
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 439727, 12 pages
doi:10.1155/2012/439727

Research Article

Modeling and Implementation of a Power Estimation
Methodology for SystemC

Matthias Kuehnle,1 Andre Wagner,1 Alisson V. Brito,2 and Juergen Becker1

1 Institute for Information Processing Technology, KIT, 7602 Karlsruhe, Germany
2 Department of Informatics, Federal University of Paraiba (UFPB), 58051-900 João Pessoa, PB, Brazil

Correspondence should be addressed to Alisson V. Brito, alissonbrito@dce.ufpb.br

Received 19 March 2012; Revised 12 May 2012; Accepted 18 June 2012

Academic Editor: Massimo Conti

Copyright © 2012 Matthias Kuehnle et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This work describes a methodology to model power consumption of logic modules. A detailed mathematical model is presented
and incorporated in a tool for translation of models written in VHDL to SystemC. The functionality for implicit power monitoring
and estimation is inserted at module translation. The translation further implements an approach to wrap RTL to TLM interfaces
so that the translated module can be connected to a system-level simulator. The power analysis is based on a statistical model of
the underlying HW structure and an analysis of input data. The flexibility of the C++ syntax is exploited, to integrate the power
evaluation technique. The accuracy and speed-up of the approach are illustrated and compared to a conventional power analysis
flow using PPR simulation, based on Xilinx technology.

1. Introduction

The need for more abstract system on chip development
techniques is evident due to rising system complexity.
Consequently, accurate system evaluation in less time will
increase the productivity. According to the Semiconductor
roadmap, especially the consideration of energy consump-
tion is becoming more important and is also a limiting
factor for many applications [1, 2]. Modeling strategies
are driven by system and software engineers on the one
hand and hardware engineers on the other hand. The first
group develops RTL models written in hardware description
languages (HDLs) since they are the basis for synthesis tools.
The second group uses transaction level models (TLMS),
most commonly written in SystemC [3] since these models
enable fast system simulation. SystemC is a library based
on the object-oriented programming language C++. A TLM
specification extends SystemC to separate communication
from computation. TLM improves modeling and simulation
speed. The simulation speed depends on the level of
abstraction [4]. Also, modeling at different abstraction levels
is possible. This increases the flexibility of SystemC.

A remaining problem is the trade-off between accuracy
and simulation speed and with that, the link and synchro-
nization between the two layers. Translation tools are solving
this problem to some extent. They inherit some limitations
in the translation of syntax constructs that do not have direct
counterparts. The presented tool extends this feature list.
The main goal of this work, however, is the integration of
a power analysis methodology into the translation process.
The power estimation methodology estimates switching
activities in DSP units such as adders or multipliers according
to actual input data. The approach is based on a statistical
methodology. It implements the measurement functionality
implicitly into the SystemC model by defining overloaded
operators, in the sense of object-oriented programming.
These can be differently characterized based on technology
parameters. The operators can be automatically integrated
at system translation. DSP units are considered, since a
power analysis of such systems shows that the major part
of the dynamic power dissipation is consumed in the
data-processing part of the architecture. In addition, the
power dissipation is highly data dependent. Therefore a
fast but reasonably accurate estimation of the dynamic

2 International Journal of Reconfigurable Computing

power dissipation of such data-driven kernels is of high
interest and the analysis using representative input data is
essential. From the hardware point of view, the additional
flexibility inherent in reconfigurable architecture and easy-
to-use implementation flows make reconfigurable comput-
ing, especially FPGA architectures, attractive for power-
aware computing solutions. Since CPUs are not sufficiently
energy efficient (power consumption up to 200 W) and,
on the other hand, ASICS are unaffordable for a low
market volume, reconfigurable computing is considered
an alternative especially for data-driven applications. Their
benefit has been shown, for example, in [5, 6].

The described situation in the system development
landscape motivates the development of a strategy for
abstract, hence faster data-dependent power analysis for
LUT-(lookup-table-) based systems in this work. The results
were presented in [7] and are compared here to a standard
power estimation flow. Beside it a detailed mathematical
modeling strategy for power consumption estimation is
presented. To ease and accelerate the development cycle, the
power estimation method is embedded in a translation tool,
so that the process of power estimation is transparent for the
user and can be validated.

The remainder of this work is structured as follows.
Section 2 summarizes related work. Section 6 embeds the
strategy in an overall tool flow. Section 3 discusses the strat-
egy to evaluate power dissipation for LUT-based hardware
based on a statistical model to estimate toggle rates. This
is related to a hardware mapping analysis of representing
macroblocks (adders and multipliers) for data processing.
Section 7 describes the implementation of the technology
into the VHDL to SystemC converter. Section discusses the
results. Section 9 concludes and gives an outline on future
extensions.

2. Related Works

Code translation tools can help guaranteeing the consis-
tency of translated and original models across languages
and speeding up development time, since tool-supported
translation takes seconds instead of hours to days for manual
translation. In the system development cycle, top-down
approaches [8–10] are used in HLS (high-level synthesis)
tools; bottom-up approaches [11, 12] are used for IP reuse
and module abstraction to achieve faster simulation models.
In many hardware engineering problems, optimization is
necessary on RTL Level. However, readability and efficiency
of the translated code are two major problems of the HLS
code translators. Because of that a bottom-up strategy is
followed in this work. The authors in [13] further illustrates
the effects of IP reuse on design time, hence motivates the
bottom up approach.

