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Elliptic curve cryptography (ECC) has become a popular public key cryptography standard. The security of ECC is due to
the difficulty of solving the elliptic curve discrete logarithm problem (ECDLP). In this paper, we demonstrate a successful
attack on ECC over prime field using the Pollard rho algorithm implemented on a hardware-software cointegrated platform.
We propose a high-performance architecture for multiplication over prime field using specialized DSP blocks in the FPGA. We
characterize this architecture by exploring the design space to determine the optimal integer basis for polynomial representation
and we demonstrate an efficient mapping of this design to multiple standard prime field elliptic curves. We use the resulting
modular multiplier to demonstrate low-latency multiplications for curves secp112r1 and P-192. We apply our modular multiplier
to implement a complete attack on secp112r1 using a Nallatech FSB-Compute platform with Virtex-5 FPGA. The measured
performance of the resulting design is 114 cycles per Pollard rho step at 100 MHz, which gives 878 K iterations per second per
ECC core. We extend this design to a multicore ECDLP implementation that achieves 14.05 M iterations per second with 16
parallel point addition cores.

1. Introduction

Elliptic curve cryptosystems (ECC), independently intro-
duced by Miller [1] and Koblitz [2], have now found signif-
icant place in the academic literature, practical applications,
and security standards. Their popularity is mainly because
their shorter key sizes offer high levels of security relative to
other public key cryptosystems, such as RSA. The security
of ECC relies on the difficulty of elliptic curve discrete
logarithmic problem (ECDLP) [3]. By definition, ECDLP is
to find an integer n for two points P and Q on an elliptic
curve E defined over a finite field Fq such that

Q = [n]P. (1)

Here, [n] denotes the scalar multiplication with n.
The Pollard rho method [4] is the strongest known attack

against ECC today. This method solves ECDLP by generating
points on the curve iteratively using a pseudorandom
iteration function f : 〈S〉 → 〈S〉 such that Xi+1 = f (Xi).

Since the elliptic curve is defined over a finite field, 〈S〉
is finite and the walk will eventually encounter the same
point twice resulting in a collision. When a collision occurs,
the ECDLP is solved (for well-chosen form of Xc; see
Section 3). Several optimizations to the Pollard rho method
have been proposed to allow independent parallel walks [5],
better iteration functions [6, 7], and more efficient collision
detection [8].

There have been several different approaches to imple-
ment Pollard rho algorithm on software and hardware
platforms. Most of the solutions are implemented on
software platforms using general purpose workstations, such
as clusters of PlayStation3 [9], Cell CPUs [10], and GPUs
[11, 12]. These software approaches are inherently limited by
the sequential nature of software on the target platform.

Programmable hardware platforms are an attractive
alternative to the above because they efficiently support
parallelization. However, most of the FPGA-based solutions
that have been proposed do not deal well with the control
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complexity of ECDLP. Instead, they focus on the efficient
implementation of datapath operations and ignore the
system integration aspect of the solution.

There has been little work in the area of supporting or
accelerating a full Pollard rho algorithm on a hardware-
software platform. Our solution, therefore, goes one step
further as we demonstrate the parallelized Pollard rho
algorithm on FPGA along with its integration to a software
driver. We start from a reference software implementation,
and demonstrate an efficient, parallel implementation of the
prime field arithmetic for primes of the form (2n − m)/k.
We also present a novel high-performance architecture for
modular multiplication that can be applied to a variety of
standard prime field elliptic curves specified by the National
Institute of Standards and Technology (NIST) [13] and
Standards for Efficient Cryptography Group (SECG) [14].

Most existing ECDLP solutions for hardware platforms
target curves over binary fields because the arithmetic is
more hardware friendly. However, our work shows that
implementation of prime field arithmetic on hardware can
be as feasible as binary field arithmetic.

We use a computing platform by Nallatech, which
consists of a quad-core Xeon core (E7310, 1.6 GHz) with a
tightly coupled Virtex-5 (xq5vsx240t) FPGA. The hardware
runs at 100MHz and uses 5229 slices per ECC core.

2. Related Work

The software solution proposed by Bernstein on Cell CPUs
is the fastest existing software solution to the ECDLP
for secp112r1 curve [15]. It uses the negation map and
noninteger polynomial-basis arithmetic to report speedup
over a similar solution by Bos et al. [9]. Both of these
software solutions use prime field arithmetic in an affine
coordinate system, and they exploit the SIMD architecture
and rich instruction set of the Cell CPU. Another software
solution by Bos [10] describes the implementation of parallel
Pollard rho algorithm on synergistic processor units of cell
broadband engine architecture to approach the ECC2K-130
Certicom challenge. High-performance ECDLP solutions for
GPUs platforms have also been proposed in [12].

Fan et al. propose the use of a normal-basis, binary field
multiplication to implement a high-speed attack on ECC2K-
130 [16] using Spartan-3 FPGAs. Fan’s solution outperforms
attacks on the same curve using GPUs [12] and Cell CPUs
[10], demonstrating the suitability of FPGA platforms for
solving large ECDLPs in binary fields. Another binary field
solution, for the COPACOBANA [17] FPGA cluster, targets
a 160-bit curve [18]. Güneysu et al. propose an architecture
to solve ECDLP over prime fields using FPGAs and analyze
its estimated performance for different ECC curves ranging
from 64-to 160-bit fields [19].

Among hardware-based solutions, Meurice de Dormale
et al. propose an FPGA solution to attack the ECC Certi-
com challenge for GF(2113) [20]. Though it discusses the
hardware-software integration aspect of the solution, the
authors did not confirm if their system was operational.
The authors of [19] discuss some aspects of system-level

integration for their prime-field ECDLP system. A three-
layer hybrid distributed system is described by Majkowski et
al. to solve ECDLP over binary field [21]. It uses the general
purpose computers with FPGAs and integrates them with a
main server at the top level.

