possible to map the cyclic mean algorithm to a systolic AP

4 International Journal of Reconfigurable Computing

of a smaller size using the partitioning method [13, Ch. 12].
Considers ℵ to be partitioned in blocks of size chosen to
match a systolic array size P then (12) becomes

ℵ = [B0 | B1 | · · · | B(NP/P)−1
]
, (13)

where

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x]iP2 [x]iP2+P · · · [x]iP2+(P−1)P

[x]iP2+1 [x]iP2+P+1 · · · [x]iP2+(P−1)P+1

[x]iP2+2 [x]iP2+P+2 · · · [x]iP2+(P−1)P+2

...
...

...
[x]iP2+P−1 [x]iP2+2P−1 · · · [x]iP2+P2−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for i = 0, . . . ,
NP

P
− 1.

(14)

In similar way, 1NP is partitioned in NP/P unitary vectors 1P .
Substituting (13) in (11), the cyclic mean with partitioning is
concisely expressed as

y = 1
NP

(
B01P + B11P + · · · + BNP/P−11P

)
. (15)

Therefore, the array of PEs will process one pair of B and
1P blocks after another in a sequential manner together with
partial results.

3. A Configurable ST/DDST
Transmitter Architecture

Considering the explained in Section 2.1, the architecture
shown in Figure 3 is proposed for the transmitter. It is
composed of the five hardware modules: the symbol ade-
cuator, the mapper, the data sequence transformer, the
Tx control, and the Tx AGU. The reconfigurability feature
of the architecture allows to switch between two operating
modes: ST or DDST, in order to send data blocks with a cyclic
prefix attached. In both modes, the transmitter hardware
supports 4/16/64-QAM constellations.

In the next subsections, additional details about the main
transmitter modules will be described.

3.1. Symbol Adecuator. The design of this module is widely
conditioned by the features of the mapper. By early account,
a key aspect exploited in the mapper design, it consists of
the fact that the 4-QAM and 16-QAM constellations are
contained in Grey-coded 64-QAM one, as shown in Figure 4.
For that reason, the symbol adecuator is necessary because
not all the same point-numbers in the three constellations are
mapped to the same complex symbol output. For example,
while the point number 2 of the 4-QAM constellation is
mapped to −1 + j symbol, 16-QAM will map this point
number to 3− 3 j and 64-QAM will map to 3 + 5 j.

3.2. Mapper. As stated in Section 3.1, in the mapper design
is only required the 64-QAM constellation. In this work,

a memory-efficient scheme is proposed to build that constel-
lation, whose eight possible values (1, 3, 5, 7, −1, −3, −5,
and −7) of the I and Q axes are stored in the constellation
LUT. Additionally, the mapper has to normalize the complex
symbols based on two criteria: the constellation order and
power assigned to each of the sequences involved. Thus, a
normalization constant Norm Mapp Cte that combines the
two criteria is given by

Norm Mapp Cte = σb ×Norm QAM Cte, (16)

where

Norm QAM Cte =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

, for 4-QAM,

1√
10

, for 16-QAM,

1√
42

, for 64-QAM,

(17)

with

σ2
b + σ2

c = 1 for ST, (18a)

σ2
b+e + σ2

c = 1 for DDST. (18b)

The mapper architecture designed is depicted in Figure 5.
The constellation LUT was implemented with a dual-port
ROM with eight memory locations, depth. On the contrary,
in the normalization LUT, the ROM depth was 16 locations.

3.3. Data Sequence Transformer. The data sequence trans-
former is the greater complexity module of the transmitter.
Thus, its design was broken down into three submodules,
whose individual architectures are described in the following
paragraphs.

3.3.1. Training Sequence Generator. Analyzing (4), it can be
noticed that the parameters σ2

c , N , and P, needed to generate
the training sequence, are known in advance and they remain
constants during the transmitter operating. Hence, the P
values of the training sequence can be calculated off-line,
quantized, and stored in an LUT. This LUT is read NP times
in order to expand the training sequence length, as indicated
in (3), and it can be superimposed, element by element, with
the data sequence by the complex adder.

3.3.2. ST Cyclic Prefix Insertion Submodule. There are several
problems to arise because of the way in which the prefix cyclic
is generated and its position where it is attached in the ST
sequence.

(i) Since the prefix cyclic conformed to the last P data of
the sequence ST, it can only be generated from this
sequence until it has been completely processed.