The presented methodology differs from the existing
solutions since it targets, beside correct code translation, the
automatic integration of further functionality: bus interface
wrapping and a power estimation methodology. The power
estimation methodology estimates switching activities in
DSP units such as adders and multipliers according to actual

input data. The approach is based on probability theory.
With that it differs from approaches that need to run a
conventional time-consuming power estimation flow (e.g.,
XPA from Xilinx) or other estimators that are based on
synthesis results without considering input data (e.g., XPE
from Xilinx).

The approach presented in [14] is also implemented for
SystemC. It enables the usage of different power models.
In comparison with this work, it uses a strategy based
on logging the execution of special modules and signals
extended from regular SystemC ones, instead of a probability
model, as presented here. In [15] a SystemC class library
is proposed to the calculate the energy consumption of
hardware described with SystemC TLM, and the power
model was based on experimental results performed in
laboratory, while approach of the presented work is based on
the translation of modules from VHDL to SystemC RTL and
on probability models. Further works concern the extension
of the approach also to TLM.

The work [16] presents an architectural level framework
for power analysis, based on parameterized power models
of common structures of microprocessors, but does not
consider any probability model, as presented in this work.
In [17] a methodology is presented for simulation and
verification of low-power systems using SystemC. It is based
on disabling modules during execution to simulate the power
switch-off used by the technique of power gating. The
technique for disabling SystemC modules at simulation time
is detailed in [18]. At the same time, these related works are
not specific to reconfigurable architectures, in contrast to our
work, which considers specific characteristics of FPGAs.

3. Power Evaluation Strategy

This project uses an activity-based power estimation and
calculation based on the switching frequency of the inputs,
outputs, and the internal signals of the individual sub-
modules. The proposed power estimation and calculation is
tailored for signal processing units where the major part of
the power consumption is produced by multiply-accumulate
instructions, which is computed in hardware by ripple carry
adders and field multipliers based on ripple carry adders. To
guarantee that the synthesized hardware for computing MAC
is realized on the given adder and multiplier structures, a
hardware model on register transfer level of the processing
unit is needed. Both implementation and calculation are
optimized for area consumption on FPGAs with little slice
count. The accuracy of the estimation is based on two areas.

First there is the realization on hardware which is done by
the synthesis tools for a specific LUT-based FPGA. Later in
this section synthesis results for given FPGAs are examined
for getting the fan-out parameters which are needed for a
exact calculation of the power dissipation of each element.
Further general rules for optimal synthesis of ripple carry
adders and field multipliers are formulated.

Secondly, input data is analyzed for predicting the
switching frequency on the expected synthesized hardware
structure. This means that the probability distribution of the

International Journal of Reconfigurable Computing 3

input data has to be computed. The probability distribution
of the output data is derived from that. The input data should
be taken from the original implementation. This means,
for example, in case of an audio decoder, a corresponding
audio stream should be used. For better comprehension an
complete workflow for power estimation is shown.

The first step to be done is the analysis of the input data.
For example, the input data is uniformly distributed on the
complete accepted range with the boundaries 0 and u, where
u is a natural number. This assumption is suitable if the
distribution of the input data is unknown. By the way this
concept was first formulated by Gauss and is known as the
Gaussian indifference principle.

Next the binary coding of the numbers between 0 and u
is analyzed. The value of the MSB is distributed as followed:

(i) in the range between 0 and u/2, the value of the MSB
is 0,

(ii) in the range between u/2 and u, the value of the MSB
is 1.

With the condition of the uniform distribution, all
numbers in range are selected with the same frequency. This
means, for the probability that the MSB bit is set to 1,

p(MSB) = u/2
u
= 1

2
. (1)

The analysis of the next less significant bit is made the
same way. The value of the (MSB-1) bit is the follows:

(i) in the range between 0 and u/4, value of (MSB-1) is
0,

(ii) in the range between u/4 and u/2, value of (MSB-1)
is 1,

(iii) in the range between u/2 and 3u/4, value of (MSB-1)
is 0,

(iv) in the range between 3u/4 and u, value of (MSB-1) is
1,

The calculation of the probability that (MSB-1) bit is set
to 1:

p(MSB− 1) = 2∗ (u/4)
u

= 1
2
. (2)

Based on the calculations for the MSB and the (MSB-1)
bit, a prediction can be made.

For every step you make from MSB towards LSB, the
number of intervals in which the bit is set to 1 is doubled
but the length of the intervals is halved. In consequence this
means that the accumulated length of the intervals in which
the bit is set to 1 is equal for all bits. Because of this fact the
probability that a bit on the input is set to 1 is calculated for
all bits:

p = 1
2
. (3)

After the computation of the probabilities on the input
vector, the probabilities for the output vectors of the ripple

+ 0

0

1 · · · 2n − 1

1

1

2n − 1

2n − 1

2n+1 − 3

2n − 1 2n+1 − 3 2n+1 − 2

0

1 2n − 1

· · · 2n − 1

Figure 1: Carry generation in the adder.

carry adder and the field multiplier can be calculated. First
the probability of the occurrence of carry bits of the ripple
carry adder is determined.

For the possibility that a carry-on location n is generated,
all input vectors of the adder between 0 and 2n − 1 are
relevant. Figure 1 shows the addition of two summands in
this range.

Each cell in this figure corresponds to the sum of the row
and column number. To calculate the the probability that the
carry is set, it is suitable to count the number of cell in which
a carry is generated and divide this count by the total number
of cells. This figure has 22n entries of which 22n−1 − 2n−1

generate the carry. The division leads to

pc,n = 22n−1 − 2n−1

22n
= 1

2
− 2n−1. (4)

Additionally the following statement can be made:
because the generation nth carry is only possible if the upper
bound of the accepted input values is 2n, all the probabilities
for all carry bits on locations higher than ld(u) can be set to
zero.

