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Due to the fast changing wireless communication standards coupled with strict performance constraints, the demand for flexible
yet high-performance architectures is increasing. To tackle the flexibility requirement, software-defined radio (SDR) is emerging
as an obvious solution, where the underlying hardware implementation is tuned via software layers to the varied standards
depending on power-performance and quality requirements leading to adaptable, cognitive radio. In this paper, we conduct
a case study for representatives of two complexity classes of WCDMA channel estimation algorithms and explore the effect of
flexibility on energy efficiency using different implementation options. Furthermore, we propose new design guidelines for both
highly specialized architectures and highly flexible architectures using high-level synthesis, to enable the required performance
and flexibility to support multiple applications. Our experiments with various design points show that the resulting architectures
meet the performance constraints of WCDMA and a wide range of options are offered for tuning such architectures depending on
power/performance/area constraints of SDR.

1. Introduction

In a scenario of fast changing standards and process technol-
ogies, mobile devices increasingly rely on the software-
defined radio (SDR) and cognitive radio [1, 2] concepts to
achieve adaptability, flexibility, and spectral and energy effi-
ciency. SDR implementation presents an interesting chal-
lenge for the architecture designers, namely, to develop an
underlying hardware platform for SDR with fine balance of
performance and flexibility. This demanding problem led to
major research activity in recent years [3–12].

One of the key ingredients in the SDR architecture design
is to determine the algorithmic kernels across various stan-
dards. While the kernel can be implemented in the most
efficient manner, it can be retargeted according to different
standards by means of tunable parameters or weak pro-
grammability. To that effect, the final architecture can be an
ASIC, a reconfigurable platform or an application-specific
processor. The complete system is often built by combining
such accelerators, targeted for different blocks of a wireless

standard [7]. Often it is of great importance how such
a system can adapt to changes in the algorithms or standards,
saving some of the engineering and development costs when
standards change.

In this paper, we explore how flexibility can influence en-
ergy efficiency, area, and timing within the architectural
design space of two wide-band code division multiple access
(WCDMA) channel estimation algorithms. Channel estima-
tion is an important basic block of advanced wireless stan-
dards, where hard deadlines must be ensured [13]. There are
a wide range of proposed algorithms with significant per-
formance/complexity differences which allow us to consider
a scenario, where architectural flexibility can strongly influ-
ence the results: when less performance is acceptable during
operation, switching to an inferior algorithm could save
energy, since algorithm performance translates into com-
plexity which directly influences energy consumption.

How much energy could be saved and what kind of
flexibility is required in hardware for such adaptability is
what we strive to answer in this paper. This triggers though
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an interesting design challenge as well, since design space
exploration using traditional methods is often time-con-
suming and complex and is not desirable in today’s short
time-to-market.

Given the complexity of modern designs, various high
level synthesis methodologies for quick architectural explo-
ration are employed in industry and academia. These can be
categorized into the following:

(i) methodologies of direct translation of high-level C lan-
guage to hardware description like Calypto Catapult-
C [14], GAUT [15] and Bluespec [16], yielding cus-
tom ASICs;

(ii) customizable processor design such as Tensilica [17]
and ARC [18], using highly optimized blocks as com-
ponents;

(iii) architecture-description-language- (ADL-) based pro-
cessor design, creating fully flexible and custom pro-
cessors, such as nML [19] and LISA [20, 21].

As one of our prime design goals is to explore flexibility,
the above options fall short of our expectations. C-based HLS
techniques offer no easy way to specify flexibility and custom
processor designs often bring a lot of additional overhead
in terms of fine-grained instruction execution. The inherent
flexibility of ADL-based design flow would cover the required
range, but great care must be employed when exploring its
limitations.

As one of the prominent design flows, we adopt the com-
mercially available and mature design flow of Synopsys
Processor Designer [21] and propose additional modeling
guidelines on how these tools can be exploited to tune the
amount of flexibility in the design, from just-enough flexibil-
ity to employing coarse-grained reconfigurability. We present
and evaluate these modifications at both flexibility grades
by implementing and comparing the energy-saving scenario
using two WCDMA channel estimation algorithms as target.

2. Organization of the Paper

The core content of this paper is structured as follows.
In Section 3 we describe and analyze the targeted applica-

tion domain. Two algorithms for WCDMA channel estima-
tion with differing complexity and performance are detailed
and the complexity is exposed.

Section 4 mentions related work and existing implemen-
tation of WCDMA channel estimation in the literature.

Section 5 deals with our design methodology and ex-
plains the design flow. High level synthesis with LISA ADL
is presented and improvements on the design flow are
discussed.

Using the guidelines described, design space exploration
at the two flexibility levels is performed in Section 6, yielding
two classes of architectures.

Experimental results and comparison within architec-
tural variants and across architectural classes are shown in
Section 7, while discussing advantages and disadvantages of
each.

Finally, Section 8 concludes the paper.

3. Target Applications

A critical part of wireless communication is maintaining a
good level of signal-to-noise ratio (SNR) on the link. This is
influenced negatively by multipath fading, mobile terminal
speed relative to the base transmitter, scattering, shadowing,
and so forth. To counter this, channel estimation (CE) is
performed so that corrections can be done by considering
dynamically altering channel conditions. CE constitutes an
important building block for SDR, as this is used across
multiple wireless standards.

There are 3 large classes in which one can categorize CE
algorithms: (1) low-complexity, low-performance algori-
thms; (2) high-complexity, good-performance algorithms;
and (3) extremely complex, iterative algorithms with near-
optimal performance. While (1) deals with simple (linear)
interpolation algorithms and improvements on those (typ-
ically O(n) complexity), (2) is the class where still tractable
O(n2),O(n3) complexity yields high gains in performance,
typically in orders of magnitude. Class (3) employs iterative
(data-aided) expectation-maximization algorithms with ≥
O(n3) complexity, which are typically unfeasible for imple-
mentation when considering the performance improvements
that they yield and have a more theoretical value. We analyze
and implement two multiuser WCDMA pilot-aided CE algo-
rithms: polynomial interpolation (PI) (class 2) proposed by
Yue et al. in [22], and weighted multislot averaging (WMSA)
(class 1) proposed by Abeta et al. in [23].