(ii) Given that, in all the N + P data to be transmitted,
the first P data correspond to the cyclic prefix, it is
necessary to use a memory buffer in order to store the
remaining N data (ST sequence) and, thus, prevent
data loss.

International Journal of Reconfigurable Computing 5

Symbol
adecuator

Mapper Data-dependent
sequence generator

Training sequence
generator

ST prefix cyclic
inserter

+

1

0

Data sequence transformer

0

1

+

Tx AGU

clk

rst

Tx control

IN TX

start tx

tx mode

map mode

byp mode

data val tx

OUT TX I

(OUT TX Q)

Figure 3: Digital architecture of the configurable ST/DDST transmitter.

000

001

010

011

110

111

100

101

111 110 100 101 001 000 010 011

Q

I

43355159 2719311

42345058 2618210

40324856 241608

41334957 251719

45375361 2921513

44365260 2820412

46385462 3022614

47395563 3123715

1 3 5 7

7

5

3

1
2 0

3 1

0

1

3

2

4

5

7

6

12

13

15

14

8

9

9

11

−1

−3

−5

−7

−1−3−5−7

(a)

64-QAM label

16-QAM label

4-QAM label

(b)

Figure 4: Grey-coded 64-QAM constellation used in the mapper module. (a) The 4-QAM and 16-QAM constellations are delimited with a
dashed lines; (b) label guide for identifying the constellation point number.

A dual-port RAM (RAM CP) of depth N was used
for the ST cyclic prefix insertion submodule designing.
The RAM CP have two independent address buses one
for data reading (addr rd st cp) and one for data writing
(addr wr st cp). This feature allows to read and write
data simultaneously to/from the RAM CP. The process for
generating and attaching a cyclic prefix in the ST sequence
can be summarized in the following steps (Figure 6).

(I) When the (N −P + 1)th datum is stored in RAM CP,
the previous datum stored is addressed by addr rd st
bus.

(II) During P clock cycles, the ST sequence storing and
reading take place in the RAM CP.

(III) The ST sequence storing in the RAM CP is stopped.
However, the data reading will continue for N cycles.

3.3.3. Data-Dependent Sequence Generator. The operation
of this submodule is based on (6a)–(7), which implies to
compute two high-demand processing operations: an MVM
and the Kronecker product. Moreover, similar to the cyclic
prefix insertion case, the DDS can only be generated from
data sequence b(k) until it has been completely processed.

6 International Journal of Reconfigurable Computing

3

1

5

7

−3

−1
−5

−7

Constellation LUT Normalization LUT

0

0

= σb for ST
σ DSST = σb for DDST

0
1/
√

2

1/
√

10

1/
√

42
0

1/
√

2

1/
√

10

1/
√

42

×

addr I

(addr Q)

σbST/
√

2

σbST

b

σbST/
√

10

σbST/
√

42

σbDDST/
√

2

σbDDST/
√

10

σbDDST/
√

42

Reg out mapper

out mapp I
(out mapp Q)

sbyp mode

stx mode

smod mode

Figure 5: Hardware-efficient 4/16/64-QAM mapper with ST/DDST incorporated.

(I)

(II)

RAM CP

(II)

(III)

b(0) + c(0)

b(1) + c(1)

b(2) + c(2)

b(N − P) + c(N − P)

b(N − P + 1) + c(N − P + 1)

b(N − 1) + c(N − 1)

b(N − 2) + c(N − 2)

...

...

addr rd st cp

addr rd st cp

Figure 6: ST cyclic prefix generation and insertion process.

In consequence, the following adaptations should be made
to the original equations in order to ease its mapping-to-
hardware process.

(I) The b(k) sequence is rearranged into a matrix of size
P ×NP , according to[

BT
]
i, j
= [b]iP+ j = b

(
iP + j

)
for i = 0, . . . ,NP − 1, j = 0, 1, . . . ,P − 1.

(19)

(II) The mean of the each rows of the matrix B is
obtained.

(III) The P mean results are replicatedNP+1 times in order
to obtain the e vector and P data for DDST cyclic
prefix purposes.