After calculating the probability of the carry bits, the
probability of the sum bits of the adder can follow. The
boolean equation of the sum on location n is

sn =
(
i1n ∧ in2n ∨ i1n ∧ i2n

)
∧ cn

∨
(
i1n ∧ in2n ∨ i1n ∧ i2n

)
∧ cn.

(5)

Transferring this equation to the probability domain
leads to

ps,n =
(
pi1,n ∗ pi2,n + pi1,n ∗ pi2,n

)∗ pc,n

+
(
pi1,n ∗ pi2,n + pi1,n ∗ pi2,n

)∗ pc,n.
(6)

Setting pi1,n = 0.5, pi2,n = 0.5 (uniform distribution) and
pc,n equals

pb,n = 0.5. (7)

4 International Journal of Reconfigurable Computing

Like the statement for carry bits with location near
the MSB, a likewise statement can be made for the sum
bits: because the generation nth sum bit is only possible
if the upper bound of the accepted input values is 2n,
all the probabilities for all carry bits on locations higher
than ld(u) can be set to zero. Similar to these calculations,
likewise calculations for other probability are possible. The
following paragraph describes the approach for calculating
the probability of sum and carry bits with calculated
nonequal probabilities for each bit of the adder input. The
given input probabilities are named pi1,n and pi2,n. In this
project a 32-bit adder was analyzed so the valid indices are
in the range from 0 to 31. With this new assumption, the
proceeding is as follows.

First the boolean equation of the carry bit is annotated:

cn =
(
i1n ∧ i2n ∨ i1n ∧ i2n

)
∧ cn−1 ∨ i1n ∨ i2n. (8)

Based on this equation, a transformation to probability
domain is made:

pc,n =
(
pi1,n ∗ pi2,n + pi1,n ∗ pi2,n

)∗ pc,n−1 + pi1,n ∗ pi2,n.
(9)

With the extra knowledge that the carry bit in the least
significant adder is never set (this means pc,n is zero), all the
carry probabilities can be calculated in a recursive manner.
With the formula for calculating the ps,n probabilities
the examination of the ripple carry adder with nonequal
distributed input vectors is completed.

Based on these observations a derivation for the calcu-
lation of the signal probabilities of the field multiplier is
possible.

The idea is to connect the calculations for the ripple
carry adder with individual input probabilities. According to
Figure 2 , the input probability pi1n of one adder is the same
value like the ps(n+1) probability of the previous level. With
the extra assumption of uniform distributed input vectors of
the adder and the knowledge that a AND-gate is equal to a
multiplication of its input probabilities, the pi2,n probability
equals the multiplication of the probabilities of the inputs of
the multiplier; that is, 0.5 ∗ 0.5 = 0.25. If the distribution is
restricted to the range 0 to u, all pi2,n with a index and level
higher than ld(u) have to be set to zero.

Also these calculations can be performed on other
input probability distributions. After the calculation of the
probabilities of occurrence, the transition to the switch
frequency is made. The normalized statistical switching
frequency is given by

fnorm,stat = p
(
1− p

)
. (10)

That definition of the frequency is equal to the proba-
bility of the occurrence of a positive transition of the signal.
By means of this frequency definition, the dynamic power
dissipation of CMOS circuits is described as follows:

Pdyn,stat = C ∗U2 ∗ fnorm,stat ∗ fbase ∗ fanout, (11)

where fbase defines the bit rate on the observed signal. The
parameter C for the input capacity and the supply voltage

&& &

0 0 0

&& &

&& &

prod0prod1prod32prod63
· · ·

+

· · ·

· · ·

· · ·

· · ·

+

+

f 1.31 f 1.30 f 1.0

f 2.0

f 1.31 f 1.30

f 2.1

f 1.31 f 1.30 f 1.0

f 2.31

f 1.0

f 1
f 2

...

Figure 2: Structure of a field multiplier.

LUTLUT

i1n i2n cn

sn cn+1

Figure 3: Optimized elementary cell for three-to-four-input LUT.

U can be extracted from the data sheet while the fan-
out parameter which describes the number of inputs to be
driven is dependent on the circuit synthesis on the FPGA.
For getting the fanout parameters of the individual signals,
the synthesis result of Xilinx ISE is analyzed. The following
pictures show the elementary cells of the adder for different
FPGAs.

Figure 3 shows the synthesis result of the basic cell of a
ripple carry adder for a LUT-FPGA with three to four inputs
and one output, Figure 4 shows the synthesis result of the
basic cell of a ripple carry adder for a LUT-FPGA with five to
six inputs and one output, Figure 5 shows the synthesis result
of the basic cell of a field multiplier for a LUT-FPGA with
four to five inputs, and Figure 6 shows the synthesis result
for a LUT-FPGA with six to seven inputs.

Out of the synthesis result, it is obvious that the maximal
size of a elementary cell is limited by the LUT fanin
which calculates the carry for the next elementary cell. The
elementary cell synthesized for the adder equals a radix-
floor ((n− 1)/2) adder which is shown in Figure 7.

International Journal of Reconfigurable Computing 5

LUTLUT

i1n i2n cn

sn sn+1 cn+2

LUT

i1n+1 i2n+1

Figure 4: Optimized elementary cell for five-to-six-input LUT.

LUT LUT

i1n i2n cn gn

sn cn+1

Figure 5: Optimized elementary cell for four-to-five-input LUT.