Yue included comparisons between these in [22], show-
ing that these two algorithms differ significantly in terms
of performance, under multipath fading scenario. For single
user single antenna systems, the bit error rate (BER) of PI is
lower than that of WMSA over the whole. When considering
bit energy to noise energy ratio (Eb/N0) for single user
antenna systems, the bit error rate (BER) of PI is lower
than that of WMSA over the complete range, the difference
exceeding an order of magnitude less when Eb/N0 is greater
than 6 dB. In case of multiple antenna, WMSA is outper-
formed by more than 2 orders of magnitude. The algorithm
performance of PI stays superior for normalized Doppler
frequencies in the range of 0.005 < fdT < 0.013 for both
single and multiple antenna cases at an SNR of 8 dB. For
multiuser systems, the performance of PI in RAKE receivers
stays superior over that of WMSA over the whole range with
the difference reaching 2 orders of magnitude when iterative
interference cancellation is employed in medium to high
SNR (>7 dB).

The rationale for this selection is the following: in the
context of cognitive radio, wireless link state not always
requires a class (2) algorithm performance, hence selecting a
lower complexity class (1) algorithm could yield significant
efficiency increase. Starting with an algorithm from classes
(1) and (2) each, with major difference in their BER perfor-
mance as well as in their complexity, we show that by expos-
ing and exploiting the structural similarity, it is possible to
design a flexible architecture which can adaptively switch
among the two, without having the area overhead of two sep-
arate dedicated circuits. The architectural details are handled
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Figure 1: WMSA details and complexity.

in later sections, after briefly describing computational traits
of each of these algorithms.

3.1. Channel Estimation with WMSA. WMSA [23] is based
on linear interpolation of known pilot symbols and has
low computational complexity. For every kth user’s lth path
several Np pilot symbols of slot m of the slot window are
averaged first from received signal rkl and initial estimate bk:

η̂kl = 1
Np

Np∑
n=1

rkl(mNs + n)bk(mNs + n), (1)

where l = {1, . . . ,L}; k = {1, . . . ,K}; n = {1, . . . ,Ns − Np}.
The averaged values of several pilot symbols in a slot are
weighted with precomputed coefficients α according to (2),
to generate the estimates ĝkl for each data symbol Nd, as Yue
summarized it in [22]. The values of the coefficients α are
thoroughly deduced and analyzed in [23]:

ĝkl
(
mNs +Np + n

)
=

J∑
j=−J+1

αj(n)η̂kl
(
m + j

)
. (2)

In Figure 1 the complexity of each of the subtasks of the
algorithm is shown. The task for computing the α coefficients
is executed once. The coefficient set can be changed based on
WMSA algorithm parameterization and partially depends on
the estimated symbol position. Averaging has to be done
once per slot, in case there are several pilots in a slot. Then,
for each data symbol, the estimate is calculated by summing
the products between the averaged pilot value and the corre-
sponding α coefficients of the symbol and slot. The dominant
parameters of this algorithm from the complexity point of
view are the size of the slot window 2J and the coefficients
α. The larger the analyzed window, the greater the amount
of needed storage. For the same J , storage needed for WMSA
does not exceed that of polynomial estimation.

3.2. Channel Estimation with Polynomial Interpolation. The
second algorithm is based on polynomial interpolation (PI)
of the pilot symbols’ channel values to approximate fading.

As described in [22], the channel values are fit with a poly-
nomial model of order q over 2J slots (3). Approximation is
done by minimizing the mean-square error α based on the
pilot symbols Np in (4), Ns being the sum of Np pilot and Nd

data symbols. This translates to a Lagrangian interpolation
problem, solved with (5) in (6), where ηkl represents the
transpose of the pilot symbol vector constructed from 2J
slots:

ĝkl
((
m + j

)
Ns
) = q∑

i=0

αiψi
(
jNs
)
,

j = −J + 1, . . . , 0, . . . , J ,

ψi(n) � ni; i = 0, 1, . . . q,

(3)

α = arg min
α

J∑
j=−J+1

[
η̂kl
(
m + j

)− ĝkl
((
m + j

)
Ns+

Np

2

)]2

,

where α =
[
α0,α1, . . . ,αq

]T
,

(4)
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q
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...
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q

⎤
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2J×(q+1)

, (5)

α =
(
ΨTΨ

)−1
ΨT η̂kl(m). (6)

Finally, we calculate the channel coefficients for data
symbol n by using (7), the part of α not depending on slot
index m staying constant over the slot:

ĝkl(mNs + n) = ψ(n)Tα

n = Np + 1, . . . ,Ns

ψ(n) �
[
ψ0(n), . . . ,ψ2J−1(n)

]T
.

(7)
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Figure 2: PI details and complexity.

The performance and computational complexity of this
algorithm depend on the polynomial order q and the ana-
lyzed window of 2J slots. Figure 2 shows the subtasks of this
algorithm, their complexity, and storage requirements. The
computational hot-spot contains matrix inversion and mul-
tiplication; therefore, the complexity rises steeply with the
two main tunable parameters of the algorithm, q and J .
Other parameters, such as number of pilots in a slot Np,
number of total symbols Ns, add additional flexibility to the
algorithm. Most of the subtasks need to be recalculated for
each slot and some simpler tasks (e.g., multiply-accumulates)
are recalculated for every symbol. Having to multiply several
matrices and performing matrix inversion for each slot
makes this algorithm computationally very demanding. The
trade-off range of parameters for the polynomial order is
between 1 and 3, while the analyzed slot window 2J ranges
from J equal to 1 to 4. Data dependency within the algorithm
allows some of the storage to be reused, thus decreasing the
demand on memory.

4. Related Work

This section is divided into two parts: the architectural back-
ground of SDR and existing implementations for WCDMA
channel estimation.

4.1. Architectural Background. Over the years there have been
several approaches to SDR architectures based on different
architectural approaches. However, with the ever increasing
complexity of new wireless standards a migration from
flexible solutions towards clusters of inflexible ASICs can be
observed.

Processors are flexible enough to implement complete
standards. Architectures like SODA [3], EVP [4], and
Imagine [24] tackle performance and power demands by

employing high-speed vector processing or stream pro-
cessing. In these architectures data parallelism is explicitly
exploited. In SODA, a single instruction multiple data
(SIMD) architecture is employed, where one ARM processor
is coupled with 4 parallel processing elements. Tight control
of bit width and bandwidth fulfilled power and performance
requirements of two wireless standards. EVP takes a very
long instruction word (VLIW) front-end to control several
optimized SIMD units for specific SDR tasks, capable of
handling multiple standards. Imagine is a media stream pro-
cessor which has been retargeted for baseband processing in
works like [25], exploiting clusters of parallel processing ele-
ments controlled by a host processor.