The outline of the paper is as follows. In the next
section, we discuss the background of the parallel Pollard rho
algorithm. We present our high-performance architecture for
modular multiplication and demonstrate its applicability to
primes of the form (2n − m)/k in Section 4. In Section 5,
we discuss the additional modular arithmetic units and we
describe the complete hardware-software integrated system
architecture in Section 6. Section 7 shows implementation
results, including measured performance for secp112r1
ECDLP, and we conclude the paper in Section 8.

3. Pollard Rho Algorithm

Let p be a prime and Fp = GF(p). Given the elliptic curve E
over Fp of order l = |E(Fp)|, let S ∈ E(Fp) be a point of order
l. Solving the ECDLP requires finding an integer n given two
points P, Q ∈ 〈S〉 such that Q = nP.

The Pollard rho algorithm [4] uses a pseudorandom
iteration function f : 〈S〉 → 〈S〉 to solve the ECDLP. It
conducts a pseudorandom walk by starting from a random
seed point on the curve, X0 = a0P + b0Q for random a0, b0 ∈
Z, and generating subsequent points using the iteration
function Xi+1 = f (Xi). Since the elliptic curve is defined over
a finite field, the iteration function will eventually produce
the same point twice, resulting in a cycle.

The name of the algorithm, rho, expresses the Greek
letter ρ, which shows a walk ending in a cycle. Cycles can
be efficiently detected using Floyd’s cycle-finding method
or Brent’s cycle-finding algorithm [8]. The collision point,
which gives the solution to the ECDLP, is located at the
starting point of the cycle. Therefore, the underlying idea
of this algorithm is to search for two distinct points on the
curve such that f (Xi) = f (Xj). Due to the birthday paradox,
assuming a random iteration function, the expected number
of iterations to find collision is

√
(π · |〈X〉|)/2 [4].

The effectiveness of Pollard’s rho method depends on the
randomness of the iteration function. As such, studies have
been conducted to evaluate the strength of various proposed
iteration functions [6, 7, 22]. Teske proposes an additive
iteration function:

f (Xi) = Xi + Ri(Xi), (2)

where Ri is an index function 〈S〉 → {0, 1, . . . , r − 1} and
each element Rj = ajP + bjQ, for random values aj , bj ∈ Z
[7]. Based on analysis by Teske [6, 7] and Bos et al. [22], the
additive iteration function is more similar to a truly random
walk than Pollard’s original function and other proposed
variants. Furthermore, an additive walk with r ≥ 16 is very
close to a true randomness and achieves speedup of 1.25X
over Pollard’s iteration function [6]. Thus, we perform an
additive walk and choose r = 16.
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Figure 1: Geometric representation of elliptic curve point addition.

Using the additive walk, a collision occurs when two
points are found such that

Xi + Ri = Xj + Rj. (3)

Based on the definition of the index function Ri, the collision
points can be rewritten as

ciP + diQ = cjP + djQ, (4)

where ci =
∑i

k=0 ak and di =
∑i

k=0 bk. The solution can then
be obtained as

n =
[
ci − cj
dj − di

]

modl. (5)

3.1. Point Addition. Each iteration of the Pollard’s rho
algorithm requires a point addition of the current point,
Xi, with a precomputed combination of P and Q, Ri(Xi).
Addition of two distinct points for an elliptic curve over a
finite field GF(p), S + T = R is defined geometrically as
shown in Figure 1. To compute the addition, a line is drawn
through the two points S and T . The line intersects exactly
one other point of the elliptic curve. The intersection point
is −R, which can be reflected across the x-axis to find R.

Algebraically, adding two points S = (xS, yS) and T =
(xT , yT) gives the sum R = (xR, yR), where

xR = λ2 − (xS + xT),

yR = λ(xS − xR)− yS,

λ = yS − yT
xS − xT

.

(6)

Each point addition requires 2 multiplications modulo p, 1
modular squaring, 5 modular subtractions, 1 modular addi-
tion, and 1 modular inversion. The sequence of arithmetic
operations for a point addition is shown in Table 1.

Table 1: Arithmetic operations for point addition: S + T = R.

Operation Function performed

Modular subtraction t1 = yS − yT
Modular subtraction t2 = xS − xT
Modular inversion t2 = t2−1

Modular multiplication t4 = t2 · t1 : λ

Modular squaring t1 = t4 · t4
Modular addition t3 = xS + xT
Modular subtraction t1 = t1− t3 : xR
Modular subtraction t2 = xR − t1

Modular multiplication t3 = t2 · t4
Modular subtraction t3 = t3− yS : yR

By Fermat’s Little Theorem, z−1 = zp−2 for z ∈ GF(p).
Thus, computing modular inversion requires modular expo-
nentiation, making inversion the most computationally
expensive operation of the point addition. Optimization at
the system level can reduce the cost of inversion through
the use of Montgomery’s trick [23]. Montgomery’s trick
makes it possible to share the cost of an inversion among
M computations by performing inversions on vectors of
M points simultaneously. Since the computational cost of
inversion is two orders of magnitude more than other
arithmetic operations, this results in significant savings over
computation of M individual modular inversions. We apply
Montgomery’s trick by implementing a vectorized point
addition datapath that computes M random walks on a
single ECC core and shares the inversion cost across all walks.

Despite optimizations, inversion remains an expensive
operation. Since exponentiation is achieved using multipli-
cation, the cost of inversion is directly tied to the cost of
modular multiplication. Therefore, design of an efficient
modular multiplier is an important aspect of the system to
maximize overall performance.