LUT LUT

i1n i2n cn gn i1n+1 i2n+1

sn sn+1 cn+2

LUT

Figure 6: Optimized elementary cell for six-to-seven-input LUT.

LUT LUT

i1n i2n cn

sn sn+N−1 cn+N−1

· · ·

LUT

2ld(R) + 1

· · ·
2ld(R) + 1

Figure 7: The high radix adder mapped to LUTs.

LUTLUT

i1n i2n cn gn

sn sn+N−1 cn+N−1

· · ·

LUT

2ld(R) + 2

· · ·
2ld(R) + 2

Figure 8: The high-radix adder with gate mapped to LUTs.

Get input probability
distribution

Calculate probability of
input bits

Calculate probability of
output bits

Calculate switching
frequency

Get C ∗U2 and

Calculate

fbase

Pdyn

Figure 9: Setup of a new power estimation.

Similar to the high-radix adder elementary cell, the
elementary cell of the multiplier consists of a high-radix
adder and set of AND-Gates which are controlling the
optional addition of summand no. 2 (shown in Figure 8).

With help of this circuit diagrams, it is possible to get the
fan-out parameters for the power dissipation formula. The
overall workflow can be seen in Figure 9 and is described as
follows.

4. Improving Probability Analysis by
Carry-Computation

Another possibility for the quality of the probabilities of
signal occurrence is the replacement of signal by transfer of
a specifically calculated value. It raises the question of which
carry bit achieved through the replacement of an exact signal
calculation has the best effect. The first consideration is the
simplified assumption that all bits are equally distributed,
then, for the probability of occurrence for each carry bit of
the formula:

pN (c,n) = 1
2
− 1

2n+1
. (12)

6 International Journal of Reconfigurable Computing

In case that the n1th bit is calculated exactly for the signal,
the maximum difference applies to

Diffc,n1 =
N−n1∑

n=0

∣∣∣pNc,n − /pNc,n
∣∣∣,

Diffc,n1 =
N−n1∑

n=0

1− 2∗ pNc,n,

Diffc,n1 =
N−n1∑

n=0

1
2

n

,

Diffc,n1 =
1
2
− 1

2

N−n1

.

(13)

This maximum deviation occurs with the probability of
pNcna. Hence, for the probable deviation,

pDiffc,n1
= Diffc,n1 ∗ pNc,n1

,

pDiffc,n1
=
(

1
2
− 1

2n+1

)
∗
(

1
2
− 1

2

N−n1
)
.

(14)

To get the maximum deviation probability, the first
derivative of pcdiff,n1 should be used:

p′Diffc,n1
= ln(2)∗ 1

2

n1
[

1
2
− 1

2

N−n1
]
− ln(2)

∗ 1
2

N−n1
[

1
2
− 1

2

n1+1
]
/= 0.

(15)

It can be seen from the equation that it must apply for a
zero:

N − n1
!= n1 + 1,

n1 = N − 1
2

.
(16)

With an additional graphic, it can be seen that it is found
at the point where only the maximum of the function is
located. Now it is possible to find the point in the equation
that determines the maximum:

max
(
pDiffc,(N−1)/2 ; Diffc,(N−1)/2 ∗ pNc,(N−1)/2

)
≤ 0.25. (17)

At this point it becomes clear why the exact calculation
of the carry is not worthwhile: the probability of occurrence
of a input signal bit is already, by assumption, 0.5 and can
be determined without calculation; the calculation of a carry
must be made in each run of the adder and helps only
to avoid errors in average of 0.25. The distribution of the
most probable estimation error for different length adders
is presented in Figure 10. The calculation of a carry bit,
however, is costly. The n1th carry is calculated as follows:

Carryn1
= ([Summand 1 mod (1 � i)]

+[Summand 2 mod (1 � i)])÷ (1 � i),
(18)

the total of

Figure 10: Distribution of the most probable estimation error for
n-bit adder.

(i) 3 identical left-shift operations

(ii) 1 division

(iii) 2 modulo (division with remainder).

5. Interface: Power Loss Estimation

In order to generate as little code overhead, a basic C data
type was created for unsigned integers unsigned int for
the equivalent class sc int power, which is equipped with
the same operator overloads like the original data type.
These include all the arithmetic operators that are required
for signal processing (addition, subtraction, multiplication,
division), the assignment operator, and the operator for
streaming output with cout. In addition, a cast operator for
unsigned int casting in a safe situation in which only the
numeric value of the sc int power object must be such
as that with an array indexing. The real power estimation
takes place only in the multiplication and addition operators,
because these functions are the main focus of this work. The
functions occurring in this energy consumption model are
stored by the class static member power.

To take advantage of the presented class sc int power
in a SystemC project, it should be compared to a standard
implementation requiring the following additional code
fragments:

(1) include the header file power.h;

(2) call the static function set calc to indicate the
accuracy of calculations;

(3) call the static function set mu set parameters for the
estimation;

(4) call the static function set lut to adjust the power
estimation of the target FPGA.

Anything else due to the replication of the functionality
of unsigned int in sc int power must be ignored. It
is also possible to define a simple design already in the
VHDL source code with pragmas, such as the type integer
in the types sc int power by the modified V2SC during
translation. Instead of the function calls in an equivalent

International Journal of Reconfigurable Computing 7

SystemC project boundary bonds are defined by the above
pragmas as follows:

(1) set powerestimation lut number;

(2) set powerestimation mu number;

(3) set powerestimation calc 0 or CALC ALL;

(4) powerestimation on: all of the following inte-
gers in sc int power translated;

(5) powerestimation off: all of the following integers
in int translated.