Figure 7 shows the hardware architecture of DDS gener-
ator. Its novel design avoids the b(k) sequence rearranging
by the loop-back shift register lb delay dds. This register

International Journal of Reconfigurable Computing 7

· · ·

e(0)·NP

e(1)·NP

e(2)·NP

D1 D0

RAM DDS

lb delay dds

Shifter

(IN DDS Q)
IN DDS I

addr rd dds

addr wr dds

ena rd dds

ena gen dds

(OUT DDS Q)
OUT DDS I

...

e(P − 1)·NP

DP−1DP−2

+

(a)

e(0)·NP

e(1)·NP

e(2)·NP

addr rd sdd
addr wr sdd

e(P − 1)·NP

e(P − 2)·NP

...
NP + 1

readings

e(k)(e(k)·NP) ≫ log2(NP)

(b)

Figure 7: Data-dependent sequence generator submodule. (a) Simplified architecture; (b) pictorial representation of the e(k) sequence
generation.

generates a P symbol delay in order to align the data for each
B matrix row. So, the data rows can be added “on the fly” by
the complex adder without the data input stream is stopped.
The sum results are stored in the RAM DDS, after its entire
contents are read NP + 1 times and each datum is divided by
NP in the shifter block. Finally, the results are sent to the DDS
generator outputs.

4. Systolic Channel Estimator Architecture

This section introduces an architecture for the DDST-based
channel estimation process. Its design is based on MVM
operation, which is carried out in a systolic way into AP. The
main idea in the system design is to reuse the same systolic
array for computing the cyclic mean of the received data. The
proposed architecture, called in this paper “systolic DDST
channel estimator” (SYSDCE) is depicted in Figure 8(a).
Four functional units can be identified: a modified systolic
matrix-vector multiplier (MSYSMVM), a data input feeder
(DATINF), an inverse C look-up table (ICLUT), and a
control unit (CU). Broadly speaking, the SYSDCE operation
can be divided into three phases: input sequence storage,
cyclic mean compute, and CIR estimate.

As soon as the start signal is asserted, an N + P data sam-
ples (vector x and cyclic prefix, resp.) can be read from the
input port IN . After excluding the samples corresponding
to the cyclic prefix, the rest of samples are rearranged and
stored in the memory bank of DATINF. When this process is
finished, the CU configures the MSYSMVM unit and during
NP cycles it reads P parallel data per cycle from DATINF
and computes the cyclic mean y. Once this phase is finished,
the obtained vector y together with ICLUT data are fed to
the MSYSMVM again for performing the product expressed
in (10). Finally, after P + 1 cycles, the done flag is asserted
and one by one the coefficients of the channel estimated

ĥ are sent to the bus H OUT. It is worth mentioning that
the SYSDCE can be configured to compute only the cyclic
mean if mode input control signal has been set to zero. In
this case, the cm flag out is asserted to indicate that valid

results are available in CM OUT bus. Thus, the channel
estimator is prepared for another data sequence processing.
A deeper explanation about each component of the SYSDCE
architecture will be given in the subsections.

4.1. Modified Systolic Matrix-Vector Multiplier (MSYSMVM).
The fundamental operation to perform by SYSDCE is a
matrix-vector multiplication which is high time-processing
demanding. The hardware design for solving this operation
is the most critical part in the architecture. The obvious
strategy for accelerating MVM consists in computing as
many operations as possible, with the penalty of a great
consumption of FPGA resources. Therefore, this paper
proposes a modification of the systolic MVM presented in
[14, Ch. 3] in order to obtain a good performance with
reasonable resources consumption. This modification allows
to compute the cyclic mean using partitioning method with
the same systolic array reported. Figure 8(b) shows the
processor element (PE), which is the atomic digital signal
processing module in MSYSMVM. It processes three flows:
the data flow from the ICLUT or DATINF, the input registers
values, and the data produced by the previous adjacent PE.

In the MSYSMVM design was considered that the
number of PEs needed (AP size) is P, which matches with
the dimensions of matrix Γ and vector y, respectively. The
projection vector d = [1 0]T (see details in [14]) was used
with a vector schedule s = [1 1]T . The pipelining period for
this design is equal to 1 and the computing time for the full
MVM is 2P − 1 clock periods.

For computing the cyclic mean using the MSYSMVM
module, the original structure of PE was modified with an
additional multiplexer. For that reason, the PE can perform
all trivial multiplications by bypassing the data from the
input of the complex multiplier directly to the complex
adder.

