Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2013, Article ID 140234, 9 pages
http://dx.doi.org/10.1155/2013/140234

Research Article

Hindawi

Design and Implementation of an Embedded NIOS II System for

JPEG2000 Tier II Encoding

John M. McNichols,! Eric J. Balster,! William F. Turri,” and Kerry L. Hill®

! Department of Electrical and Computer Engineering, University of Dayton, Kettering Laboratory, Room 341,

300 College Park, Dayton, OH 45469, USA

2 University of Dayton Research Institute, 300 College Park, Dayton, OH 45469, USA
3 Air Force Research Laboratory Sensors Directorate, Wright-Patterson Air Force Base, OH, USA

Correspondence should be addressed to Eric J. Balster; ebalsterl@udayton.edu

Received 12 February 2013; Revised 6 May 2013; Accepted 29 May 2013

Academic Editor: René Cumplido

Copyright © 2013 John M. McNichols et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

This paper presents a novel implementation of the JPEG2000 standard as a system on a chip (SoC). While most of the research
in this field centers on acceleration of the EBCOT Tier I encoder, this work focuses on an embedded solution for EBCOT Tier II.
Specifically, this paper proposes using an embedded softcore processor to perform Tier II processing as the back end of an encoding
pipeline. The Altera NIOS IT processor is chosen for the implementation and is coupled with existing embedded processing modules
to realize a fully embedded JPEG2000 encoder. The design is synthesized on a Stratix IV FPGA and is shown to out perform other
comparable SoC implementations by 39% in computation time.

1. Introduction

One of the most recent image compression schemes,
JPEG2000, offers a wide range of features and flexibility
over the existing JPEG standard [1]. A block diagram of the
JPEG2000 encoder is shown in Figure 1. The encoder consists
of two main parts: the discrete wavelet transform (DWT)
and the embedded block coding with optimal truncation
(EBCOT) coder. The wavelet transform takes an image in
the spatial domain and transforms it to the wavelet domain.
The wavelet domain consists of a frequency representation
with the addition of spatial information as well. Once the
wavelet transform is completed, the coefficients are scalar
quantized if lossy compression is chosen. The quantized
wavelet coeflicients are then entropy encoded using EBCOT,
a two-tier coding algorithm which first divides each wavelet
subband into code blocks (typically 32 x 32 or 64 x 64).
EBCOT is composed of Tier I and Tier II encoders. Tier I
produces independent embedded bitstreams for each code
block using a context-based arithmetic encoder (MQ coder),
the context for which is generated by the bit-plane coder. Tier

II then reorders the individual compressed bitstreams and
applies rate-distortion slope optimization to form the final
JPEG2000 bitstream.

While JPEG2000 offers a number of improvements and
additional features over JPEG and other image encoding
standards, these benefits come with much greater com-
putational cost. JPEG2000 is approximately 4 times more
computationally expensive than the original JPEG [2]. Due to
these high costs, it becomes impractical to utilize JPEG2000
in applications which require real-time processing of high-
resolution images, such as wide area imagery or medical
imagery. To solve this problem, developers continue to
turn to hardware implementations to yield the throughput
necessary to meet frame rates for high-resolution imagery
[3]. Hardware solutions are able to outperform software
implemenations through the use of parallel processing and
custom designed hardware. A hardware implementation is
capable of leveraging the inherent parallelism of the EBCOT
block coders to achieve large increases in throughput over
typical software implementations. Not only do hardware
solutions offer dramatic increases in throughput over their



software counterparts, but they also free host processors to
handle other critical tasks.

Most embedded JPEG2000 solutions focus on perfor-
mance increases in the EBCOT Tier I, either through novel
architectures or simply by leveraging the parallelism of
multiple block coders. Research focuses on EBCOT Tier
I improvement because this is the most computationally
expensive module of JPEG2000, as shown in [4, 5].

In [6, 7], architectures for the MQ coder are proposed
which consume two context-data (C x D) pairs per clock
cycle. Reference [4] takes a different approach, increasing per-
formance by using column-based operation combined with
pixel and group-of-column skipping techniques. A number of
implementations focus on very large-scale integration (VLSI)
architectures for JPEG2000. Some, such as [3], focus on
high-speed VLSI implementations by utilizing pass-parallel
EBCOT implementations. Others, such as [8], attempt to
reduce the on-chip memory requirements for EBCOT Tier
I and Tier II while also improving performance.