Application specific instruction-set processors (ASIPs) sac-
rifice flexibility in order to gain enough performance to
tackle the more demanding applications from more recent
algorithms. The FlexiChaP architecture [5, 9] customizes the
pipeline, execution units, and data flow of a processor to
accommodate convolutional, turbo, and LDPC decoding
families, yielding an order of magnitude of speed-up com-
pared with fully flexible processors like SODA.

Coarse-grained reconfigurable architectures like ADRES
[26], RaPID [27], MorphoSys [28], RAW [29], Montium
[11], and IMEC coarse-grained accelerator [6] employ arrays
of data word level reconfigurable processing elements linked
by a reconfigurable network, which can be tailored to a wider
family of applications. Such coarse grained cores can cover a
wide flexibility/performance range between ASIC and ASIP,
like the application-specific FlexDet [10] or an ASIP-coupled
rASIP [30]. Although this class promises SDR implemen-
tation capability [31], the difficulty in programming and
exploring the design space of such architectures discourages
wide-spread adoption.

System-on-chip solutions like Sandbridge [7] are increas-
ingly popular, especially when high-performance scalable
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ASIC cores [8] are employed to construct SDR components.
Even hybrid approaches using accelerators and reconfig-
urable units are advocated [12, 32].

Field-programmable-gate-array- (FPGA-) based designs
for SDR, like the WARP board, are extensively used for pro-
totyping and research of new wireless standards and opti-
mizations [33, 34], but power requirements make it pro-
hibitive for end-products.

All these solutions except the ASIP/rASIP approach need
“manual design” on either the hardware or the programming
side or both. In this paper, our goal is to exploit off-shelf high
level synthesis tool flow to generate (a) architectures with
just-enough flexibility and (b) architectures with a coarse
grained configurable core for greater flexibility. The fast
exploration of flexibility and its effects on area and power
from a commercially available tool flow differentiates our
work from the existing approaches. Moreover, the proposed
guidelines show that with minor extensions the tool flow can
be exploited to generate also nonprocessor architectures.

4.2. WCDMA Implementations. Extensive research has been
conducted by Rajagopal et al. to implement channel estima-
tion and detection on stream processors and compare it with
traditional DSP implementations [25, 35, 36] and also a VLSI
implementation is conducted in [37], where area- and time-
driven implementations are explored.

In case of the implementation on DSP, it is shown that the
time required for computing channel estimation is 600 ms in
case of 32 users [35], which is far too slow for real-time
requirements. A dual-DSP and FPGA hybrid is shown to
reach the real-time requirements for up to 7 users; however,
the implementation also contains detection [36].

The implementation on the Imagine stream processor
simulator shows major improvement over the DSP, but only
the number of cycles could be extracted [25] which are
at least an order of magnitude higher than the number of
cycles reported in our work. Also, it is worth noting that the
stream processor architecture uses 8 clusters of 3 adders and
3 multipliers which not only implies large area but also great
power consumption. The computational hot-spots of ma-
trix-matrix multiplication are implemented as a series of
matrix-vector iterations which require a large number of
cycles in the stream processor also due to data load/stores
and movement.

For the VLSI implementation [37], the algorithm was
analyzed and redesigned for efficiency, considering fixed/
floating point representation trade-offs (up to 16 bits) and

their effect on bit error rate; however, no direct comparison
with our work could be made for several reasons: the design
has not been synthesized, operating frequency is assumed,
and area is expressed in terms of full adders, with no mention
of storage. Additionally, no power consumption data has
been reported.

5. High Level Design Methodology

In this section we present first the standard high-level synthe-
sis tool flow of Synopsys Processor Designer, followed by the
proposed guidelines and modifications for flexibility explo-
ration.

5.1. High Level Synthesis and the LISA Language. The lan-
guage for instruction-set architectures (LISA) is an architec-
ture description language (ADL) which is used for modeling
processors [20, 21]. This language is a high-level language
with C-like constructs and is part of the commercially
available Processor Designer tool-set from Synopsys. As
shown in Figure 3, the design flow with LISA ADL allows
generation of a synthesizable RTL description coupled with
automatic generation of a set of tools such as C/C++ com-
piler, architectural simulator, assembler, and linker.

The flow starts with an application described in C, which
is profiled to expose computational hot-spots and give
insight about what kind of structures would be needed in the
architecture. Usually, starting from a skeleton template pro-
cessor, the architecture is described using the LISA ADL,
which represents the main input to Processor Designer. This
generates the tool-suite specially tailored to the architecture,
like the simulator (step-by-step debugger), the compiler,
assembler, and linker to run the application on the simulator.

Iterative design based on the performance evaluation
allows incremental improvement on the LISA description,
finishing with the synthesizable RTL generation once condi-
tions are satisfied. If gate-level results are not satisfactory, the
design exploration iterations can continue.

The LISA language is built upon a C-like syntax, with
special structures to model timing and behavior of a proces-
sor; an example is shown in Listing 1. The OPERATION is the
key element to describe the instruction set, timing, opcode,
and behavior of the processor. This is a hierarchical con-
struct, where several OPERATIONs can describe one instruc-
tion partially, or mutually exclusive instructions within a tree
(e.g., alu32 instructions). For example, OPERATIONalu32
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RESOURCE {
REGISTER TClocked<int32> alu in1, alu in2, alu out;

PIPELINE pipe = {FETCH; DECODE; EXECUTE; WRITEBACK};
/∗...other resources ∗/

}
OPERATION alu32 IN pipe.DECODE {

DECLARE {
GROUP opcode= { add || sub || and || or || xor };
/∗... other declarations of operands∗/

}
CODING { 0b001 opcode source operands }
SYNTAX { opcode ∼" " destination "," source operands }
BEHAVIOR {
/∗ configure data path ∗/
OUT.dp mode = opcode;

}
/∗ activate operand selection and datapath execution ∗/
ACTIVATION { source operands, datapath }

}
//...other operations

OPERATION add IN pipe.EXECUTE {
//... declarations of operand types, etc

CODING { 0b00001 }
SYNTAX { "add" }
BEHAVIOR {

alu out = alu in1 + alu in2;

}
}

Listing 1: Example LISA code.

can contain child operations like add or sub, which in turn
can be parents to special cases like adding an immediate or
a register. Parent OPERATIONs can activate its children via
the ACTIVATION section. which assures correct timing across
pipeline stages. Within this construct, arbitrary assembler
syntax can be defined with SYNTAX, instruction encoding
with CODING, and instruction behavior with BEHAVIOR,
respectively. In the BEHAVIOR section, plain C code specifies
the arbitrary functionality of the instruction and supports
special data types such as bit [width] to allow close-to-
hardware specification. The RESOURCE section is where
global processor resources are defined such as memories,
registers, and signals, along with pipelines, and pipeline reg-
isters. With these constructs, a processor can be fully
described. For more information, please refer to [20].