4.2. Data Input Feeder (DATINF). Similar to almost any
systolic array, the MSYSMVM needs the data, which will be
fed to each of its PEs to be given in a defined order before

8 International Journal of Reconfigurable Computing

Modified systolic matrix-vector multiplier

(MSYSMVM)

Register (y0)

PE

0

1D PE

2D

· · ·

Loop-back

Muxes

0

1

Shifter

Cyclic
mean out

(CM OUT)

Channel

estimated out

(H OUT)

clk
rst

start

mode

cm flag
done

Inverse C LUT
(ICLUT)

Control

IN
Data input feeder

(DATINF)

Register (y1) Register (y2)

· · ·1D PE PE1D 1D

Loop-back

0 1

unit

1D (P − 1)D

Register (yP−1)

(a)

1
0

+

PE

×

(b)

Figure 8: Systolic channel estimator for DDST receiver. (a) Simplified architecture; (b) the PE module.

processing it. In the proposed approach, the module DATINF
is responsible for performing this task. It is made up of an
array of P memories, each with a depth of NP , organized as
a memory bank as shown in Figure 9. DATINF reads N + P
data from IN bus; it identifies and removes the first P data
corresponding to CP. Subsequently, this module rearranges
this sequence (correspondence to x(k)) in NP/P blocks of
size P × P in order to form B0, B1, . . . , BNP/P . Therefore, the
N stored data can be viewed as a NP × P matrix, where
each individual memory in the bank stores one column of
each block and the blocks are stored consecutively one after
another, as depicted in Figure 9.

Each datum of the input sequence x has associated three
addresses that define its location inside the memory bank:

block number (blk num), memory number (mem num), and
memory address (mem addr). The DATINF must generate
these addresses using the following expressions:

blk num =
⌊
k ×NP

N × P

⌋
, k = 0, 1, . . . ,N − 1, (20a)

mem num =
⌊
k ×NP − blk num×N × P

N

⌋
, (20b)

mem addr = (k mod P) + (P × blk num), (20c)

where k is the kth element of x and �·� denotes the floor
operator.

International Journal of Reconfigurable Computing 9

· · ·

...

NP
locations

P
locations

DATINF

RAM 0 RAM 2 RAM (P − 1)

column 0 column 1 column P − 1

· · ·
· · ·
· · ·
· · ·

...
...

...

NP

P
blocks

B0

B1

B(NP/P)−1

Figure 9: Data block organization in the DATINF.

DATINF address bus

addrb−1 addrb−2 addrm addrm−1 addrm−2 addra addra−1 addra−2 addr0

log2(N/NP) bits for
block selecting memory selecting locations addressing

b = log2(N),m = log2(N/NP)

· · · · · · · · ·

log2(P) bits for memorylog2(NP/P) bits for

, and a = log2(NP/P)

Figure 10: Hard-wired addressing for memory bank.

In order to minimize the hardware consumption, a
“hard-wired” addressing approach was built for the memory
bank. As shown in Figure 10, the log2(N) bits corresponding
to the DATINF address bus are split into three parts. The
first log2(N/NP) most significant bits (MSB) are used for
block selecting, the next log2(NP/P) MSB are used to select
a particular memory in the bank and the remaining log2(P)
bits are used to individually address each of the locations in
the selected memory.

4.3. Inverse C Look-Up Table (ICLUT). The values of the
circulant matrix C−1 are constants that can be precomputed
once off-line and stored in a LUT. Only the values of the first
column are necessary because the remaining columns are
shifted versions of the first one. Consequently, the ROM loca-
tion’s number required for the LUT is just P. If traditional
design is used, then the LUT will be designed with a multi-
port ROM of P locations, but it will be synthesized by the
employed compiler tool as an array of P single-port ROMs.
Therefore, the number of memory locations is increased to
P2. A novel solution was designed with an array of P registers
operating as a circular buffer. This is called “inverse C look-
up table” (ICLUT) and it saves P(P − 1) memory locations.
The first row values of C−1 are stored in the registers. Next,
one rotation is applied in each tick of the clock to change the
register’s outputs, as indicated in Figure 11.

5. Results

In this section, the proposed architectures are evaluated.
First, the hardware utilization and throughput of the

ST/DDST transmitter implementation are presented. After,
its functional performance from the point of the signal-
to-quantization-noise ratio (SQNR) is analyzed. Next, the
FPGA resources consumption and throughput of the SYS-
DCE implementation are obtained. Finally, the SYSDCE
functional results specified in terms of the MSE of the
channel estimated and SQNR performance are carried out by
Monte Carlo simulations and using the transmitter hardware
in DDST mode.