3.2. Comparison of Field Arithmetic in GF(p) and GF(2m).
Standards for elliptic curve cryptography have been defined
for curves over both binary and prime fields [13, 14].
Binary fields can be represented with a polynomial basis or
normal basis. In general, hardware implementations favor
polynomial basis because it allows simplified reduction
through the use of an irreducible polynomial of the form
xm−1 + · · · + x2 + x1 + x0. Prior work has confirmed the
idea that binary field curves are better suited for hardware
platforms. A comparison of ECDLP engines by [20] shows a
significant speedup for binary field ECDLP over prime field
ECDLP implemented on FPGA platform. The performance
discrepancy between ECDLPs for binary field and prime
field curves is due to differences in the required arithmetic
operations for each field and the use of search optimization
techniques for selected curves.

The Pollard rho method is the best known attack on ECC
for curves defined over both binary and prime fields, but the
cost of the attack varies based on the properties of the finite
field arithmetic. Elliptic curves over prime fields require
conventional integer arithmetic operations followed by costly



4 International Journal of Reconfigurable Computing

reduction modulo p. However, the properties of curves over
GF(2m) allow optimizations that can reduce the cost of point
addition. Additions and subtractions in the binary finite field
are reduced to XOR operations with no carry. Furthermore,
the cost of modular reduction is reduced to parallel XOR
gates for binary fields. For comparison, reduction modulo
p requires sequential additions of carry bits and has a cycle
cost approximately equal to that of multiplication. Although
attacks on curves over GF(2m) can be considerably faster
than attacks on curves over GF(p), NIST security standards
recommend approximately equivalent field sizes for both
binary and prime field curves at a given security level [13].

3.3. Parallelization. Van Oorschot and Wiener [5] described
a parallelization technique that enables parallel walks on
a single curve of Pollard rho algorithm to speed up the
computation of ECDLP. The idea is to define a subset of
〈S〉 as distinguished points (DPs), points which have a
distinguishing characteristic. Each parallel walk starts from
a distinct random seed point of the form X0 = a0P+b0Q and
continues a Pollard rho walk until it encounters a point that
satisfies the distinguishing property. Due to properties of the
index function of the additive iteration function, a collision
between two parallel walks at any point causes the walks to
be identical from that point forward. Therefore, checking
only DPs for collisions reduces communication and search
overhead, while ensuring that any collision between walks is
detected. Once a collision is detected, the server must derive
the secret key using the collision point and the distinct seed
points of the colliding walk. Therefore, whenever a DP is
found, it is transmitted to the server along with the random
seed point that generated the walk. The parallel Pollard rho
method allows distribution of the random walks among
multiple processing clients and sharing all DPs found with a
central server that performs a collision search. This technique
results in a linear speedup as the number of clients increases.

The expected number of DPs required to find a collision
is a fraction of the expected path length. This depends
on the density of DPs in a point set 〈S〉, which in turn
depends on the chosen distinguishing property. Consider a
distinguishing property defined as a point with d-bits fixed
in its y-coordinate. This results in a probability of 2−d that
a given point is a DP and |〈S〉|/2d total DPs on the curve.
Each walk will require 2d steps on average to find a DP. Based
on the birthday paradox, the number DPs required to find a
collision is

φ ≥
√

(π · |〈S〉|)/2
2d

. (7)

Since each DP is generated from a walk with a unique
random seed point, the number of parallel walks required to
solve the ECDLP is also φ.

4. Modular Multiplication

We have designed a novel architecture for modular multi-
plication in a prime field. Typically, hardware solutions use
binary field arithmetic, primarily due to the assumption that

binary field avoids the costly carry propagation of prime
field arithmetic. However, we demonstrate that prime field
arithmetic can be efficiently implemented in hardware.

We target the 112-bit secp112r1 elliptic curve in
GF((2128 − 3)/76439), but demonstrate that the proposed
architecture can be generalized to perform multiplication
modulo any prime of the form (2n −m)/k.

We perform prime field arithmetic using a redundant
128-bit polynomial representation in an affine coordinate
system, as proposed by Bernstein et al. in [15] and Bos et
al. in [9]. We represent the integers in secp112r1 redundantly
in the ring R = Z/qZ, where q = p ∗ 76439. This allows us
to perform reduction modulo 2128 − 3, rather than modulo
(2128 − 3)/76439. We perform all arithmetic over the 128-bit
field using following method.

Reduction for the unbalanced coefficient q = 2128 − 3
is a constant multiplication and an addition. Assuming A =
A1·2128+A0, then A mod q = A0+3·A1. Integers represented
redundantly mod q can be converted into a canonical form
in GF(p) by multiplying with a = 76439. Let a | q and
p = q/a. Then, v mod p ≡ v · a mod q. Therefore,
we start with a unique representation in GF(p), perform
arithmetic in R, and canonicalize the results in R to a unique
representation by multiplying with a = 76439. Similar
redundant representation can be used to simplify reduction
for any prime p = (2n − m)/k where k /= 0 by performing
arithmetic modulo q = 2n −m and canonicalizing results by
multiplication with k.

4.1. Modular Multiplication Algorithm. Bernstein et al. [15]
use noninteger basis for polynomial representation of data
to achieve an efficient software implementation. We choose
integer basis representation to make the partial product
computation uniform across all coefficients, which also
makes the design scalable over larger fields. Each l-bit
operand is represented as

∑na−1
i=0 xi · 2i·la , where na = l/la, l

is the length of the operand, and la is the integer basis. For
secp112r1 curve, l = 128 and we discuss optimization of
quantity la in a subsequent section.