5.2. Modeling Nonprocessor-Like Structures with LISA. LISA
is a powerful and flexible tool of modeling processors; how-
ever, due to the fine-grained instruction-based execution
there is far more flexibility available in the design than
required, which results in a performance decrease and energy
inefficiency. We propose to reduce flexibility inherent in
processors with architectures based on the following:

(i) weakly programmable, barely flexible structures, where
processor data path is replaced by individual custom
paths representing the data flow of the application,

mimicking ASIC-like structures with exact amount of
flexibility required;

(ii) coarse-grained reconfigurable structures which employ
an array of word-size granularity, parallel, reconfig-
urable execution units with configurable intercon-
nects for a greater amount of flexibility.

These two directions require no modification on the tra-
ditional LISA-based design flow, but they need a shift in
how the data path is viewed, structured, and modeled. We
propose modeling the application by use of algorithmic state
machine (ASM) charts and single qualifier double address
(SQDA) assembly, which expose the necessary information
to model ASIC-like structures, as well as coarse-grained
reconfigurable arrays. The proposed modeling steps replace
profiling in the traditional LISA tool flow (Figure 4). The
ASM chart exposes necessary hardware structures to the
designer from which the hardware description can be de-
duced, while the SQDA assembly captures application behav-
ior and translates it into executable binary with the help of
the automatically generated assembler and linker.

5.2.1. Modeling the Application with ASM Charts. Algorith-
mic state machine charts are commonly used for specifying
digital circuits. They have been proposed for use in HLS
earlier [38, 39] and also an ASM specification language
has been proposed [39], along with extensions, such as
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communication channels and user-defined operators. ASM
charts provide options both at algorithm and architectural
level for adding or removing flexibility to gain the needed
amount of weak programmability to accommodate the
application.

The ASM graph isolates the parts of the application
which are executed conditionally, shows the range of loop
iterations, and identifies possible parallel execution. The
graph can be constructed from the C implementation of the
application in a straightforward way, which in itself prepar-
titions the application (functions, loops, if-else statements,
etc). It is structured in a 3-tuple (D, Q, E) in which the source
statements can be grouped into data path nodes (D), qualifier
nodes (Q), and edges (E) connecting them. Figure 5 shows a
part of such a coarse graph and shows further possibilities for
finer partitioning.

When targeting ASIC-like behavior, the ASM chart is
divided into two groups: control and data execution. The con-
trol group contains all the qualifier nodes (Q-nodes), which
represent conditional execution statements, branching, and
(un)conditional jumps within the application. The data exe-
cution groups contain all the data computation nodes (D-
nodes) exposing parallelism and the actual required compu-
tation type and complexity.

The designer can choose to group Q and D nodes into
a larger group, which specializes the data path or can reduce
group size down to elementary operations to allow more
commonalities between groups, which adds flexibility of

implementation, resulting in trade-offs of speed, area and
power for flexibility. Parameterization of larger groups allows
a finer degree of flexibility control, specifying exactly what
parts are shared and which need custom data paths in hard-
ware. Each group of D-nodes can be directly coded in LISA
for custom ASIC-like execution paths. When combining
the Q-nodes, a finite state machine results, each Q group
representing a state, effectively controlling which D group is
activated at what time.

For instance, in Figure 5, node Q1 represents a state in
which the data group made of D2, an empty Q-node, and D4
is repeatedly executed until a condition is fulfilled, then D3
will be activated. The succession of D2 and D4 can be
implemented as one custom data path (less flexible) or two
separate data paths (more flexible allowing reuse of D2 or
D4).

The proposed use of ASM charts as an intermediate layer
in the design flow not only enhances the designer’s insight
to what hardware will be needed for the application, but also
helps mapping the application to the hardware.

Our experiments show that this process can be auto-
mated. The ASM chart is used as an intermediate repre-
sentation between the C source code and LISA description
allowing generation of all necessary intermediate files like
program assembly, ADL description. The automation of this
process completes the flow to provide a customizable C-to-
RTL flow completely under the control of the designer. For
details on the automatic generation and optimization of
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ASM charts and the generation of respective LISA descrip-
tions for ASIC synthesis we would kindly refer the reader to
our recent paper [40].

5.2.2. The SQDA Assembly. The single qualifier double
address (SQDA) assembly is used to abstract the Q and D
node pairs into a form that can be interpreted by an assem-
bler. SQDA needs to convey which Q-node activates which
D-nodes and what happens when the Q-node evaluates to
true or false, effectively encoding the edges (E) of the ASM
chart. SQDA is composed of 4 fields: the qualifier field
encodes the ID of the current Q-node, while the executed
path represents the D-nodes linked to the Q-node and the
two addresses pointing to the next qualifier in the execution
path, just like the edges E.

The example in Figure 6 shows the C code of a nested
loop, its SQDA translation, and the execution chart. SQDA
statement 1 has no “false” data path and goes directly to state-
ment 2 when false and exits the loop when true, executing

a conditional jump. Statement 2 keeps the state, repeatedly
firing transpose data path as long as cond mat width
evaluates to false then exits the inner iteration by going to
statement 1. The true and false jumps are addresses in the
program memory and can contain a self-reference, effectively
creating a state or can represent (un)conditional jumps to
other addresses implementing control flow. Using such a
construct, the complete application can be written in a
compact form, but also it can be parsed by the assembler
generated from the LISA description.

5.2.3. Extending ASM and SQDA for Coarse-Grained Recon-
figurability. With minor modifications, description of recon-
figurable structures is also possible using ASM and SQDA.
The additional flexibility gained from using coarse-grained
reconfigurable structures enhances resource share, execution
concurrency, and resource repurposing with a finer control
on how different applications map to hardware; however,
it is often difficult to describe and deduce the necessary
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configuration bits. Especially, mapping of a given application
to a reconfigurable structure poses a difficult challenge.