5.1. Implementation and Simulation of the Transmitter. The
configurable ST/DDST transmitter architecture was imple-
mented in RTL level using Verilog hardware description
hardware. It is able to transmits ST or DDST data blocks
of length N with CP = P. The power of training sequence
is set to 0.2σ2

s with a period P = 8. The configurable
transmitter was synthesized and targeted in Xilinx Virtex-
5 XC5VLX110T FPGA. Default settings and no “user con-
straints” were selected in the EDA tool Xilinx ISE v11. No
IP core o predesigned component were used. All signals are
represented in signed fixed-point two’s complement, and
nonrounding scheme was considered.

Table 1 summarizes the synthesis results for the proposed
ST/DDT transmitter. Analyzing this table, it can be noted
a operating frequency of 160 MHz with a symbolic FPGA
resource utilization. So, it is clear that excellent area-
frequency balance is achieved.

On the other hand, it is difficult to compare directly the
proposed transmitter and channel estimator with the others
previously presented in [9, 10] because of the differences
in technology, paradigms used, and testing conditions. In

10 International Journal of Reconfigurable Computing

To muxes and PE’s

Reg0 Reg1 RegP−2 RegP−1

clk = 1

clk = 2

clk = 3

clk = P − 1

clk = P

Reg0 Reg1 RegP−2 RegP−1Reg2

C−1
0

C−1
1

C−1
2 C−1

1 C−1
0

C−1
0

C−1
4 C−1

3

C−1
2

C−1
1C−1

2

C−1
3

C−1
P−1 C−1

P−2

C−1
P−1

...
...

...
...

...
...

· · ·
· · ·

· · ·

· · ·
· · ·C−1

P−2 C−1
P−3 C−1

P−4

C−1
P−1 C−1

P−2 C−1
P−3

C−1
0

C−1
1 C−1

0

C−1
P−1

· · ·

Figure 11: Simplified architecture of inverse C look-up table (ICLUT) and its corresponding outputs values.

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250 300 350 400 450 500

k

Matlab model (floating point)
Tx architecture (fixed point)

|D
FT
{s(

k)
}|

(a)

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250 300 350 400 450 500

k

Matlab model (floating point)
Tx architecture (fixed point)

|D
FT
{s(

k)
}|

(b)

Figure 12: Discrete Fourier transform of the s(k) sequence generated by the transmitter architecture. (a) ST mode; (b) DDST mode.

Table 1: Synthesis results of the ST/DDST transmitter.

FPGA resource Used Available Utilization

Frequency 160.12 MHz —

Slice registers 141 69120 <1%

Slice LUTs 437 69120 <1%

Fully used LUT-FF
pairs

134 444 30%

IOBs 46 640 7%

BRAMs 4 148 2%

[9], DDST communication system was implemented under
full-software philosophy in TMS320C6713 DSP with a
300 MHz external clock. A hybrid software-hardware FPGA
implementation of the DDST receiver is described in [10].
In both DDST implementations mentioned, the comparison
against our transmitter was not possible. In the former
because the transmitter was full-software based and the latter
only the DDST receiver was implemented.

The transmitter operating validity is presented in
Figure 12. The first graph (Figure 12(a)) shows clearly
that the transmitter hardware has embedded the training
sequence c(k) into b(k). It can be noted that the data
sequence energy is spread in all frequency components. In
contrast, the training sequence energy are only concentrated
in P equispaced frequency components. Similar behavior
occurs in the DDST mode (Figure 12(b)), but now the pilots
signals also have the same energy. This is unequivocal proof
that the transmitter architecture is properly superimposing
c(k) and e(k) into b(k).

The SQNR obtained for 100 Monte Carlo trials is mon-
itored, in order to quantify the difference between the s(k)
sequence obtained with the hardware transmitter compared
with the floating-point transmitter golden model. Thus, the
histogram of Figure 13 represents concisely the results of this
test. The most of the occurrence are concentrated in 84 dB.

5.2. Implementation and Simulation of the Channel Estimator.
The SYSDCE architecture was implemented using the same
considerations and design parameters of the transmitter.

International Journal of Reconfigurable Computing 11

83 84 85 86 87 88 89 90 91 92
0

5

10

15

20

25

30

SQNR (dB)

A
bs

ol
u

te
 fr

eq
u

en
cy

Figure 13: SQNR performance histogram of the ST/DDST architecture for 100 Monte Carlo trials.

Table 2: Synthesis results of the SYSDCE.