However, most of these implementations fail to mention
the final piece of JPEG2000 which is the formation of the full
bitstream, EBCOT Tier II. Generally it is not mentioned at all
and assumed to be left for the host processor to handle in soft-
ware. References [8, 9] propose an architecture for EBCOT
Tier II which is focused on reducing memory requirements
for bitstream buffering but do not offer high performance.
Instead, we propose the use of a softcore coprocessor to serve
as a Tier II processing module situated at the back end of an
encoding pipeline to realize a fully embedded encoder. The
softcore coprocessor offers more flexibility than [8, 9], due to
the soft nature of the processor, while also offering adequate
performance to meet the demands of high-resolution image
compression.

This work couples an Altera NIOS II processor [10]
with existing, efficient, and hardware implementations of the
other various processing units to create a fully embedded
JPEG2000 system on a chip (SoC). The hardware is designed
as a tile encoding pipeline in order to efficiently encode high-
resolution imagery. The NIOS II processor interfaces with
a FIFO containing the independent code block bitstreams
produced by a variable number of hardware block coders in
order to create the final bitstream. The NIOS II processor
handles all of the Tier I processing as well as transferring data
back to the host processor.

While similar to [5] in the use of an Altera NIOS II
processor, the proposed implementation utilizes the proces-
sor as a separate processing module as opposed to a system
scheduler/device arbiter. This avoids the scheduling overhead
associated with such an implementation while also prevent-
ing the other processing modules from becoming limited
by the throughput of the NIOS II system. Additionally, the
simplicity of using the NIOS II as a separate processing unit
yields a system which is much easier to debug and test, since
difficulty in debugging in [5] prevented the system from
actually being implemented on an FPGA.

The rest of this paper is organized as follows. Section 2
gives a brief overview of the FPGA-based processing
architectures used for the front end of the processing
pipeline. Section 3 details the selected target platform and

International Journal of Reconfigurable Computing

the selection of the coprocessor before giving a detailed
description of the implementation of the SoC. Section 4
analyzes the performance of the implemented system and
discusses the impact of increasing numbers of parallel block
coders before comparing the results to other SoC implemen-
tations. Finally, Section 5 concludes the paper.

2. JPEG2000 Hardware Modules

2.1. Discrete Wavelet Transform/Quantization. The proposed
system implementation uses a lossy CDF 9/7 wavelet trans-
form [11]. The lossy wavelet transform is chosen as it offers
additional compression gain over the lossless implementation
while still maintaining comparable image quality at lower
compression ratios. This implementation is an integer-based
approach, utilizing the CDF 9/7 wavelet filter to trans-
form integer input pixels into scaled fixed-point wavelet
coeflicients. These scaled fixed-point coeflicients are then
quantized back into integers prior to compression by EBCOT.
Running at a clock rate of 100 MHz, this DWT imple-
mentation consumes two pixels per clock cycle and takes
approximately 7 ms to perform a standard 5-level transform
ona 1024 x 1024 tile.

2.2. EBCOT Tier I. EBCOT Tier I is comprised of two
main processing modules: the bit-plane coder (BPC) and the
MQ coder [1]. The BPC for the proposed implementation
is a generic implementation, conforming to the standard,
and operates at a clock speed of 100 MHz. While most
implementations of the BPC aim to maximize throughput,
this design instead focuses on reducing resource utilization
and does not make use of any of the optimization techniques
proposed in [3, 5-7]. Instead, minimal resource usage is
achieved by consolidating the number of memory devices
necessary to store code block state data. The MQ coder
follows the same design principle as the BPC, with a focus on
minimizing hardware resource usage. The MQ coder runs at
a clock rate of 200 MHz. The design goal of both the BPC and
MQ coders is to maximize the number of Tier I coders which
can fit on a device. By achieving high clock rates through
resource optimized designs, a Stratix IV device with over
90% resource utilization is capable of yielding throughput in
excess of 180 MBytes per second when multiple parallel Tier
I coders are coupled with three DWT targets.