To easily code reconfigurability in LISA and keep track of
necessary configurations, we propose extending the ASM and
SQDA of the qNode tuple (Q, D, E) with a configuration node
(or C node), which is strongly coupled with a D-node in the
chart, as shown in Figure 7. The C nodes must contain the
configurations required to recreate the D-node and Q-node
equivalence in the reconfigurable structure. This process is
straightforward, because the D node contains the necessary
information about execution type that can be mapped to
one or more coarse-grained elements, along with the source
and destination routing information based on data locality
information of the edges E from/to that D node.

Similarly, the SQDA assembly must also contain the con-
figuration term (Figure 7) so that D and C nodes are activated
simultaneously with one assembly instruction. This allows
controlling of all configurable parts just by entering the
necessary configuration word in the application assembly
code, bringing the configuration information to assembly
level.

The standard LISA language has enough flexibility to
describe reconfigurable structures by exploiting the template
constructs for similar resources and operations. These con-
structs are similar to C++ templates, with the restriction that
template variables have to be constant at compile time. For
instance, when describing 8 identical processing elements,
only one element needs to be described in a templated form
(e.g., element〈0〉 and element〈7〉 are different (and static)
instances of the template OPERATIONelement〈id〉). Simi-
larly, routing interconnect can be described.

These steps enable simulation and debugging of the
reconfigurable core using the LISA design flow: assembler for
SQDA is generated automatically and the LISA debugger can
be used to simulate execution of the complete architecture.

Moreover, since the configuration data in the C nodes is
closely related to the D node contents, the configuration bits
can be generated internally by the D node, without exposing
the configuration bits to assembly level. Essentially using the
ASM chart information, a CGRA can be constructed which
self-generates its configuration bits just by taking one short
instruction. This reduces complexity of the assembly code
and the SQDA assembly of the application can remain
unmodified; however, flexibility is lost because certain con-
figuration combinations are available only when the instruc-
tion corresponding to the D node which generates them
is activated. In this work, full flexibility was exploited and
configuration words were provided via assembly code.

6. Architectural Exploration

From the architectural point of view, implementing the tar-
get algorithms is challenging because of the mixed internal
computational components: matrix inversion is a sequential
process where control flow dominates (partial pivoting and
backward substitution), while matrix multiplication is a
task where much parallelism is available. An architecture
that executes both very efficiently must be considered.

Two architectural classes are explored based on using the
methodology described in previous sections.

(i) Architecture 1. Just-enough flexibility is embedded to
support the control-flow dominant part and several
execution units are used to execute the parallel parts
of the algorithms efficiently.

(ii) Architecture 2. A coarse-grained reconfigurable core is
employed, which enhances parallel execution and
flexibility but keeps the flexible SQDA control-flow
front-end for the sequential parts.

Both architectures are implemented using fixed-point
arithmetic in the Q-format for 32 and 64-bits (Q16.15,
Q33.30).

6.1. Arch. 1: ASM-Based Design with Minimal Flexibility. In
order to find the minimum flexibility required to support
both algorithms in an efficient manner, a minimalistic step-
by-step construction approach of the architecture is per-
formed, starting from the ASM chart of both target algo-
rithms.

Partitioning. For the data path partitioning, first the basic
data path nodes from the ASM chart need to be identified.
Shared data path nodes and those that require flexibility are
individually modeled in LISA. Otherwise, the data path
nodes are merged with the preceding/succeeding data path
node. Once the complete algorithms are described individu-
ally using ASM charts, identification of common resources
and paths can be done. The aim is to reuse as many
resources as possible across the two algorithms. An example
partitioning is shown in Figure 8, taking a piece of the ASM
charts of both algorithms, partitioning the nodes and iden-
tifying common points. This step is essential for sharing
resources and creating parameterized custom D-node paths
which can support both algorithms.

Control Flow. The control flow essentially requires support
for if-else statement and loop statements. From the ASM
chart description, the control statements are identified which
require independent tuning. Otherwise, the if-else state-
ments are merged within a larger data path. Various step sizes
for the loop iterators are supported, allowing shared struc-
tures across different loops. In the control-flow implemen-
tation via SQDA, the program counter always jumps to the
new instruction address for both true and false outcomes of
the conditional checks. Program counter jumps should not
incur delay penalties; therefore, the condition check and
instruction fetch are part of the first pipeline stage. To allow a
direct coupling between the Q-node and D-nodes, they have
to be part of the same assembly instruction word. Due to a
limited number of assembly instructions required to pro-
gram the architecture, the program memory is quite small
in size (640 bits). Therefore, the instructions can be conve-
niently stored in register files constructed out of standard cell
memories (SCMs) offering fast asynchronous access.
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Figure 8: Partitioning of a piece of the ASM chart of the applications, reusing common points across applications and exploiting parallelism.

Load/Store and Pre-/Postprocessing. Analyzing the amounts
of data needed by the subtasks and usage patterns, optimal
load operations become coarse-grained operations com-
posed of multiple memory accesses, shuffling and selection
of data. This is problematic for an efficient implementation
with SRAMs with limited number of ports. We considered an
SCM-based implementation, which offers asynchronous
read and synchronous writes. This takes a heavy toll on area
but reveals the maximum possible runtime performance.
Therefore, data access addresses can be hard-coded for
each load/store pattern of an execution node, bundling the
complete load/store processes in sets of patterns tuned for the
respective data path. This not only renders data fetch address
computation unnecessary, but also avoids memory opera-
tions like matrix transpose.

Execution. Looking closer at the flexibility requirements,
that is, what kind of parameters the applications have and
how they influence the amount of processing, we can link
the complexity to the required execution resources. For PI,
the width of the matrix depends on the polynomial order +1,
while the height depends on 2J slots considered as observa-
tion window. A typical value for the polynomial order is 3
and for the slot window J is 2 and can change by factors of
2, yielding matrix operations of matrix size of 4 × 2, 4 × 4,
4×8. A flexible number of multiply-accumulate (MAC) units
allow flexibility exploration, so the design is easily adaptable
to energy, area, and timing needs. Thus, when using 4 MACs,
a 4 × 4 matrix multiplication can be done in 16 cycles.
Parameter changes result in a different number of iterations,
which translates in different counter increments in the con-
trol path. These units can be shared among subtasks which
use matrix multiplication and can accommodate other
multiplications and additions as needed. In matrix inversion,

division is also needed, so one divider completes the mini-
mum set of execution units. It must be noted that these MAC
units and the divider are executing all operations in Q-format
calculus, meaning that each multiplication or division is a
concatenation of operations packed into one unit. While
simplifying architectural description and programming, this
causes a very long critical path in the design.