These pragmas are recognized when translated from
VHDL to SystemC and automatically converted into the cor-
responding SystemC functions. By this procedure, additional
user settings are generated into the source code.

5.1. The Class prob bit. The class prob bit implements the
functions to estimate the amount of time for the inputs,
outputs, and internal signals of a 32-bit adder to be high
and the estimation of the switching frequency. To fill the
individual estimated, six arrays are implemented:

(1) input contains the estimation of bit = “1” for input
bits;

(2) input rising edges contain the estimation for the
switching frequency of the input;

(3) output contain the estimation of bit = “1” for the
sum bit;

(4) output rising edges contain the estimation for
the switching frequency of the sum bits;

(5) signal contains the estimation of bit = “1” for the
carry bit;

(6) signal rising edges contains the estimation for
the switching frequency of the carry bit.

To store a new estimate for bit = “1” in each field,
the functions add input prob, add output prob and
add signal prob provided that again over the functions
get input prob, get output prob, and get signal
prob can be retrieved. To simplify these getter and setter
methods, the class has the static methods in1, in2, carry
and out, which return the corresponding array index in the
fields. For example, an estimate probability of bit = “1” for
the 3rd bit of the adder adder1 is set to 0.5 with the following
call:

adder1.add input prob(prob bit::in2(3),0.5).
The estimated switching frequencies on the power

dissipation of the adder can have the class of functions
input weight function, signal weight function,
and output weight function, corresponding fan-ins for
the individual inputs, outputs, and signal. By multiplying
the switching frequencies associated with the switching
frequency, we have the following relationship:

Pv = CLUT ∗V 2 ∗ (f ∗ fanin
)
. (19)

Thus, all weighted switching frequencies must be mul-
tiplied only by the same factor in order to infer the loss of

performance. The actual value for each weighting function
depends on the specific type of LUT-optimized design.

The weighting factors provided with the switching fre-
quencies can be accessed through the functions get input
power, get output power, and get signal power. The
parameters of these functions can also have the static
function in1, in2 be carry and out to select the desired bits.

These functions only refer to individual bits of each
type. A new group of functions was defined to access the
accumulated probabilities of occurrence of bit = “1” and the
weighted switching frequencies. The functions are named
following the same pattern as the getter and setter methods:

(1) get weighted input sum accumulates all the
probabilities of occurrence of the inputs;

(2) get weighted input power sum accumulates all
the switching frequency of the inputs;

(3) get weighted signal sum accumulates all the
probabilities of occurrence of the signals;

(4) get weighted signal power sum accumulates all
the switching frequency of the signals;

(5) get weighted output sum accumulates all the
probabilities of occurrence of the outputs;

(6) get weighted output power sum accumulates all
the switching frequency of the outputs.

It is also possible to accumulate over the functions
get weighted all sum and get weighted all power
sum all weighted probabilities of occurrence or all the
weighted switching frequencies. For further support of
statistics on different prob bit objects, two other functions
were created for each port and signal to return the probability
of occurrence and the switching frequency, as follows

(1) print input all prob returns the probability of
occurrence of all inputs;

(2) print input all power outputs the switching fre-
quency of all inputs;

(3) print signal all prob returns the probability of
occurrence of all signals;

(4) print signal all power outputs the switching
frequency of all signals;

(5) print output all prob returns the probability of
occurrence of all outputs;

(6) print output all power returns the frequency
switching of all outputs.

The class uses a custom constructor with three parame-
ters for the transfer of the number of input and output sig-
nals, which also allows the formation of any combinational
logic result.

5.2. The Class exact bit. The class exact bit implements
functions for the accurate determination of probability of
occurrence and switching frequency of 32-bit adders and
is analogue of the class prob bit which estimates these
parameters. In order to not duplicate code and to keep

8 International Journal of Reconfigurable Computing

the naming of the methods most consistently, the class
exact bit inherits from the parent class prob bit and can
largely use the methods of the parent class. The difference
from the parent class makes itself felt in the determination of
the exact switching frequency. During the estimation in the
class prob bit, an estimation of the switching frequency
can be made directly from occurrence probability, this is not
an exact determination because positive edges can be made
only in the context of the last state of the adder. For this
reason, the class attribute last state holds a pointer to an
associated exact bit object that stores the last state of the
input and output signals. With this additional information,
it is now the exact determination of the number of positive
edges occurred and therefore the exact determination of the
switching frequency possible.

The determination of the accumulated amount of time in
which one remains on high bit (equivalent to the probability
of occurrence) is also possible without the context of the
last condition; therefore the implementation of the class
prob bit is used. All other functions such as statistical
functions to accumulate or print functions can also be
used without modification, as there are the fields’ input,
input rising edges for the stored values to access from
the direct calculation.

5.3. Addition Class. The class addition provides the meth-
ods for estimation and exact determination of the probabil-
ities of occurrence and switching frequencies of individual
bits in a prepared 32-bit ripple-carry adder, which are used
in the class sc int power. Addition has the functions
power add approx2, power add approx2 complex, and
power add exact2, where the first two estimate the switch-
ing frequency and the last ones accurately determine the
switching frequency of the individual inputs, broadcast, and
outputs.

The two estimators power add approx2 and power
add approx2 complex differ in the specification of the
probability of occurrence of the input bits. For the case
when the adders are used as a single unit, it can be assumed
as a multiplier, according to the principle of indifference
when all input vectors are equally distributed within an
interval. The function power add approx2 can be used to
get the average of the input vectors and a statistic value
that the prob bit object returns. There is the case when
the adder is part of a multiplier, the perception of the
equal distribution is no longer made, and the function
power add approx2 complex is used. This function takes
an input statistic in the form of a prob bit counter object
and returns the output statistics again in a prob bit object.