3. Proposed System Implementation

3.1 Target Platform. The target platform for the JPEG2000
SoC is a Stratix IV PCle x4 development board from GiDEL
[12]. The platform selected features a Stratix IV E 530
FPGA with a 512 MB DDR2 memory bank and two DDR2
SODIMMs with up to 4GB each. The platform has two
additional ports for expansion daughter cards offered from
GiDEL. A block diagram of the selected platform can be
seen in Figure 2. The high performance offered from a PCle
based platform coupled with the flexibility and size of an
Altera Stratix IV FPGA provides an ideal platform capable
of meeting the demands of a JPEG2000 SoC [12].



International Journal of Reconfigurable Computing

Image

Compressed
bitstream

FIGURE 1: Block diagram of JPEG2000 encoder.

Bank C

PSDB
connector
(J10)
General purpose
1/Os connector
Js)
JTAG
connector

Bank B

PSDB
connector

aJ7)

Power
connector

FIGURE 2: Block diagram of target platform.

3.2. Selection of Softcore Coprocessor. The softcore coproces-
sor chosen is the NIOS II processing core from Altera [10].
The NIOS II processor features a 32-bit reduced instruction
set computing (RISC) architecture that is highly configurable,
capable of supporting up to 256 custom instructions and
clock speeds near 300 MHz on a Stratix IV device. The NIOS
IT processor system consists of a NIOS II processor core
coupled with on-chip peripherals (DMA controllers, timers,
and custom HW interfaces), on-chip memory as well as inter-
faces to off-chip memory. All of the various peripherals and
memories are managed through the Avalon switching fabric
which serves as an arbiter between the various masters and
slaves within a system. The Avalon switching fabric allows
multiple data/instruction masters to communicate directly
with multiple slaves devices simultaneously, assuming no two

masters are attempting to communicate with the same slave.
The NIOS II processing core is chosen given high degree of
flexibility and ability to support custom peripherals as well as
built-in support for embedded C/C++ development using the
NIOS II software development suite [10, 13].

3.3. Hardware Implementation. In order to realize a full
JPEG2000 SoC, the EBCOT Tier II processing module must
reside in hardware. Most research on JPEG2000 neglects to
mention the implementation of Tier II, presumably leaving
it to be handled by the host processor. This paper proposes
a novel solution to this gap by leveraging an embedded
softcore coprocessor to serve as an embedded EBCOT Tier II
processing module. While similar in nature to the proposed
architecture in [5], which utilizes the NIOS II system as an



DMA
from host

International Journal of Reconfigurable Computing

FIGURE 3: Data flow of proposed JPEG2000 SoC.

arbiter between different hardware modules, this architecture
treats the coprocessor as a separate processing module.

The proposed JPEG2000 SoC is implemented on the
target platform by integrating the NIOS II processing unit
with existing embedded JPEG2000 processing modules. The
existing design features a pipelined DWT architecture cou-
pled with a variable number of parallel EBCOT Tier I block
coders. The details of the specific architecture are given in
Section 2. The coprocessor serves as the final stage of the
pipeline, taking the code block streams from the block coders
and forming the final JPEG2000 filestream. This eliminates
the scheduling overhead associated with arbitration between
the various processing modules as in [5]. The dataflow of the
proposed implementation can be seen in Figure 3.

Prior to transferring the raw image to the target device,
the image is padded and divided into tiles. Tiles are then
sent to the target via DMA over the PCle bus and processed
sequentially. Each stage of the pipeline begins once a single
tile has been received from the previous stage. Tiling the
image reduces the memory requirements for each stage in
the pipeline since each stage will need enough memory to
store a single tile. Additionally, tile processing enables the
use of distributed architectures where a single host leverages
multiple target devices to process the tiles of a single image in
parallel.

The NIOS II processing system creates the independent
tile stream for each tile it receives from the pipeline before
placing it in a FIFO for DMA back to the host via PCle.
The host system receives the tile streams from the device and
applies the main headers to form a valid JPEG2000 filestream.
While the NIOS II could easily be configured to add the main
headers, this task is left for the host processor in order to
maintain architectural flexibility in the event that more target
devices are added to the system.