The Resulting A1 Architecture. Managing to partition the
application into the qualifier (Q node), load (D node
preprocessing), execute (D-node computation), and store
(D-node postprocessing) the architecture became inherently
pipeline-able through 4 stages (SA, LD, EX, ST), shown in
Figure 9. Pipelines are inherently supported by LISA, gener-
ating control and pipeline registers automatically.

The SA stage takes care of instruction fetch, qualifier
evaluation and activates the respective data-path in the next
cycle. The data path associated with this instruction is acti-
vated in the next stage (next cycle). The LD/ST stages contain
memory access pattern sets, activated by the SA stage and
properly timed, thus loading/storing relevant operands to/
from execution unit input/output registers. Some LD/ST pat-
terns are parameterized, yielding different data for qualifiers
in different states. Compared with the control logic and
LD/ST pattern sets, execution units are much larger, even
for fixed point arithmetic. To reduce the area impact, these
units are shared across a large number of ASM D-nodes by
statically linking the units to the input and output pipeline
registers. By that, area consumption is increased in form of
multiplexing the data from register files to the input/output
points of MAC/DIV units. Data dependency is avoided by
performing data forwarding between EX, ST, and LD stages.
With most structures shared among the algorithm, few
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algorithm-specific structures remain in the form of specific
LD and ST operations, which translate in little area overhead.

6.2. Arch. 2: Coarse-Grained Reconfigurable Core

Considerations. To explore the effect of a flexible design,
allowing a finer control of efficient execution, the MAC units
are replaced by a reconfigurable core. The reason for explor-
ing such a structure is the fact that the Q-format MAC units
and DIV unit are extremely large and have long critical path,
as noted in the results section. Some operations, especially in
WMSA, use the large MAC unit although only plain addition
or subtraction is needed. Also, in the LD/ST pre- and
postprocessing stage some data paths included additional
adders and shifters, to accommodate required processing,
which resulted in increased energy needed per symbol. By
using a reconfigurable core, we aim to split the critical path of
the MAC units, while making pre- and postprocessing tasks
more efficient by using structures more suited for the task,
configuring each D-node with exactly the required structures
for its processing requirements. Therefore, the processing
element (PE) configuration is tailored to execute Q-format
arithmetic efficiently.

Partitioning. Except for the execution part, the considera-
tions for partitioning, control-flow and load/store processing
from the previous subsection apply also for such an archi-
tecture. The configurable core is defined using the extended
ASM modeling from the previous section.

The Resulting A2 Architecture. As shown in Figure 10, the
pipeline structure is heavily modified; now only 2 pipeline

stages remain, one for control (SA) and one for execution
(EX). The structure of the core in (EX) is based on expanding
the large Q-format MAC units from the previous architecture
giving a heterogeneous structure (Figure 10): the first col-
umn (PE0, 4, 8, 12) contains also multipliers beside adders
and shifters, the second and third columns contain adders
and shifters of double bit width (2 × Q, Q = 32, 64) while
the last column contains Q bit width adders and shifters. The
divider is added with a direct connection to the outputs of
elements 5 and 9, which are the endpoints when computing
the shifting and adding from Q-format division. A mesh
structure is sufficient to link these structures together and
link to the load/store patterns from/to memory. It must be
noted that, due to the way Q-format arithmetic works,
intermediate results within a multiplication or division are of
double bit width (2×Q), hence when forwarding results from
columns 0 to 1, 1 to 2, the interconnect must accommodate
double bit width 2×Q.

Reconfigurability and Interconnect. One processing element
can take input data from 12 sources, 6 for each input, as
shown in Figure 10. Besides the 4 neighboring PEs (north,
south, east, west), one PE can also take its own output register
as the source or take data from memory. The wires for each
are directly connected to the output registers of the respective
neighboring nodes (essentially creating a 2D pipeline within
the array), or a certain load pattern in case of the memory
links. PEs on the border of the array take the load pattern as
a source, when a neighbor in that direction does not exist
(e.g., PE0 north and west links are the same with the memory
link). The output registers are also directly connected to
certain store patterns. Depending on the application, the
load/store patterns may or may not connect to each PE, as
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Figure 10: The coarse-grained reconfigurable core-based flexible architecture: 2-stage main pipeline with SA and EX, 4 × 4 reconfigurable
core with mesh interconnect, and a zoom-in to one of the elements of the core.

the data can be processed by a PE chain before being ready
for storage.

There are 3 configuration bits for each source multi-
plexer, and 3 bits for the opcode selector. In LISA this
is described as a template OPERATION〈〉 for each element,
which takes the data on input wires in A and in B and
outputs to the output register, considering the opcode for
the execution. The 6 interconnect links for each source
are modeled also with template OPERATION〈〉s which are
activated based on the configuration bits. Thus, to com-
pletely configure one element, 9 configuration bits are
needed, resulting in 144 configuration bits for the entire
reconfigurable core of 4 × 4 elements. These bits are stored
directly in the pipeline register by the SA stage, right after
reading the instruction word.

Programming View and Mapping. The instruction word con-
tains also the decoding bits of the load/store patterns
(instructions), 6 bits for each, enabling a maximum of 128
load and store patterns. The SA qualifiers are replaced by
five timers, essentially configurable counters which decide for
how many cycles one SQDA instruction word holds true. The
complete SQDA instruction word holds thus qualifier encod-
ing (4 bits) immediate true and false addresses (2 × 8 bits),
the load and store encoding (2×6 bits) and the configuration
word (144 bits) resulting in a 176-bit instruction word,
closely following the modified SQDA specified in the ASM-
based flow.

Mapping the application from the ASM chart is done in
the most efficient way allowed by the core’s flexibility. The C
node of one data path is translated into the source A and B
configuration bits, and the D node contents into the opcode.
When one D node was created by merging smaller D nodes,

it will be mapped to several PEs spatially and/or temporally
based on input/output locations, dependencies, or avail-
able PEs. This will create SQDA instruction words with
a combination of qualifier/no qualifier, load/no load, store/
no store, configuration word or empty configuration (NOP,
the array is not used). The load/store patterns are now
exclusively signal assignments from/to storage to/from input/
output, without any data processing, as all data process-
ing happens inside the array. Some of these can con-
trol qualifier status (reset/set the timers).