Our approach to modular multiplication is based on
the design proposed by Güneysu and Paar in [25]. We use
schoolbook multiplication to compute the product R = F ·
G, for F,G ∈ GF(q). Schoolbook multiplication requires
computation of n2

a partial products in O(n2) time, where
R = ∑2na

i=0 2i·na
∑i

j=0 Fj · Gi− j . We parallelize computation of
the partial products to perform na multiplications in parallel
by multiplying one field of one operand, G, with all fields
from the other operand, F. As proposed by Güneysu and Paar
in [25], placingG in a shift register and F in a rotating register
ensures that each multiplier produces aligned results, that
can be directly accumulated. Our design adds an important
optimization of the reduction step. We integrate reduction
modulo q into the multiplication by multiplying the most
significant field of F by m when rotating it to the least
significant field. In order to accommodate the multiplication
by m of each field of F, we represent each field of F with
la + log2m bits.

Each partial product is an la+log2m×la-bit multiplication
and produces a 2la + log2m-bit result. After accumulation,
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Figure 2: Modular multiplication architecture.

each field of the result can be up to 2la + log2m + log2na
bits. We reduce each field to la bits using two parallel carry
chains. The first carry chain is integrated into partial product
accumulation and accumulates the lower la-bits of partial
product i with the upper bits of partial product i − 1. The
second carry chain adds the upper bits of each accumulated
partial product in column i to the lower bits of the next
accumulated partial product in column i + 1. In both carry
chains, reduction modulo q is achieve by multiplying the
upper bits of the most significant field, i = na−1, by m before
adding them to the least significant field, i = 0. The final
l-bit result is obtained by concatenating the la-bit reduced
outputs. The parallel carry chains allow us to overlap the
multiplication and reduction stages of the the algorithm to
achieve significantly lower latency relative to prior work [25].

4.2. Hardware Architecture. Figure 2 depicts our hard-
ware architecture to implement modular multiplication for
secp112r1 elliptic curve with general field size parameters
l = 128; la, na. This architecture targets a Xilinx Virtex
5 FPGA platform and makes use of dedicated DSP blocks
for high-performance arithmetic. Each DSP block includes
a 25 × 18-bit multiplier and the FPGA fabric includes
dedicated routing paths for high-speed connections between
DSP blocks [26]. The DSP blocks allow each la + 2 × la-
bit partial product multiplication and accumulation to be
computed in a single clock cycle. The modular multiplication
takes two 128-bit inputs, F and G, divided into nala-bit
fields and produces a 128-bit output of the product reduced
modulo 2128 − 3. There are na DSP48 multipliers employed
to compute partial products of la-bit coefficients. Since the n2

a

partial products are required, it takes na multiplication cycles
to complete the full unreducedmultiplication result.

Reduction modulo q = 2128 − 3 adds to the cycle cost
of a modular multiplication. By multiplying the shifting
operand Fla−1 with 3, we perform the reduction in parallel
with the multiplication. For the 128-bit data field with
la = 16 and na = 8, it takes eight cycles of multiplication
and 12 iterations of reduction. This results in a total cycle
cost of 20 cycles per modular multiplication. However, our
algorithm reduces this cost by overlapping reduction with
partial product multiplication and accumulation using the
previously described parallel carry adder chains. Thus, the
cost has been reduced to 14 cycles, a significant improvement
in latency over the architecture proposed by Güneysu and
Paar in [25], which takes 70 clock cycles for 256-bit modular
multiplication.

4.3. Optimizations. To achieve optimal performance, we
evaluate the impact of the integer basis for the polynomial
representation on the latency of our design. The performance
of the modular multiplier is heavily influenced by the value
selected for la, which determines the length of each field
in the operands and the number of partial products to be
computed. Our architecture relies on fast computation of
partial products using the available DSP blocks on the FPGA;
so performance is also impacted by the suitability of the
selected field size to efficiently use these resources.

Modification of our architecture to support different
field lengths for polynomial representation is straightforward
requiring only that the number of multiplier-adder columns
be changed. The number of multiplier-adder columns is
given by na, which is related to the field length la. Increasing
the field length requires fewer columns in the architecture
and reduces the number of partial products computed. The
results of this exploration will be discussed in Section 7.2.
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4.4. Extension to Other Curves. Our modular multiplier is
a generalized architecture that can be easily adapted to any
overellipticcurve over GF(p), where p has the form (2n −
m)/k. We demonstrate this by adapting the architecture for
NIST standard P-192 curve, which uses the prime p = 2192−
264− 1. The multiplier architecture is shown in Figure 3. The
multiplication for this 192-bit NIST curve is similar to that
of secp112r1 curve, but the 192-bit curve needs additional
multiplication-adder columns. Additionally, P-192 uses m =
264 − 1, rather than m = 3 for secp112r1, which requires the
following reduction operation. With polynomial field size la,
we define nc as the field containing 264, which is nc = 64/la.
For A = Ana−1 · 2192 +Anc · 264 +A0, the reduction modulo p
is A mod p = (Anc + Ana − 1) · 264 + (A0 + Ana−1).

We modify the modular multiplier architecture as follows
to make it compatible with P-192 curve.

(i) Multiplication factor 3 is replaced by 1 in the rotation
path of multiplication stage as well as in the addition
reduction feedback path. This reduces the number of
bits in each field of operand F to la-bits and the length
of partial product outputs to 2la-bits.

(ii) In the rotation path, operand field Fna−1 is fed back
to two Fnc and F0. An adder is introduced before Fnc
for this purpose. Thus, Fnc = Fnc−1 + Fna−1.

(iii) In addition reduction stage 1, carry bits of highest
accumulator output (Reg na− 1) are fed back to both
Reg nc and Reg 0. Similarly in addition reduction
stage 2, carry bits of Sna−1 are folded and added back
to both Snc and S 0.