3.4. NIOS II System Implementation. This NIOS II processor
operates within the entity created by Alteras System on a
Programmable Chip (SoPC) builder [14]. This tool allows
for seamless integration between the softcore processor and
other hardware peripherals through the Avalon switching

fabric. In addition, the SoPC builder allows for integration
of multiple processing blocks running at different clock rates,
with SoPC handling all of the arbitration between clock
domains. The SoPC system used in the proposed design
features a NIOS II fast core, running at a clock rate of
290 MHz. This NIOS II core is the fastest of the three offerings
from Altera, offering high clock speeds and a number of
additional features over the other two cores. A block diagram
showing the implemented NIOS II system is shown in
Figure 4. The clock rates and interface types of all modules
shown are detailed in Table 1.

The NIOS II core is coupled with three different memory
controllers. One is a DDRII SDRAM controller from Altera,
running at 200 MHz, which interfaces directly with one of the
two DDRII SODIMMs available on the target platform (Bank
B or C) seen in Figure 2. The SDRAM serves two functions in
the system. First, the SDRAM address space serves as a buffer
to store incoming code blocks which are read out of the code
block FIFO seen in Figure 3. Referred to as the input data
buffer, code blocks are buffered in this address space prior to
processing by Tier II. Second, the SDRAM address space is
used to store the completed JPEG2000 filestream for each tile
prior to transfer back to the host. This is referred to as the
filestream buffer in subsequent sections.

Besides the off-chip SDRAM, there are also two separate
on-chip memory controllers, one which controls a 50 kByte
bank and the other which controls a 30 kByte bank. The
50 kByte bank is used to hold the executable code and data
sections in addition to the program stack and heap during
execution. The other 30 kByte bank is configured as “Tightly
Coupled Data” memory. The details of this implementation
are elaborated on in Section 3.5. Both of the on-chip memory
banks are configured to run on the same clock as the NIOS II
core.

Two custom interfaces are designed to communicate with
the code block and filestream FIFOs as seen in Figure 3. These
interfaces are used to couple the code block and filestream
FIFOs with two DMA controllers to allow streaming of data
in/out of the two FIFOs. Each DMA controller is comprised
of two modules: a dispatcher and a read/write master. The



International Journal of Reconfigurable Computing

DDRII interface
DDRII SDRAM On-chip Performance
high memory counters
performance (50kBytes) (x2)
controller

*

Tightly coupled
data RAM
(30kBytes)

NIOS 11/f

Avalon switching fabric

DMA IN
dispatcher

pin

DMA read
master

DMA write
master

DMA IN
dispatcher

JPEG2000
Tile-stream OUT

Compressed
code blocks IN

FIGURE 4: Block diagram of implemented NIOS II SoPC system.

TaBLE 1: Hardware modules present in the NIOS II SoPC system.

Component Clock (MHz) Interface

NIOS II/f 290 Memory mapped
DDRII SDRAM controller 200 Memory mapped
On-chip RAM 290 Memory mapped
Tightly-coupled RAM 290 Memory mapped
DMA dispatcher (IN) 100 Memory mapped, streaming
DMA write master 100 Memory mapped, streaming
DMA dispatcher (OUT) 200 Memory mapped, streaming
DMA read master 200 Memory mapped, streaming
Feedback/control PIOs 100 Memory mapped
Performance counters 290 Memory mapped

dispatcher receives read/write commands from the system as
amemory mapped slave. These commands are then passed to
the connected read/write master which performs the memory
transfer. This interaction is shown in Figure 4. Since the
read/write masters are separate modules, the processor is free
to complete other tasks while the data transfer is pending.

The SoPC system also has a number of parallel I/O
(PIO) ports which provide direct communication with the
hardware. The PIOs present in the system serve two main
functions. First, PIOs enable the system to receive interrupts
from the Tier I module upon completion of a tile. Second,
PIOs are used to read/write registers which are in turn



accessed by the host device for control or feedback. All of the
PIOs operate at the same 100 MHz clock rate.

Finally, there are two performance counters, clocked at
290 MHz, present in the system. These counters are used
to profile the system performance, the results of which are
detailed in Section 3.5. Two counters are necessary to enable
profiling of nested functions.