7. Evaluation

We synthesized the generated RTL descriptions of 18 differ-
ent design points for Architecture 1 (A1), 9 design points
for Architecture 2 (A2) using Synopsys DC D-2010-SP3. For
all designs, Faraday 90 nm standard cell technology library
was targeted, with clock-gating and operand isolation power
optimizations enabled and annotating RTL switching activity
for Power Compiler. Since synthesizable RTL code is gen-
erated by the tool flow, FPGA-based implementations may
also be targeted; however, standard cell library was chosen to
provide a clearer comparison for area and power.

A1 template required 2 k lines of code in LISA for 61
operations and has 40 k lines of generated Verilog code. A2
has a larger LISA description of 4.4 k lines for a total of
98 operation instances (expanding the templates), which
generates 51 k lines of Verilog code.

In A1, partitioning of PI with J = 2 and q = 3 yielded 12
qualifiers and 34 data access patterns, requiring 39 SQDA
instructions. WMSA partitioning with Np = 2 and J = 2
resulted in 1 extra qualifier and 17 data access patterns, coded
in 13 SQDA instructions.
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Figure 11: 32-bit: dedicated A1 versus hybrid A1 energy consumption normalized to worst case. WMSA (a) and PI (b).
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Figure 12: 64-bit: dedicated A1 versus hybrid A1 energy consumption normalized to worst case. WMSA (a) and PI (b).

In the case of A2, with the same algorithmic parameters,
polynomial mapping yielded 36 access patterns, 7 qualifiers
and has an assembly program of 102 instructions. WMSA
yielded 16 access patterns with the same qualifiers (reconfig-
ured) and 50 SQDA instructions.

First, design points across an architectural class are
compared, then cross-class comparisons are presented with
the following convention for the graphs:

arch.class “:”algorithm “ ”designpointspecialty

For instance, A1 : wmsa 1mac means first architecture
class (“just-enough” flexibility), supporting only WMSA and
having only one MAC unit, while A2 : both 25 means sec-
ond architecture class (coarse-grained core) supporting both
algorithms, running at 25 MHz.

All results are for a complete algorithm execution for a
slot of 10 symbols for the respective application. Slot

structure was comprised of 2 pilot symbols and 8 data
symbols, while J = 2 for both algorithms, q = 3 for poly-
nomial.

7.1. Intra-Architecture Class Design Point Comparison

7.1.1. Architecture 1. A1 design points resulted from combin-
ing 1, 2, or 4 MAC units, and 32/64-bit versions for ded-
icated structures for one algorithm, then for the hybrid
architecture to explore the design for low power or low
energy, while maintaining minimum flexibility. Comparing
the dedicated design points for one algorithm with the ones
supporting both, it can be noted that for A1, when running
PI, the combined flexible architecture supporting both algo-
rithms comes close (≤5%) to the energy per symbol of the
respective dedicated architecture as shown in Figures 11 and
12. When the combined architecture is running WMSA, it
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Figure 13: Energy savings in percent for hybrid A1, during adaptive switching (32-bit (a), 64-bit (b)).

uses comparable or less energy (−5 ∼ 8%) compared to the
dedicated WMSA architecture, explained by the fact that
with some partitioning, WMSA may be executed more
efficiently on the structures for PI, leading to energy saving
without much overhead. For all design points, the Q-format
divider was the timing bottleneck, limiting frequency to
25 MHz. It must be noted that in the implementation, one
can easily switch between these design points in order to
seamlessly trade off performance against energy, power, or
runtime.

The architectural flexibility can be utilized within one
algorithm or across algorithms depending on performance
constraints. Varying execution unit count yields up to 20%
energy and up to 50% power savings for PI, while for WMSA
up to 14% energy and up to 38% power can be saved.
Figures 11 and 12 show the relative energy per symbol dif-
ference across design points for one application. For WMSA
the values are within 12%; however, the dedicated 2 MAC
architecture is most efficient. For polynomial, both the
dedicated and the combined ones have similar values.

The execution time per slot ranges between 31–78 μsec
for PI and 7–11 μsec for WMSA, while WCDMA hard dead-
line is 670 μsec, allowing extra savings by frequency scaling,
and so forth.

Figure 13 illustrates how much energy is saved when
adapting to better signal conditions by switching between
the two algorithms: 10–41% power and 81–88% energy. The
savings stay consistent across design points. For switching
between the algorithms, one only needs to load the respective
instructions from the program memory. On top of this, the
algorithms can be adapted further internally by fine-tuning
the points typical of WMSA and PI.

For area critical situations, the architecture template can
be easily retargeted, for example, the 1 MAC unit design
executes in double number of execution cycles of the 4 MAC
design, but saves 36% area. The area difference between the

dedicated PI architecture and the combined one over the
design points is between 5.69% and 12.8%, which is negli-
gible when compared with the joint area overhead of two
dedicated structures (205%–212%), even more so when con-
sidering the energy savings.

Unfortunately, we could not compare our results with the
existing implementation in [37] due to the reasons stated in
Section 4.

7.1.2. Architecture 2. A2 design points have been constructed
from 32/64-bit versions of the architecture tailored for each
algorithm and the hybrid version. To further analyze how
the coarse-grained core affects energy, we synthesized for
different frequencies, showing that frequency closely affects
the energy per symbol value. When the frequency is low,
the algorithms take longer time to finish, even if they have
lower total power; consequently, the resulting energy value
is high. Near critical-path operation severely impacts power
consumption and area. This is especially the case in the 64-bit
design (Figure 15).

Different mapping choices did not affect the power
values, since the employed mapping strategy was to use the
closest element which matches the needed operation. During
mapping, no congestion was observed, for two reasons:
(1) ASM chart-based mapping separates the execution in
independent, parallel threads and not many threads are com-
peting for the same processing element (except the divider
in WMSA for the filter coefficient calculus); (2) the matrix
inversion processing is sequential, the data dependencies of
the inner loops limit parallelization in a natural way, while
matrix multiplication exploits 100% array usage in a well-
defined manner.