Input length (without CP) (N) 512

Frequency (MHz) 115.247

Slice registers (69120) 1370 (1%)

Slice LUTs (69120) 2587 (3%)

Fully used LUT-FF pairs (3348) 609 (18%)

Block RAMs (148) 8 (5%)

DSP48Es (64) 32 (50%)

Also, the systolic channel estimator was synthesized and
targeted in the same FPGA.

Table 2 summarizes the synthesis results for the proposed
estimator. The values in the parenthesis in each feature
indicate the total of corresponding available resources in
the FPGA. The results in Table 1 reveal a frequency opera-
tion of 115.247 MHz with a minimal consumption (except
DSP48Es) with respect to the total resources of the FPGA.

Againly, it was not possible to compare the SYSDCE
against the existent approaches. In [10], the module cor-
responding to the channel estimation, only the arithmetic
mean was accelerated by a dedicated coprocessor. In this
work, the input sequence length was assumed (but it did not
explicitly mentioned) to be N = 512 symbols. The MVM
operation described in (9) was implemented in software.
Also, no results—from the point of view of the mean square
error (MSE) in the channel estimated or SQNR perfor-
mance—are presented.

Other important parameter of the proposed estimator
is the number of cycles required for performing the tasks
estimation. Particularly, the cyclic mean requires

cyclesŷ = (N + P) + (NP + P − 1). (21)

The first term in (21) corresponds to the input storage phase
and the second to the NP/P MVM operations involved in the

cyclic mean task. Furthermore, the number of cycles required
for the CIR estimator is

cyclesĥ = cyclesŷ + 2P − 1. (22)

Consider the set of metrics listed in Table 3 to compare the
performance of the SYSDCE system. The processing time
(PT) is the time elapsed from the beginning of cyclic
mean or channel estimation process until its computing has
finished. The throughput (TP) per area is another useful
metric, a higher value of this ratio indicates that the system
implementation is better. As can be seen from Table 3,
the proposed architecture provides a better performance
compared to the arithmetic mean coprocessor used in
[10].

The validity of the provided architectures is granted by
comparing their results with the floating-point simulation
golden model programmed in Matlab, in terms of channel
estimation error versus signal-to-noise ratio (SNR). Thereby,
the following scenario (similar to that used in [6]) was
considered. The hardware transmitter was configured in
DDST mode, in order to send data blocks of N = 512
symbols obtained from a 4 QAM constellation. The channel
is randomly generated at each Monte Carlo trial and it is
assumed to be Rayleigh with length L = 8. The power of
training sequence is set to 0.2σ2

s with a period P equal to L.

Figure 14 shows the MSE of channel estimated, which is
averaged over 300 Monte Carlo simulations for each value
of SNR. Note that the MSE of the hardware estimator is too
close to the theoretical line [4] and almost indistinguishable
with respect to the golden model. On the other hand,
Figure 15 presents the probability density function (PDF) of
the SYSDCE hardware, obtained for the same Monte Carlo
trials. Analyzing such PDF, it can be noted that the fixed-
point performance in average is about 68 dB in terms of
SQNR.

12 International Journal of Reconfigurable Computing

Table 3: Channel estimator throughputs comparison.

Channel estimator Input length Cycles/estimation CT (us) TP (MS/s) TP/area (MS/s/slices)

SYSDCE (cyclic mean mode) 512 591 5.128 101.40 25.625e3

SYSDCE (channel estimator mode) 512 606 5.258 98.91 24.996e3

Arithmetic mean coprocessor in [10] 512 2238 20 26.39 NA

0 5 10 15 20 25

SNR (dB)

M
SE

 o
f

ch
an

n
el

 e
st

im
at

ed

Theoretical
SYSDCE architecture (fixed point)
Matlab simulation (floating point)

10−4

10−3

10−2

10−1

Figure 14: MSE performance of the SYSDCE hardware for 300
Monte Carlo trials.