The function for accurate calculation of the switching
frequency power add exact2 was implemented, two
terms for the associated switching frequencies, whilst
the output statistics are in an exact bit object
are used as parameters. The exact determination
of the required associated switching frequency is
associated to exact bit object with the latest state of
the adder stored by the class in the private attribute
last state.

5.4. Multiplication Class. The class Multiplication pro-
vides methods for accurate determination and estima-
tion of the probability of occurrence and the switching
frequency in a 32-bit multiplier, which are required in
the parent class sc int power. The class has the func-
tions power multiply approx2 for the estimated and
the power multiply exact2 for accurately determined
switching frequency. The parameters of both functions are
analogous to the methods of the class Addition. The
estimator gives the mean value for the factors, while the
function is used to the exact determination of the two factors
to be multiplied. Because of the considered carry of the
multiplier, the class Addition takes into account the wiring
structure and take intermediate AND gates completely.

5.5. Random Generator for gcc. First, to test the estimation
of the classes Addition and Multiplication, the built-
in random generator of C was used with the function rand
from stdlib library. In the first test the estimations had
similar variations (about 10%) to the exact values calculated
as in the subsequent tests with the Mersenne-Twister random
number generation. Due to the fact that the C standard
requires no algorithm for random number generation, the
author does not know which algorithm is used in the current
implementation by gcc.

5.6. Random Generator LFSR. In a second test the classes
Addition and Multiplication were used for a linear
feedback shift register. In the present implementation, the
first 32 CRC polynomials were stored; that is, it can pseudo-
randomize sequences to generate numbers in intervals up
to 232. Tests, however, showed that the generated pseudo-
random numbers are distributed very unevenly, most obvi-
ously in direct comparison with the C-random number
generator or the Mersenne-Twister. Due this statistical
property, this random number generator was considered
unsuitable and was not included in further tests.

5.7. Mersenne-Twister Random Number Generator. The GNU
suite delivers a Mersenne-Twister random number generator.
This type of random generator works on an extremely long
interval of 219937−1 and its most important feature is the
uniform distribution of all output bits. Due to these excellent
statistical properties, the Mersenne-Twister random number
generator has been selected as a reference for testing the
power loss estimation. In a comparison to integrated random
in C, the Mersenne-Twister cuts marginally better due to the
fact that in the random number generator rand of C, the
least significant bits are not equally distributed.

5.8. Random NDIST Based on gcc. To test the implemen-
tation of the power estimation with normally distributed
random variables, the C-function NDIST was used, which
approximates to function rand, but with uniformly dis-
tributed random numbers. With the aid of the central
limit theorem, which states that the mean of a sufficiently
large number of independent random variables, each with
finite mean and variance, will be approximately normally

International Journal of Reconfigurable Computing 9

Figure 11: Normal distribution.

Preconvert
V2SC

VHDL

Macro Macro

SystemC

SystemCVHDL
Postconvert

Figure 12: Combination of wrapper and V2SC.

distributed, six different random numbers are added and
displayed as a normally distributed random number. The
actual number of six random numbers to be accumulated
was determined experimentally. The chart of Figure 11 shows
the theoretical distribution of the generated numbers in this
six-accumulated random variable.

5.9. Generating a Large Random Number Set. The prob-
lematics when comparing different implementations of the
estimation with the classes Addition and Multiplication
in comparison with the VHDL implementation are to
regenerate the random numbers used in each run. For this
reason a common set of uniform distribution of 2 ∗ 1000
random numbers 0–1024 was generated and from this set
all the relevant statistical characteristics of was calculated
the probability of occurrence of individual bits. But the
numbers from 0 to 1, which are the basis for determining the
switching frequency, change. In addition to this, statistical
characteristics were raised to what extension they can differ
from the requirement to assess the validity of the estimation
result.

6. Module Translation and Integration

An integrated system simulation can be accomplished in
homogeneous or heterogeneous environments. The adop-
tion of homogeneous system simulations has several advan-
tages: (i) it achieves faster simulation since synchronization
tasks between different simulation kernels can be omitted;
(ii) the usage of SystemC instead of for example, VHDL
and the possibility to simulate models on higher abstraction

Table 1: V2SC features.

Feature Included

If Yes

While Yes

For Yes

Function Yes

Procedure Yes

Packet Yes

Record Partly

Array Partly

Table 2: V2SC + wrapper extras.

Feature Included

Alias Yes

Cast functions Yes

Generate Yes

Port map Yes

Records Yes

Arrays Yes

Configuration No

File IO No

levels further increment the simulation speed and addition-
ally; (iii) since SystemC models are inevitable for system
simulations and RTL models are necessary for synthesis
flows, a module translation helps in keeping synchronism
among the different module implementations and reduces
error sources. On the other hand, this strategy requires a
module translator. The VHDL to SystemC translator (V2SC)
that was used in this work as basis has been developed by
[19].

It was designed for SystemC 1.0 and basically supports
constructs that can be directly translated from VHDL to
SystemC. In this work, the translator has been extended to
be compatible with the actual SystemC version 2.2 and to
translate synthesisable VHDL constructs. Table 1 presents
the features provided by V2SC and Table 2 shows a selection
of extensions included as a contribution of this work. Further
convertible VHDL syntax elements are listed in [20]. The
converter has been verified against a set of VHDL modules,
among them a IMDCT (for calculating the inverse modified
discrete cosine transform) module including an AHB master
and a APB slave interface with a complexity of >5000 lines
of code, a FFT module (for calculating the fast Fourier
transform) with about 250 lines of code, and a GCD module
(for calculating the greatest common divisor) with about 100
lines of code.