3.5. Optimizations. A number of optimizations are made to
the system in order to increase throughput. As the implemen-
tation couples a coprocessor with existing, optimized, and
processing modules, these optimizations are focused on the
NIOS II processing core. Figure 5 shows the impact of these
optimizations on the processing time for a single 1024 x 1024
tile. Optimizations are applied on top of each other in a
sequential manner to demonstrate the combined impact of all
optimizations on the average processing time. Therefore, the
final data point is the average processing time resulting from
the combination of all of the previous optimizations. High-
resolution images are compressed and the Tier II processing
time is then divided by the number of tiles to yield an average
Tier IT processing time.

Typically, floating point operations are much more com-
putationally expensive than integer operations. This expense
is compounded when using a RISC architecture such as the
NIOS II processor. While most of the Tier II algorithm is
performed using integer calculations, a logarithm is required
to calculate the length of a codeword segment. Codeword
segments are used to signal the number of bytes contributed
to a packet by a code block. The number of bits required for
to store the codeword is given by

bits = Lblock + |log, (P)], (1)

where L block is the state variable for the current code block
and P is the number of coding passes contributed to the
current code block [1]. As this calculation is necessary for
each code block, the computational cost is high. Software
profiling reveals that the calculation of (1) takes over 70% of
the total Tier II processing time on the NIOS II processor.

Two approaches are taken to reduce the computation cost
of this calculation. The NIOS II processing core supports
the addition of custom instructions, such as user created
HW implementations of specific operations. Additionally, the
tools include a number of premade instructions, including
custom floating point (FP) instructions [10, 15]. The custom
FP hardware is enabled on the NIOS II core, and significant
improvement is seen in system throughput, yielding a 66%
decrease in processing time. However, this calculation still
takes over 35% of the total Tier II time.

To further reduce the processing burden of the binary
logarithm, the standard library call is replaced with a cus-
tom implementation, referred to as a lookup table (LUT)
implementation. The binary logarithm of a number can be
thought of as the number of bits required to represent that
number in binary. Since only the floored result is used, this
calculation can be performed using only logical right shifts
and addition. Pseudocode for the algorithm is shown in

International Journal of Reconfigurable Computing

Algorithm 1. The implementation described here is for a 32-
bit unsigned integer and increments the result based on a
series of comparisons to powers of two. First, if the input’s
most significant bit (MSB) is in the upper 16 bits, the output
is incremented by 16, since at least 16 bits are required to
represent the input. The upper 16 bits of the input are then
used for subsequent comparisons by shifting the input right
by 16. Then, if the MSB is contained in the upper half of
the remainder, the result is incremented by 8 and the upper
8 bits are used for the next comparison. This procedure
is repeated 3 more times, operating on the upper half of
the remainder of the input word. Figure 5 shows that using
the LUT implementation yields better performance than the
custom FP hardware and is used in the final implementation
in favor of the custom instructions. This implementation
removes the need for costly floating point arithmetic, instead
of leveraging inexpensive bit shifts and addition. The use of
an LUT implementation reduces the calculation time to 3%
of the total Tier II time, down from over 70%.

As mentioned in Section 3.4, the 30 kByte bank of on-
chip memory is configured as “Tightly Coupled” memory
(TCM). The NIOS II core can be configured to have addi-
tional data master ports for any number of TCMs, which
must be on-chip. TCMs bypass the NIOS II cache and
provide guaranteed low-latency memory access to specially
designated instructions or data [10, 13]. These instructions or
data are designated as tightly coupled through specific linker
commands at compile time. In this implementation, specific
data structures which are frequently accessed during Tier
IT are designated as tightly coupled to guarantee consistent
performance. While Figure 5 shows a minor improvement
in processing time, using TCM:s to bypass the cache can be
useful for avoiding data corruption while parallel processing
is performed.