6. Conclusions

In this paper, digital architectures for transmitter and
channel estimation stages of the ST/DDST communications
systems have been presented. These architectures represent
the first implementations under the full-hardware phi-
losophy for a wireless systems based on ST/DDST. Both
architectures present high throughput and reduced FPGA
resources consumption, achieving a good trade-off between
performance and area utilization. The proposed transmitter
architecture is configurable enough to generate two types
of training using three constellation orders. In the SYSDCE
hardware, it is possible to observe a great flexibility and
reusability because the same systolic array is used for
two different tasks (operations): cyclic mean and channel
estimation. Also, the SYSDCE design can be easily modified
(by means of partitioning strategy) for processing channels
of different lengths. The validity and performance of these
approaches have been verified by Monte Carlo simulations,
where an SQNR of 82 dB and 68 dB in average are achieved
for the transmitter and the SYSDCE, respectively. At the same
time both architectures present a insignificant differences
in the performance results when they are compared with
their respective floating-point golden models. The provided
results show that ST/DDST concepts can be effectively

40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SQNR

P
ro

ba
bi

lit
y

Figure 15: SQNR probability density function of SYSDCE architec-
ture for 300 Monte Carlo trials.

utilized in current and future wireless communications
standards.

Acknowledgments

This work was supported by PROMEP ITSON-92,
CONACYT-181962, and Mixbaal 158899 Research Grants.

References

[1] A. Goljahani, N. Benvenuto, S. Tomasin, and L. Vangelista,
“Superimposed sequence versus pilot aided channele estima-
tions for next generation DVB-T systems,” IEEE Transactions
on Broadcasting, vol. 55, no. 1, pp. 140–144, 2009.

[2] B. Farhang-Boroujeny, “Pilot-based channel identification:
proposal for semi-blind identification of communication
channels,” Electronics Letters, vol. 31, no. 13, pp. 1044–1046,
1995.

[3] S. Haykin and K. J. Ray Liu, Handbook on Array Processing
and Sensor Networks, John Wiley & Sons, New York, NY, USA,
2009.

[4] E. Alameda-Hernandez, D. C. McLernon, A. G. Orozco-
Lugo, M. M. Lara, and M. Ghogho, “Frame/training sequence
synchronization and DC-offset removal for (data-dependent)
superimposed training based channel estimation,” IEEE Trans-
actions on Signal Processing, vol. 55, no. 6, pp. 2557–2569,
2007.

International Journal of Reconfigurable Computing 13

[5] M. Ghogho and A. Swami, “Improved channel estimation
using superimposed training,” in Proceedings of the IEEE 5th
Workshop on Signal Processing Advances in Wireless Communi-
cations (SPAWC ’04), pp. 110–114, July 2004.

[6] M. Ghogho, D. McLernon, E. Alameda-Hernandez, and A.
Swami, “Channel estimation and symbol detection for block
transmission using data-dependent superimposed training,”
IEEE Signal Processing Letters, vol. 12, no. 3, pp. 226–229, 2005.

[7] O. Longoria-Gandara, R. Parra-Michel, M. Bazdresch, and
A. G. Orozco-Lugo, “Iterative mean removal superimposed
training for siso and mimo channel estimation,” International
Journal of Digital Multimedia Broadcasting, vol. 2008, Article
ID 535269, 9 pages, 2008.

[8] R. Carrasco-Alvarez, R. Parra-Michel, A. G. Orozco-Lugo, and
J. K. Tugnait, “Enhanced channel estimation using super-
imposed training based on universal basis expansion,” IEEE
Transactions on Signal Processing, vol. 57, no. 3, pp. 1217–1222,
2009.

[9] V. Najera-Bello, Design and construction of a digital com-
munications system based on implicit training [M.S. thesis],
CINVESTAV-IPN, 2008.

[10] F. Martı́n del Campo, R. Cumplido, R. Perez-Andrade, and A.
G. Orozco-Lugo, “A system on a programmable chip architec-
ture for data-dependent superimposed training channel esti-
mation,” International Journal of Reconfigurable Computing,
vol. 2009, Article ID 912301, 10 pages, 2009.

[11] E. Romero-Aguirre, R. Parra-Michel, R. Carrasco-Alvarez, and
A. G. Orozco-Lugo, “Architecture based on array processors
for data-dependent superimposed training channel estima-
tion,” in Proceeding of the International Conference on Reconfig-
urable Computing and FPGAs (RECONFIG ’11), pp. 303–308,
December 2011.

[12] A. G. Orozco-Lugo, M. M. Lara, and D. C. McLernon, “Chan-
nel estimation using implicit training,” IEEE Transactions on
Signal Processing, vol. 52, no. 1, pp. 240–254, 2004.

[13] N. Petkov, Systolic Parallel Processing, Elsevier Science, New
York, NY, USA, 1992.

[14] S. Kung, VLSI Array Processors, Prentice Hall, New York, NY,
USA, 1985.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