The adapted architecture has a latency of 17 clock cycles
at 193 MHz for la = 16 and has area of 364 Virtex 5 FPGA
slices and 12 DSP cores. This is comparable to the multiplier

performance for curve secp112r1 (given in Section 7.2)
and demonstrates the flexibility of our design to accelerate
modular multiplier for general standard prime field elliptic
curve.

5. Additional Modular Arithmetic
Units for ECDLP

The field operation of a point addition in GF(p) corresponds
to a Pollard rho step that consists of four subtractions,
one addition, four modular multiplications, and one inver-
sion. This requires design of modular adder/subtractor and
modular inversion units. Subsequent sections explain the
architecture of these arithmetic modules in detail.

5.1. Addition/Subtraction. We use an integer basis polyno-
mial representation to perform addition and subtraction
modulo q using high-speed DSP blocks in the FPGA. We
choose a field size of 32, which allows the use of four
parallel DSP adder/subtractors to compute the sum of the
two 128-bit operands. Our design requires one cycle for the
addition/subtraction and one additional cycle for reduction
modulo q.

5.2. Inversion. From Fermat’s little theorem, it follows that
the modular inverse of z ∈ Fq can be obtained by computing
zp−2. Therefore, computation of the modular inverse requires
exponentiation to the p−2 power, which is achieved through
successive square and multiply operations. For secp112r1
curve, we start with z and compute z((2128−3)/76439)−2. We
perform exponentiation using a variant of the left to right
binary method, also known as square and multiply method
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Input: z ∈ Fq, e[t : 0]
Output: ze mod q

r ← 1
for i = t → 0 do

r ← r · r mod q
if e[i] = 1 then

r ← r · z mod q
return r

Algorithm 1: Square and multiply modular exponentiation [24].

[24]. This method scans a bitwise representation of the
exponent left to right considering one bit at a time. A
squaring is performed for each bit in the exponent, and an
additional multiplication by the input operand is performed
whenever the current bit is 1. The basic algorithm is shown as
Algorithm 1. Due to dependencies between each operation,
parallelization of the algorithm is not possible; it needs 112
squarings and 59 multiplications to compute an inversion
for secp112r1 curve in 128-bit arithmetic. We improve these
figures by applying the following techniques to optimize the
inversion operation.

5.2.1. Windowing Optimization. We apply the sliding win-
dow method [24] to reduce the number of squarings
and multiplications required for inversion. The windowing
method is an optimization of the square and multiply
algorithm that considers multiple bits of the exponent
simultaneously. Computing zp−2 with window size k requires
precomputation of z2 and the first 2k−1 − 1 odd powers of
z. This method considers up to k bits of the exponent in
each iteration and performs a multiplication with one of the
precomputed powers of z based on the value of those bits.
The sliding window method for modular exponentiation is
shown as Algorithm 2.

We achieve optimal performance for a window size
of four, which allows inversion with only 108 squarings
and 29 modular multiplications. This results in a total of
137 multiplication operations, rather than 171 operations
without windowing, a speedup of 1.25.

5.2.2. Vector Inversion. To further reduce the cost of an
inversion, we use Montgomery’s trick [23], which allows
multiple modular inverses to be computed together for
significant latency savings. Montgomery’s trick is based
on the observation that given (z1 · z2 · · · · · zM)−1, the
individual inverses z−1

1 , z−1
2 , . . . , z−1

M can be easily computed.
This allows computation of M modular inverses using 3(M−
1) multiplications and one inversion. Although the cost of
a single inversion is two orders of magnitude higher than
multiplication, this approach allows the cost of inversion
to be shared across M operations so the marginal cost
of an inversion becomes comparable to other arithmetic
operations for large vector size M. The algorithm for vector
inversion using Montgomery’s trick is shown as Algorithm 3.

Input: z ∈ Fq, e[t : 0], k ≥ 1
Output: ze mod q

// Precomputation
p0 ← z, s← z · z mod q
for i = 1 → 2k−1 − 1 do

pi ← pi−1 · s
// Inversion
r ← 1
i← t
while i ≥ 0 do

if ei = 0 then
r ← r · r mod q
i← i− 1

else
Find longest string e[i : l] where e[l] = 1
and i− l + 1 ≤ k
r ← r · pe[i:l] mod q
for j = 0 → (i− l + 1) do

r ← r · r mod q
i← i− l − 1

return r

Algorithm 2: Sliding window modular exponentiation [24].

Input: z1, z2, . . . zM ∈ Fq
Output: z−1

1 , z−1
2 , . . . z−1

M ∈ Fq
// Preprocessing
x1 ← z1

for i = 2 → M do
xi ← xi−1 · zi mod q

// Inversion
yM ← x−1

M

// Postprocessing
for i =M − 1 → 1 do

yi ← yi+1 · zi+1 mod q
zi+1 ← yi+1 · xi mod q

z1 ← y1

return z−1
1 , z−1

2 , . . . z−1
M

Algorithm 3: Vector inversion using Montgomery’s trick [23].

We apply this method by implementing a vectorized
inversion module that applies Algorithm 3 for any vector
size M. To take advantage of vectorized inversion, we design
a vectorized point addition datapath that performs random
walks on a vector of points simultaneously. We choose vector
size M = 32, which yields speedup of 19× over 32 individual
inversions, and leave optimization of this quantity for future
work.

5.3. Squaring. An inversion involves a total of 137 modular
multiplications out of which 75% are squaring operations.
Having a dedicated squaring unit allows specific optimiza-
tions to take advantage of the properties of squaring and
reduces the time required to compute an inversion. Conse-
quently, a dedicated module optimized for squaring provides
significant acceleration of the point addition operation.