The extensions are implemented with the compiler
building tools flex and bison in the same way as the original
converter. Furthermore the macroprocessor m4 and the text
manipulation tool sed were used. The whole extension is
build as a wrapper around V2SC (Figure 12) and is divided
in two parts. A preconvert filter simplifies syntax elements
by converting them to V2SC compatible constructs, or the
filter masks constructs such that they can pass the V2SC

10 International Journal of Reconfigurable Computing

prdataFSM

RTL

TLM

CPU

paddr
Converted module

b transport()
nb transport()

pwdata

...

...

Figure 13: Interface conversion for generating a heterogeneous accuracy simulation model.

Table 3: Simulation speed comparison.

SystemC SystemC with int SystemC with sc int power (approx.) SystemC with sc int power (exact)

Addition 1 0.5 0.03

Multiplication 1 0.5 0.001

Write VHDL algorithm

Calculate parameter of
probability distribution

Convert to SystemC

Insert pragmas in
VHDL code

Simulate and get result
in variable “power”

Figure 14: Power estimation workflow.

without modification, if the V2CS cannot handle them. The
masked blocks are converted by the postconverter to SystemC
constructs.

The converted IPs own a pin accurate RTL interface
whereas the system simulator provides TLM interfaces. To
decrease the design time, a protocol conversion has been
integrated in the translation tool. The modified V2SC
enables connecting VHDL RTL IPs to a SystemC TLM system
by implementing a library that contains design patterns
for pin accurate to TLM functional units according to the
interface specifications. Appropriate modules are exemplary
implemented for AMBA, AHB, and APB. The resulting
translated modules can be directly connected to a AMBA-
TLM 2.0 base system (see Figure 13).

7. Implementation of Power
Estimation Features

The extension contains beside the compatibility pack, as
described in Section 6, a tool for the automated integration
of the previously discussed power estimation and calculation.
This section explains a strategy, with which the conventional
flow may be omitted if a certain decrease of accuracy can be
accepted. Generally, the extension of functional parts with
monitoring capabilities is an efficient way for automated
system analysis. Since accurate power analysis flows are one

the most time-consuming steps in the development process,
their integration in a SystemC environment, with the
techniques discussed in Section 3, are expected to speed up
the evaluation process. Conventional accurate power analysis
tools need mainly two kinds of input information. On the
one hand a model of the placed and routed design allows
to calculate capacitive loads of each net by evaluating fan-
out numbers and the characteristics of the primitives (LUTs
for FPGA technology) and with that the energy consumption
per net per activity. On the other hand dynamic activities
are collected during post-place and route simulation in value
Change Dumps (VCD). Especially the accurate simulation
with enabled signal tracing is a very time-consuming step.

The power evaluation extension of the modified V2SC
can be enabled by the flag -powerestimation of precon-
vert. After setting this flag, preconvert converts the VHDL-
type integer in the new-user-defined type sc int power
and not to the standard SystemC-type int. sc int power
is a new type which is constructed in this project to do
all power estimation and calculation. It acts a replacement
for int and its behaviour is similar to it. To get this
functionality, all common arithmetic operators (+,−,∗,/)
are overloaded while the addition and the multiplication
operator definitions contain the power estimation and
calculating algorithms. Additionally all arithmetic operators
are overloaded for mixed-type operation with int. Another
feature is the overloaded cast operator of int, which is
especially for indexing arrays. With a view to the use
of sc int power as a complete SystemC data type, the
streaming operator �, the test of equality ==, the test of
inequality !=, the assignment operator =, and the function
sc trace are overloaded. Thus in this manner defined type
can be used as a template class in sc signal<>, for example.
To get a high prediction quality of the power estimation,
the algorithms have to be parameterised. This is done by
the static class methods set mu (defines the average value
of the input vectors) and the set lut (for optimizing the
design to architecture). The static class method set calc
defines a switch between estimation (value is zero) and
calculation (value is equal CALC ALL constant). The result
of the calculation respectively estimation can be retrieved

International Journal of Reconfigurable Computing 11

St
ag

e

Bit no.

600

0

(a) Approximation

St
ag

e

Bit no.

600

0

(b) Exact calculation

Figure 15: Toggle distribution estimation.

St
ag

e

Bit no.

600

0

Figure 16: Reference from XPA tool.

from the static variable power. For improvement of the
manageability of the power analyser tool the parametrisation
of the algorithms is also possible in VHDL code by special
comments called pragmas. These pragmas consist of the
prefix “powerestimation” followed by the parametrisation
function (i.e., set calc, set mu or set lut) and the
value to set. The following example shows the proceeding.

The original VHDL code:

(1) signal a,b,c: integer;

(2) --powerestimation set lut 5

(3) --powerestimation set calc 0

(4) --powerestimation set mu 10.0

(5)

(6) c<=a+b.

Is translated in SystemC code:

(1) #include “power.h”

(2) ··
(3) sc int power a,b,c;

(4) c=a+b;

(5) //the powerestimation result

(6) //is stored in sc int power::power

(7) return 0;

The whole workflow is like that presented following that
Figure 14.

8. Results

8.1. Accuracy of Toggle Estimation. The accuracy of the
power estimation algorithms in sc int power to the also
implemented exact calculation is about 13% for a average of
more than 100 single additions or multiplications. Figure 15
shows the estimated toggle counts on the left and the exact
calculated toggle count on the right of the partial sums
(summands no. 1 of each stage) for a data set of 1000 two
factors namely summands which are equally distributed in
the range between 0 and 1024.