We have compared the results in a similar way as for A1,
shown in Figures 14 and 15 detailed as follows:

(i) 32-bit WMSA (Figure 14(a)): as frequency increases,
the energy reductions scale linearly with throughput;
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Figure 14: 32-bit: dedicated A2 versus hybrid A2 energy consumption normalized to worst case. WMSA (a) and PI (b).
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Figure 15: 64-bit: dedicated A2 versus hybrid A2 energy consumption normalized to worst case. WMSA (a) and PI (b).

however, the combined architecture has around 10%
lower energy savings compared with the dedicated
structure,

(ii) 32-bit PI (Figure 14(b)): energy reductions are simi-
lar; the difference is only around 5%,

(iii) 64-bit WMSA (Figure 15(a)): due to the high power
consumption as frequency increases, the increased
throughput cannot compensate enough, and the
energy saving hits a limit as maximum frequency is
reached. Also the combined architecture fares 10%
worse when compared with the dedicated architec-
ture when it comes to energy savings,

(iv) 64-bit PI (Figure 15(b)): when scaling frequency
there is an inflexion point, where best energy savings
are attained and for which similar savings of the ded-
icated structure can be reached (within 5%). Similar

to WMSA, near maximum operating frequency the
savings diminish (10% difference).

For the scenario that A2 adapts to better signal condi-
tions, 20–44% power reduction and more than 93–97%
energy reduction can be attained, as shown in Figure 16.
Adaptation is similar to A1: only the respective assembly
program needs to be executed for a switch from PI to WMSA.
However, a higher flexibility allows for a finer control and
usage of the structures, improving energy save.

7.2. Inter-Architecture Class Comparison and Discussion.
When comparing across architectures the first point to note
is the significant difference in area (Figures 20 and 21). Due
to the use of the coarse-grained core, A2 has almost always a
larger area than A1 at comparable design points. This can be
explained by the fact that due to the Q-format arithmetic, the
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Figure 16: Energy savings in percent for A2, during adaptive switching at different operating frequencies (32-bit (a), 64-bit (b)).
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Figure 17: 32-bit: Energy savings in percent for A1 versus A2, normalized to worst case. WMSA (a), PI (b).
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Figure 18: 64-bit WMSA: Energy savings in percent for A1 versus A2, normalized to worst case.
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Figure 19: 64-bit PI: energy savings in percent for A1 versus A2, normalized to worst case.
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Figure 20: Area across all A1 and A2 design points for 32-bit designs.
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Figure 21: Area across all A1 and A2 design points for 64-bit designs.
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coarse-grained core is forced to use interconnect structures of
double bit width, incurring not only a greater area use, but
also limiting operating frequency. Additionally, the bloated
interconnect incurs extra power consumption, which cannot
be neglected at higher bit widths.

The second observation to note is the large difference
between the energy values for WMSA, A2 having a far better
efficiency (Figures 17(a) and 18). This is due to having
WMSA processing done on the smallest processing elements
in A2, and not using the big MAC unit for plain additions, as
is the case in A1.

Energy per symbol comparison of the two classes is as
follows:

(i) for 32-bit WMSA (Figure 17(a)), A2 running at
100 MHz has much better energy values (≥ 3× less)
than all design points of A1,

(ii) for 32-bit PI (Figure 17(b)), A2 performance is
comparable with that of A1 (≤ 3% difference),

(iii) for 64-bit WMSA (Figure 18), A2 has much better
energy (up to 4× less than A1),

(iv) for 64-bit PI (Figure 19), A2 has much worse energy
values (80% increase over A1). In this case, the power
overhead of the large bit widths of the interconnect
structure and the elements itself cannot be covered by
an increase in throughput any more.

For small bit widths, A2 would be best for implementa-
tion, as the energy saves for the adaptive switching are much
greater than in the case of A1. A1 must be chosen when
predominantly bad signal conditions are expected and high
precision hardware is needed.

Area evaluation is shown in Figures 20 and 21 and dis-
cussed as follows:

(i) due to area values spiking at higher frequencies, con-
sidering the energy values, the best frequency for A2
32-bits is 100 MHz and A2 64-bits is 35 MHz,

(ii) 32-bit, 64-bit WMSA, PI: A1 has much less area than
A2 for dedicated structures,

(iii) 32-bit, 64-bit combined structures: area becomes
comparable, with a difference of only 18.07 kGE for
32-bits and a smaller area (by 0.02 kGE) for 64-bits.
At very low operating frequencies A2 area values are
getting below the ones for A1 in case of PI, but energy
efficiency is much worse than that of A1 at those
points.

From the flexibility point of view, both A1 and A2 offer
the necessary adaptiveness to accommodate the useful range
of parameters of both algorithms. Both architectures can
be directly tuned from assembly program level (configuring
qualifiers, size of the sliding window, polynomial order,
number of pilots, etc).

A2, however, due to its coarse grained core, has more
flexibility and resources than those strictly needed for the
two algorithms; hence, it can allow a more efficient execution
by better tailoring the hardware to the application. Also, A2

can also be programmed to perform other external com-
putations, on the idle elements during channel estimation
processing. Given the fact that only a fraction of the hard
deadline imposed by the WCDMA standard is needed to
complete processing, it may be even possible to use the same
structure for processing other blocks in the WCDMA receiver
chain with some extensions to the load/store patterns from a
new ASM chart for the new block. This would just create a
new assembly program of the new block, which can be loaded
after channel estimation processing is done, or a new hybrid
one can be created.

Such flexibility can be a great advantage when aiming
SDR blocks.

8. Conclusion and Outlook

In the context of software defined radio, an analysis on how
flexibility can influence area and power consumption has
been conducted, using two WCDMA channel estimation
algorithms with sufficient performance and complexity dif-
ference. Within a scenario of saving energy when switching
from a complex high-performance algorithm to an inferior
less complex algorithm during operation in favorable chan-
nel conditions, we have shown that a higher degree of
flexibility can yield significant energy savings (up to 97%);
however, considerable savings (of up to 88%) can still be
attained when carefully designing for the exact amount of
flexibility required to support both algorithms. The evalu-
ation across 25 design points and two architectural classes of
different flexibility experimentally supports our findings.

Furthermore, we have proposed design guidelines to
adapt and exploit a commercially available high-level syn-
thesis tool, encouraging designers to explore flexibility of
different architectural classes for SDR implementations.

For future work, we intend to apply the insights gained
for designing blocks for newest LTE wireless standards.
Design methodology and architectures using coarse-grained
reconfigurable cores must be further explored, to open the
door towards architectures which provide enough adaptabil-
ity and flexibility to realize building blocks for a true SDR
system.
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