8 International Journal of Reconfigurable Computing

2∗F na − 1 2∗F na/2− 1 2∗F na/2− 2 2∗F 1 2∗F 0

la + 3 bitsla bits

MULT 0MULT 1MULT 2

To reduction

∗3

Cycle = 0

MULT na − 1 MULT na − 2 MULT na − 3

F 1 F 0F na − 1 F na/2− 1

Figure 4: Dedicated squaring architecture.
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Squaring is a special case of the general multiplication
of two 128-bit operands F and G. During squaring F = G,
all off-diagonal partial products, represented as Fi · Fj for
i /= j, are computed twice by the conventional schoolbook
multiplication method used by our modular multiplier. To
reduce computational cost of squaring, we avoid computing
any partial product more than once by altering the operand
control structure of our multiplier design as shown in
Figure 4.

We represent the operand F using the same integer
basis for polynomial representation previously described
for our modular multiplier. We copy F into a shift reg-
ister and a rotating register, each with nala-bit fields for
polynomial representation, to achieve aligned accumulation
of partial products. As shown in Figure 4, the first cycle
of multiplication computes the partial products on the
diagonal, that is, Fi ∗ Fj where i = j. All remaining
partial products are off-diagonal. Since off-diagonal partial
products are computed twice in schoolbook multiplication,
we multiply each field of the rotating register by 2 before
computing these partial products. The multiplication by
2 is implemented as a bit shift left at negligible cost.
This reduces the number of partial product multiplica-
tions from n2 to n(n + 1)/2. The reduction stage for
the square module is identical to that of multiplica-
tion.

6. ECDLP System Architecture

Our complete ECDLP system is implemented on a Nallatech
cointegrated hardware software platform. Figure 5 depicts
the architecture of the Nallatech system. It consists of one
quad-core Xeon processor E7310 and three Virtex-5 FPGAs
(1 xc5vlx110, 2 xc5vsx240t). A fast North Bridge integrates
high-speed components, including a Xeon, FPGA, and main
memory. A slower South Bridge integrates peripherals into
the system, including the hard disk. Both the Xeon and
the FPGA can directly access system memory using a Front
Side Bus (FSB). The FPGA performs the computationally
expensive Pollard rho iterations, while the Xeon processor
manages the central database of distinguished points and
executes collision search. The communication between soft-
ware and hardware is carried out only for the exchange of
seed points and distinguished points, which minimizes the
communication overhead.

6.1. Software Driver. The Xeon processor executes a software
driver (in C) and manages software interface to FSB. The
software driver mainly handles the communication interface
with FPGA; seed point (SP) generation; storage and sorting
of DPs. As shown in Figure 5, two-way communication
between the Xeon and the FPGA takes place over the FSB.

When the program execution starts, the software calls
APIs to configure FPGA card, to initialize the FSB link, and
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Figure 6: System architecture.

to allocate the workspace memory. It then generates random
SPs on the curve E and starts an attack by sending them to
the FPGA over FSB. Every point has x- and y-coordinates of
128-bit length each.

The hardware finds a DP for each SP received and sends
it to the software along with its corresponding SP. When the
software receives SP-DP pair from the FPGA, it performs a
collision search among all the received DPs. Once a collision
is detected, it computes the secret scalar and reports the
solution to the ECDLP. As the software takes care of the
central database of DPs, a collision search is conducted in
parallel with hardware computations.

6.2. Hardware Accelerator. On the hardware side, as shown in
Figure 6, the FPGA edge core provides an interface between
the FSB and the ECC core. The edge core consists of control
logic and two 256-bit wide FIFOs. The RX FIFO buffers the
incoming SPs received over FSB and the TX FIFO stores the
DPs found for transmission to the Xeon.

The ECC core performs a random walk by computing the
point addition operation iteratively until it finds a DP and
stores that in the TX FIFO. We have defined DP as a point
with 16 zeros in fixed positions such that y[123 : 116] = 0
and y[59 : 52] = 0. The probability of a point being
distinguished is almost exactly 2−16.

The distinguishing property of points allows to send only
few points back to the Xeon, which reduces the communica-
tion overhead and minimizes the storage requirement in the
hardware. The required bandwidth of communication bus is
around 8 K bits/sec, which is well within the range of FSB. In
the following are the details of key components in the design.

6.2.1. IO Controller. The IO controller manages the
read/write interfaces of TX-RX FIFOs and controls the ECC

core operation. It loads the SPs from the RX FIFO to each
ECC core and initiates a Pollard rho walk. When a DP is
found, the IO controller halts the ECC core operation until a
new SP is loaded from the RX FIFO. The computed DPs are
buffered in the TX FIFO and then transferred to the Xeon
along with corresponding SPs.

6.2.2. ECC Core. The ECC core consists of a microin-
struction sequencer and the vectorized point addition (PA)
datapath. The core operates on vectors of M-elements
to perform M-independent random walks simultaneously.
Each walk continues until it finds a DP or crosses the
iteration limit, which is currently set to 220.

6.2.3. Vectorized Datapath. The datapath consists of modular
arithmetic operators and memory. Each of these modules
is designed to support vectorized point additions. A block
diagram of the vectorized datapath is shown in Figure 7. As
shown, each of the arithmetic modules interfaces directly to
memory in order to load operands and store results. The
modular add/sub, modular multiply, and distinguished point
check modules are nonvectorized components and operate
on inputs from one vector at a time. In order to complete
each arithmetic operation over the vectorized walks, compu-
tation is serialized and repeated M times for each of these
operations. Conversely, the inversion module receives inputs
from all M vectors simultaneously and computes the inverse
of all inputs together using the previously described vector
inversion algorithm.