The downfall of utilizing SDRAM to serve as a tile buffer
is that memory accesses to the device are considerably slower
than accessing on-chip RAM. During the Tier II processing,
multiple reads and writes are performed within this memory
space for each code block processed. Additionally, each code
block must be copied from the input data buffer to the
filestream buffer. This copy alone has a detrimental impact on
the overall throughput of the system. To address this issue, a
third DMA controller is added to the system which masters
only the SDRAM controller, allowing the system to schedule
nonblocking memory copies within the SDRAM address
range. The addition of this DMA controller hides the latency
associated with large memory copies, allowing the processor
to continue processing the next set of instructions while the
transfer completes. Introduction of the third DMA controller
results in a 48% decrease in processing time as shown in
Figure 5 when compared to the previous implementation
without the additional DMA controller. Care is taken to
ensure that all pending memory copies have completed prior
to writing out the completed filestream.

The final optimization made to the NIOS II system is
to ensure that the system acts as a pipeline in order to
maximize throughput of the system. Initially, the system
is designed without the code block FIFO seen in Figure 3.
Instead, the NIOS II system is directly coupled with the Tier I



International Journal of Reconfigurable Computing

begin
result =0

return result;
end

if input >= 65536 then input >>=16; result+ = 16; fi
if input >= 256 then input >>= 8; result+ = 8; fi

if input >=16 then input >>= 4; result+ = 4; fi

if input >= 4 then input >>=2; result+ = 2; fi

if input >=2then input >>=1; result+ = 1; fi

ALGORITHM I: A lookup table implementation of a floored binary logarithm of a 32-bit unsigned integer.

output, reading code blocks as they become available. While a
simplified approach, the downfall is that the Tier I processor
must wait for the code block to be read before proceeding to
the next code block. In order to eliminate this idle time, the
code block FIFO in Figure 3 is added. Tier I simply writes to
the FIFO and signals the Tier II module when a full tile has
been buffered. Since the code block FIFO resides in SDRAM,
a large 16 MByte FIFO is used which is capable of buffering
multiple tiles in the event Tier II falls behind. Tier II then
reads entire tiles as they become available, instead of reading
each code block. Pipelining has two distinct impacts on the
system throughput. First, the Tier I encoder is now free to
process code blocks as fast as possible, therefore increasing
the system throughput. Additionally, the interrupt latency
associated with posting read requests is reduced since there
is only one read request per tile, instead of one request per
code block. In total, four optimizations yield a 91% reduction
in Tier II processing time with the NIOS II system.

4. Analysis of Results

4.1. Performance and Analysis. The performance of the
JPEG2000 SoC is measured using three 2048 x 2560 ISO test
images “Café,” “Woman,” and “Bike.” For all tests, each image
is compressed and the respective processing times of all three
images are averaged together. First, the overall performance
of the system is measured with varying numbers of parallel
block coders in order to determine the optimum number
of block coders and the corresponding throughput of the
system. The number of parallel block coders is increased from
1 to 20. The impact of an increased number of parallel block
coders on the image processing time as well as the Tier I and
Tier II times is shown in Figure 6.

The total HW time in Figure 6 shows that, as expected,
additional block coders have a large impact on the average
image processing time. This is especially true when the block
coder count is increased from 1 to 6, resulting in a 67%
drop in average processing time. Processing time continues to
decrease as the block coder count is increased beyond six with
a minimal processing time of 0.22 seconds achieved when 18
block coders are present. Negligible change in performance is
seen with block coder counts beyond 18. The steps seen in the
total HW time are attributed to lack of saturation of the DMA

02} ]
@

=

=]

(=]

153

2

= 015 ]
£

o

=

v

g o1t ]
9

o

-

(=¥

=

% 0.05

5

z

0

TCM

Baseline

g
=
=)
k=

<

)
=2

5§

—

<
=
B
5
2

Custom FP instructions

Additional DMA Controller F

FIGURE 5: Combined impact of optimizations on average processing
time for single 1024 x 1024 tile (optimizations are combined to yield
lowest processing time).

controller between steps, resulting in jumps in performance
when data is presented to the DMA controller at a faster rate.

The overall throughput of the system is limited by the Tier
II processing time. Figure 6 shows the time spent performing
Tier I and Tier II processing, as well as the total time, for
a variable number of block coders. Figure 6 shows that the
Tier II processing remains constant at 0.121 sec while the Tier
I time decreases as more block coders are added, as expected.
As the Tier I processing time approaches the Tier II time, the
total processing time begins to flatten out, with little change
beyond 18 block coders. Additional block coders have little
impact on the total processing time since it has no impact on
the Tier II processing time.