In comparison to the Xilinx XPower tool (see Figure 16),
an almost similar accuracy was reached. On the following
picture is the count of toggles for the partial sum bits
visualized.

8.2. Speed Improvement. The integration of the proposed
power estimation slows the calculation in contrast to the
calculations on the standard type int about the factor two,
but the also implemented exact power calculation slows the
additions and multiplications about the factor 32, namely,
1024 (see Table 3). But the estimation is only slightly worse
than the exact determination of the power dissipation;
however the estimation is about the factor 16, namely, 512
faster. In sum this means that the proposed estimation is a
good tradeoff between accuracy and simulation speed.

9. Conclusion and Future Work

This work proposes a methodology for switching activity
estimation, taking into account the underlying hardware
structure. The methodology has been exercised for MAC
units. Different FPGAs have been used to show the portabil-
ity of the method to other technologies. The loss of accuracy
of 13% in the case of the MAC unit compared to post-place

12 International Journal of Reconfigurable Computing

and route simulation results comes along with a simulation
speed up of a factor up to 1024. The transparent imple-
mentation of that methodology into a VHDL to SystemC
converter further accelerates and eases the development
process. The general approach of the methodology can be
also applied to other regular computation structures. With
the implementation of further computational units (e.g.,
dividers or other adder architectures) and the support for
other FPGA architectures, an analysis of complex data paths
and a faster evaluation of design alternatives are envisioned.

References

[1] N. Dhanwada, I. C. Lin, and V. Narayanan, “A power esti-
mation methodology for SystemC transaction level models,”
in Proceedings of the 3rd IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and Systems Synthesis
(CODES+ISSS ’05), pp. 142–147, September 2005.

[2] N. Dhanwada, R. A. Bergamaschi, W. W. Dungan et al.,
“Transaction-level modeling for architectural and power
analysis of PowerPC and CoreConnect-based systems,” Design
Automation for Embedded Systems, vol. 10, no. 2-3, pp. 105–
125, 2005.

[3] M. Lang, “System C for Embedded System Design,” Seminar,
2006, http://dl.acm.org/citation.cfm?id=339657.

[4] S. Boukhechem and E. B. Bourennane, “TLM platform
based on systemC for STARSoC design space exploration,” in
Proceedings of the NASA/ESA Conference on Adaptive Hardware
and Systems (AHS ’08), pp. 354–361, June 2008.

[5] S. Hauck and A. Dehon, Reconfigurable Computing the Theory
and Practice of FPA-Based Computing, Elsevier, 2008.

[6] N. Voros, A. Rosti, and M. Hübner, XDynamic System
Reconfiguration in Heterogeneous Platforms, Elsevier, 2009.

[7] M. Kuehnle, A. Wagner, and J. Becker, “A statistical power esti-
mation methodology embedded in a SystemC code translator,”
in Proceedings of the 24th Symposium on Integrated Circuits
and Systems Design (SBCCI ’11), pp. 79–84, IEEE Computer
Society, 2011.

[8] Forte, “Cynthesizer,” 2011, http://www.forteds.com/products/
cynthesizer.asp.

[9] M. Graphics, “Catapultc,” 2011, http://www.mentor.com/esl/
catapult/overview.

[10] Cadence, “C-to-silicon compiler,” 2011, http://www.cadence.
com/products/ sd/silicon compiler/pages/default.aspx.

[11] N. Bombieri, “Hif suite 2.0: hdl translating and manipulation
tools,” 2009, http://hifsuite.edalab.it/.

[12] University of Cincinnati, “Savant,” 2011, http://www.clifton-
labs.com/savant/.

[13] M. e. a. Bocchi, “A system level IP integration methodology
for fast SOC design,” in Proceedings International Symposium
on System-on-Chip, pp. 127–130, 2003.

[14] G. B. Vece and M. Conti, “Power estimation in embedded
systems within a SystemC-based design context: the PKtool
environment,” in Proceedings of the 7th Workshop on Intelligent
Solutions in Embedded Systems (WISES ’09), pp. 179–184, June
2009.

[15] M. Giammarini, M. Conti, and S. Orcioni, “System-level
energy estimation with Powersim,” in Proceedings of the 18th
IEEE International Conference on Electronics, Circuits and
Systems (ICECS ’11), pp. 723–726, December 2011.

[16] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework
for architectural-level power analysis and optimizations,”

ACM SIGARCH Computer Architecture News, vol. 28, no. 2, pp.
83–94, 2000, http://portal.acm.org/citation.cfm?id=339657.

[17] G. S. Silveira, A. V. Brito, and E. U. K. Melcher, “Functional
verification of power gate design in systemc RTL,” in Proceed-
ings of the 22nd Symposium on Integrated Circuits and Systems
Design (SBCCI ’09), I. S. Silva, R. P. Ribas, and C. Plett, Eds.,
ACM, September 2009.

[18] A. V. Brito, M. Kühnle, M. Hübner, J. Becker, and E. U. K.
Melcher, “Modelling and simulation of dynamic and partially
reconfigurable systems using System C,” in Proceedings of the
IEEE Computer Society Annual Symposium on VLSI (ISVLSI
’07), pp. 35–40, 2007.

[19] U. Tuebingen, 2001, http://www-ti.informatik.uni-tuebingen.
de/systemc/.

[20] A. Wagner, Diplomarbeit Randbedingungen der HW-Modelli-
erung auf RTL-und Systemebene, 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