Based on the sequence of arithmetic operations required
for point addition shown in Table 1, we need eight registers
(t1, t2, t3, t4, Px, Py, Qx, and Qy) to hold the intermediate
results for a each point addition. For vector size of M, we
use M-entry register files to store these intermediate results.
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Each of the memories is 128 bits wide and has a depth equal
to the vector size M. The memory address corresponds to the
vector index for each stored data value. We map these register
files to the distributed RAMs available in the Xilinx Virtex
5 FPGA. We use an additional 256-bit M-entry memory to
store the original seed points for each parallel walk. When
a distinguished point is found, that point, along with the
original seed point stored in the SP RAM, is send to the IO
controller for transmission to the software driver.

6.2.4. Microinstruction Sequencer. We implement a microin-
struction sequencer that operates alongside the vectorized
point addition datapath to provide control signals necessary
to compute vectorized point addition. This allows control
of the execution flow of the low-level arithmetic operations
for a point addition without modification of the datapath.
As shown in Figure 6, the sequencer consists of a microin-
struction ROM, which stores instructions to implement
point addition, and a next address logic unit (NALU),
which determines instruction execution order based on
outputs from the datapath. The interconnections between
the point addition datapath and microinstruction sequencer
are shown in Figure 7.

The vectorized point addition datapath requires a
number of control signals to implement each arithmetic
operation. A microcoded controller allows us to encode
these various control signals into compact form, while
maintaining maximum flexibility to modify design param-
eters including vector size and number of parallel ECC cores.

It provides an efficient mechanism to separate our system’s
control and datapath. Since we use a very specific datapath
to perform the particular sequence of operations for point
addition, we include only microinstructions needed for the
point addition. These correspond directly to the operations
shown in Table 1. Common instructions required for general
purpose microprocessors, such as jump, check flag and are
not implemented for our design.

Our microinstruction format is shown in Figure 8. Each
microinstruction includes three main segments, arithmetic
operation selection, controlled by microinstruction bits 4–0,
operand selection, controlled by bits 10–5, and register file
write command, controlled by bits 20–11. Decoded control
signals from each instruction are connected to datapath
inputs as shown in Figure 7.

The next address logic unit (NALU) controls execution
order of the microinstructions contained in the ROM. The
NALU also handles vectorization of the point addition data-
path by repeating each addition, subtraction, multiplication,
and distinguished point check operation M times for vector
size M. This ensures that the same microinstruction is
applied sequentially to each element in the vector. Since
the modular arithmetic operations have different latencies,
the NALU relies on ready signals generated by datapath
components to detect the completion of each instruction.
This maximizes flexibility of the microinstruction sequencer
and allows the NALU to be independent of the datapath
implementation.
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In a given cycle, the NALU reads a microinstruction i and
issues the corresponding control signals to point addition
datapath. These control signals include a start pulse, operand
selection, register file write, destination register select, and
vector index. Unlike the other control signals, vector index is
generated by a finite-state machine within the NALU, rather
than decoded directly from microinstruction i. To execute
nonvectorized operations, that is all arithmetic operations
other than inversion, the vector index is reset and control
signals are applied to the datapath. The vector control finite-
state machine increments the vector index when the datapath
operation completes and asserts the control signals for the
next vector element. This continues until the operation is
completed for all M vector elements. Then, the vector index
resets and the NALU reads the next microinstruction from
the ROM.

For an inversion operation, the NALU asserts control
signals to load operands and store results from all vector
elements. This allows loading of M inputs into the inversion
module and writingM results into the corresponding register
files. In this way, we efficiently implement vector inversion
using Montgomery’s trick within the point addition data-
path. An inversion is performed only once per M vectors,
whereas the other instructions are repeated M times.

6.2.5. Parallel Pollard Rho Walks. We have extended our
design to support parallel Pollard rho walks by implementing
multiple ECC cores on the FPGA. Each ECC core receives a
separate set of SPs and performs a vectorized walk. We have
extended the IO controller to support multiple ECC cores so
that control signals from all cores are monitored. When a DP
is found, the walk by the corresponding ECC core is halted
while the IO controller retrieves the DP and loads a new
SP. Since each ECC core contains its own microinstruction
sequencer module, the multiple cores are not restricted to
SIMD execution. When one core is in the process of sending
DPs or receiving SPs, the other cores continue execution,
avoiding costly latency associated with SIMD configuration.

Our design is scalable to support any number of parallel
cores. The IO controller can be configured to support any
number of cores. The total number of ECC cores in our
design is only limited to the capacity of the FPGA. Our
Nallatech computing platform includes two Xilinx Virtex
5 FPGA accelerators and both can be used simultaneously
to implement ECC cores to maximize parallelization of
Pollard rho walks to solve the ECDLP. Each core performs
an independent walk and there is no additional overhead
in the point addition iterations due to using multiple cores.
Therefore, implementing multiple ECC cores produces a
linear increase in performance.

7. Implementation Results

We have implemented our proposed system on the described
Nallatech platform in both single- and multicore variants.
For demonstration purposes, the seed points that we gen-
erate are carefully chosen to be of order 250 [15], which
means we would need only 225 steps to solve the ECDLP. This
allows us to demonstrate collisions, proving that our solution
works.

7.1. Overall Performance. The whole system runs at 100
MHz and uses 5229 slices which is 13% area of the Virtex-
5 device xq5vsx240t with a single ECC core. It takes 1.14
microseconds per Pollard rho step and can perform up to
878,000 iterations per second per ECC core.

Our design can easily be extended to include multiple
ECC cores performing parallel walks. Each additional ECC
core produces as linear increase in performance with negligi-
ble control overhead. With 16 ECC cores working in parallel,
our system would achieve 14,050,000 iterations per second
for secp112r1 ECDLP.