Figure 6 shows that the proposed architecture scales well
with an increasing number of parallel block coders. This
compares favorably with the SoC architecture presented in
[5], which does not scale as well as the proposed architecture.



8 International Journal of Reconfigurable Computing
TABLE 2: Hardware resource comparison for a system with 4 block coders.
System Block coders LCs Memory Clock (MHz)
[5] DWT/TierI 4 15,268 622,976 50
DWT/Tierl 4 13,123 637,952 100/200
DWT/Tierl 18 43,690 1,417,472 100/200
TierII (NIOS) N/A 10,996 923,008 290
1.5

Figure 7 shows a comparison between the performance of the
proposed architecture and the architecture presented in [5].
The image processing time from the fastest implementation
of [5] is overlaid onto the total HW time from Figure 6 for
one to ten block coders, using the same set of ISO test images.
Results are compared from one to ten block coders since
[5] only provides results up to ten coders. It is clear that
while [5] outperforms at lower block coder counts, these gains
are erased once the count is increased beyond five encoders.
At this point the [5] architecture has plateaued while the
proposed architecture continues to improve. With 10 parallel
block coders, the proposed implementation outperforms [5]
by 39%. When the system is scaled to 18 block coders, the
proposed design outperforms [5] by 58%. By allowing the
other processing modules to operate outside the contexts
of the SoPC system, the proposed architecture is able to
take full advantage of multiple parallel block coders without
the limitations necessarily imposed by the Avalon switching
fabric. While extremely effective at integrating multiple dif-
ferent peripherals into a single system, the scheduling and
arbitration overhead associated with the NIOS II processing
system impose restrictions on the system throughput. By
creating a pipelined architecture which utilizes the NIOS 1II
processing core as a separate unit we are able to leverage the
flexibility of the NIOS II system while still maintaining the
speed of a pipelined encoder.

4.2. Hardware Synthesis Results. The proposed implemen-
tation is synthesized on a Stratix IV FPGA using Altera
Quartus 10.1. For the purposes of comparing the proposed
design to [5], the design is synthesized with 4 parallel block
coders. With this encoder count, [5] slightly outperforms
the proposed system, but these gains are quickly erased with
additional block coders (Figure 7). The hardware costs of the
proposed system and [5] are shown in Table 2. Costs for both
the 4 and 18 block encoder implementations are shown. The
hardware costs for the proposed system are split into two
categories: the DWT and Tier I modules and the NIOS II
system which performs Tier II. The results are presented in
this manner to provide an accurate comparison to [5], which
only simulates the NIOS II system, so the hardware costs only
reflect the DWT and Tier I modules.

Table 2 shows that the hardware resource costs of the
implemented NIOS II system are minimal compared to the
other processing modules, whose costs increase as more block
coders are added. However, the NIOS II system does have
a high memory cost. This is due to the 80 kBytes (50 kByte
and 30 kByte banks) of on-chip RAM used along with the

<

—
T

Processing time for module (seconds)
<)
[

—e———F—8F—F—8—88+8 888884858581

2 4 6 8 10 12 14 16 18 20
Number of block encoders

—o— Total HW time
—8— TierII
—7— Tierl

FIGURE 6: Performance profile of encoding pipeline with parallel
block coders.

instruction and data caches built into the processing core.
These large memory modules are necessary to run more
complex code requiring larger stack and heap regions in
memory. However, due to the flexibility of the NIOS II
system, these costs could be shifted off-chip by utilizing more
of the SDRAM. However, since the target platform utilizes a
Stratix IV FPGA [12] with a large amount of on-chip memory,
this is not an issue for the proposed design.

Table 2 shows that the proposed DWT and Tier I designs
are comparable in cost to [5] with 4 parallel block coders.
The main difference is that the proposed design is capable
of higher clock speeds, with the DWT and Tier I running at
100 MHz and 200 MHz, respectively. This results in a DWT
capable of processing one pixel every 7 ns as opposed to 20 ns
per pixelin [5]. The higher performance of the DWT prevents
the parallel block coders from becoming starved as they do
in [5], which yields increased performance up to 18 block
coders as opposed to [5], which peaks at 4 block coders due to
starvation of the block coders. Instead, the proposed design
is limited by the throughput of the NIOS II system.