7.2. Evaluation of Modular Multiplier. We have modified
the modular multiplier architecture shown in Figure 2 to
vary the field length for the polynomial representation, la,
from 8 bits to 64 bits. Our results are given in Table 2. As
shown, increasing the length of the field of the polynomial
representation reduces the number of cycles required for
the modular multiplication. However, using larger fields
also degrades the maximum clock speed of the design.
The 64-bit field size requires the fewest cycles per modular
multiplication, but achieves worse overall performance due
to the low maximum clock frequency.

We also evaluate the impact of the modular multiplier
design on overall point addition performance. These results
are also shown in Table 2. Modular multiplication is the
dominant operation in each point addition, with approxi-
mately 85% of iteration cycle count used for multiplication.
Thus, we show that decreasing the cycle count of the
modular multiplication operation has significant impact on
the overall performance of our design. Our results show
that best overall performance is achieved for field length
of 16-bits when the full system runs at 180 MHz. However,
since maximum clock frequency of our complete design is
100 MHz, we select field length of 32 bits, which gives 1.3X
increase in performance relative to 16 bit field size.

Güneysu and Paar’s architecture described in [25] targets
256-bit prime arithmetic over two fixed NIST primes. Our
solution shows an improvement in terms of latency for
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Table 2: Modular multiplier performance.

Field length
la

Computation
time

(cycles)

Max. clock
frequency

(MHz)

Area
(slices, DSPs)

Latency per
iteration

(μs)

System
performance

(PA/s)

ECC core
area

(slices, DSPs)

8 21 181 263, 18 1.24 (237 cycles) 808 K 5199, 114

16 14 181 217, 10 0.790 (151 cycles) 1.27 M 4862, 66

32 7 104 253, 20 1.09 (114 cycles) 913 K 5229, 130

64 3 68 370, 36 1.17 (80 cycles) 854 K 5776, 214

Table 3: Comparison with software ECDLP implementations.

Platform Latency per iteration (ns)
Performance

(PA/s)

Cell processor at 3.192 GHz, secp112r1 curve [15] 113 (362 cycles) 8.81 M

Cell processor, at 3.192 GHz, secp112r1 curve [9] 142 (453 cycles) 7.04 M

Cell processor, at 3.192 GHz, ECC2K-130 binary field [10] 233 (745 cycles) 4.28 M

Our system, secp112r1 1140 (114 cycles)
878 K: single core
14.05 M: 16 cores

Table 4: Comparison with Hardware ECDLP implementations (per core).

Platform Target curve Performance (PA/s)
Area

(Slices) (BRAMs) (DSPs)

Spartan-3 [16] Binary (130 bit) 111 M 26,731 20 0

Spartan-3 [20] Binary (113 bit) 20 M 13,900 18 0

Spartan-3 [18] Prime (160 bit) 46.80 K 3,230 15 0

Spartan-3 [18] Prime (128 bit) 57.80 K 2,520 16 0

Spartan-3 [19] Prime (160 bit) 50.12 K 2,660 Not given 0

Virtex-5, our system Prime (112 bit) 878 K 5,229 9 130

the important ECC arithmetic operations. Assuming the
cycle cost for 256-bit arithmetic as twice of that for 128-
bit arithmetic (worst-case scenario), our architecture has
cycle cost of 14 for a modular multiplication and 228 for
the point addition. This is 5X and 3.5X times lower latency
for a modular multiplication and point addition operation
respectively, than those of the design in [25].

7.3. Comparison with Prior Work. Due to inherent differ-
ences between elliptic curves defined over binary and prime
fields, performance comparison among various ECDLP
implementations is not straightforward. Performance figures
are also influenced by a variety of other factors, including tar-
get platform, curve size, and coordinate system. To minimize
the impact of the target platform and coordinate system, we
compare performance of different ECDLP implementations
based on the total number of point addition operations
performed per second.

Table 3 compares our solution with other software
implementations. It shows that a multicore implementation
of our design using 16 ECC cores achieves 1.6X improvement
over the fastest existing software attack on secp112r1 curve.

Comparison with prior hardware ECDLP implemen-
tations is shown in Table 4. Our design achieves high-
performance relative to other prime field solutions. When

adjusting for curve size, we demonstrate significant speedup
over prior designs by [18, 19].

We also show comparison with existing binary field
solutions. However, it is difficult to make a fair comparison
due to significant differences between binary and prime field
arithmetic. In particular, properties of binary field arithmetic
and reduction are well-suited for hardware designs, which
allows them to achieve much higher performance.

The solution proposed in [16] reports 111 M point
addition iterations per second. The authors of [16] claim
their system is capable of solving ECC2K-130 within a year
using five COPACOBANA machines. Similarly, the solution
reported in [20] achieves 20 M iterations per second. We
assume that the difference of performance figures exists due
to factors including binary field arithmetic, different curve
sizes, and use of pipelined architectures.

8. Conclusion

We successfully demonstrate a complete multicore ECC
cryptanalytic machine to solve ECDLP on a hardware-
software cointegrated platform. We also implement a novel
architecture on hardware to perform modular multiplication
over prime field and this is the most efficient implementation
reported at present for prime field multiplication. We then
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present a generalized modular multiplication architecture
for primes of the form (2n − m)/k and demonstrate its
application to NIST standard P-192 curve. This work also
demonstrates the use of microinstruction-based sequencing
logic to support a vectorized point addition datapath
with variable vector sizes. We compare our performance
results with the previous implementations and show that a
multicore implementation of our solution has competitive
performance relative to existing hardware and software
solutions.
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