5. Conclusion

This paper proposed a fully embedded JPEG2000 SoC which
utilized an Altera NIOS II processor as the embedded EBCOT



International Journal of Reconfigurable Computing

1.6

14%

12+

Image processing time (seconds)

0.2t

Number of block encoders

—e— Dyer et al. (2004)
-8- Proposed

FIGURE 7: Performance comparison to other SoC implementations.

Tier II processing module. The proposed system is synthe-
sized on a Stratix IV FPGA and yields a 39% performance
increase over other JPEG2000 SoC implementations with the
same number of parallel block coders. While [5] offers a
more flexible and reconfigurable design, the pipelined archi-
tecture of the proposed design allows for a design capable
of scaling to higher numbers of parallel block coders with
comparable increases in system throughput. While limited
by the performance of the NIOS II performance, future
implementations could mitigate this with optimizations to
the Tier II algorithm. Additional NIOS II processing cores
could also be added to the system to share the processing load,
assuming the availability of adequate hardware resources.

In addition to a high performance and scalable design, the
proposed system also demonstrates the feasibility of utilizing
an embedded softcore processor as a dedicated processing
unit within a pipeline. Ease of reconfiguration and support
for a variety of peripherals allowed for seamless integration
of the NIOS II system into an existing encoding pipeline. The
proposed design also demonstrates techniques for optimizing
the performance of software running on the NIOS II through
the use of custom instructions and additional peripherals.

References

[1] ISO/IEC 1. 29. 15444-1, “JPEG, 2000 Part I Final Committee
Version 1. 0, 2004.

[2] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG 2000
performance evaluation and assessment,” Signal Processing, vol.
17, no. 1, pp. 113-130, 2002.

[3] K. Sarawadekar and S. Banerjee, “An Efficient pass-parallel
architecture for embedded block coder in JPEG 2000,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
21, no. 6, pp. 825-836, 2011.

[4] K.-E Chen, C.-]. Lian, H.-H. Chen, and L.-G. Chen, “Analysis
and architecture design of EBCOT for JPEG-2000,” in Pro-
ceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS °01), pp. 11765-11768, Sydney, Australia, May
2001.

[5] M. Dyer, S. Nooshabadi, and D. Taubman, “Design and analysis
of system on a chip encoder for JPEG2000,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 19, no. 2, pp.
215-225, 2009.

[6] N. R. Kumar, W. Xiang, and Y. Wang, “An FPGA-based fast
two-symbol processing architecture for JPEG 2000 arithmetic
coding,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’10), pp. 1282-
1285, Dallas, Tex, USA, March 2010.

[7] M. Dyer, D. Taubman, and S. Nooshabadi, “Improved through-
put arithmetic coder for JPEG2000,” in Proceedings of the
International Conference on Image Processing (ICIP '04), pp.
2817-2820, October 2004.

[8] L.Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, and H. Chen, “A
VLSI architecture of JPEG2000 encoder,” IEEE Journal of Solid-
State Circuits, vol. 39, no. 11, pp. 2032-2040, 2004.

[9] L. Liu, Z. Wang, N. Chen, and L. Zhang, “VLSI architecture
of EBCOT Tier-2 encoder for JPEG2000,” in Proceedings of
the IEEE Workshop on Signal Processing Systems—Design and
Implementation (SiPS °05), pp. 225-228, November 2005.

[10] Altera Corporation, “NIOS II Processor Reference Handbook,”
2010.

[11] E.J.Balster, B. T. Fortener, and W. E. Turri, “Integer computation
of lossy JPEG2000 compression,” IEEE Transactions on Image
Processing, vol. 20, no. 8, pp. 2386-2391, 2011.

[12] GiDEL, “ProcelV Data Book,” 2011.

[13] Altera Corporation, “NIOS II Software Developer’s Handbook,”
2011.

[14] Altera Corporation, “SOPC Builder User Guide,” 2010.

[15] Altera Corporation, “NIOS II Custom Instruction User Guide,
2011.



International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components




