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Decimal floating point operations are important for applications that cannot tolerate errors from conversions between binary and
decimal formats, for instance, commercial, financial, and insurance applications. In this paper we present five different radix-10
digit recurrence dividers for FPGA architectures.The first one implements a simple restoring shift-and-subtract algorithm, whereas
each of the other four implementations performs a nonrestoring digit recurrence algorithm with signed-digit redundant quotient
calculation and carry-save representation of the residuals. More precisely, the quotient digit selection function of the second divider
is implemented fully by means of a ROM, the quotient digit selection function of the third and fourth dividers are based on carry-
propagate adders, and the fifth divider decomposes each digit into three components and requires neither a ROMnor amultiplexer.
Furthermore, the fixed-point divider is extended to support IEEE 754-2008 compliant decimal floating-point division for decimal64
data format. Finally, the algorithms have been synthesized on a Xilinx Virtex-5 FPGA, and implementation results are given.

1. Introduction

Many applications, particularly commercial and financial
applications, require decimal floating-point operations to
avoid errors from conversions between binary and decimal
formats. This paper presents five different decimal fixed-
point dividers and analyzes their performances and resource
requirements on FPGA platforms. All five architectures apply
a radix-10 digit recurrence algorithmbut differ in the quotient
digit selection (QDS) function.

The first fixed-point divider (type1) implements a sim-
ple shift-and-subtract algorithm. It is characterized by an
unsigned and nonredundant quotient digit calculation. Nine
divisor multiples are precomputed, and in each iteration
step nine carry-propagate subtractions are performed on
the residual. Finally, the smallest, nonnegative difference is
selected by a large fan-in multiplexer. This type1 implemen-
tation is characterized by a high area use.

The second divider (type2) uses a signed-digit quotient
calculation with a redundancy of 𝜌 = 8/9 and operands
scaling to get a normalized divisor in the range of 0.4 ≤

divisor < 1.0. The quotient digit selection (QDS) function

can be implemented fully by a ROM because it depends only
on the two most significant digits (MSDs) of the residual
as well as the divisor. The residual uses a redundant carry-
save representation but, because of performance issues, the
two MSDs are implemented by a nonredundant radix-2
representation.

The quotient digit selection (QDS) functions of the
third and fourth divider (type3.a and type3.b) are based
on comparators for the two most significand digits. The
comparators consist of short binary carry-propagate adders
(CPA), which can be implemented very efficiently in the
FPGA’s slice structure.The corresponding comparative values
depend on the divisor’s value and are precomputed and stored
in a small ROM. The redundancy is 𝜌 = 8/9; thus, 17 binary
CPAs are required. Similar to the type2 divider, the type3.a
and type3.b dividers use prescaling of the divisor 0.4 ≤

divisor < 1.0, a redundant carry-save representation of the
residual, and a nonredundant radix-2 representation of the
two MSDs. The dividers type3.a and type3.b differ only in
the implementation of large fan-in multiplexers in the digit
recurrence step.The type3.a divider implements multiplexers
thatminimize the LUT usage but have long latencies, whereas



2 International Journal of Reconfigurable Computing

the type3.b divider implements a faster dedicatedmultiplexer
that exploits the FPGA’s internal carry chains.

The quotient digit selection function of the last divider
(type4) requires neither a ROM nor a multiplexer. It is
characterized by divisor scaling (0.4 ≤ divisor < 0.8)
and a signed-digit redundant quotient calculation with a
redundancy of 𝜌 = 8/9. The quotient digit is decomposed
into three components having values {−5, 0, 5}, {−2, 0, 2},
and {−1, 0, 1}. The components are computed one by one,
whereby the digit selection function is constant; that is, the
selection constants do not depend on the divisor’s value.
Similar to the type2, type3.a, and type3.b dividers, the type4
divider uses a carry-save representation for the residual with
a nonredundant radix-2 representation of the two MSDs.

The fixed-point division algorithms are implemented and
analyzed on a Virtex-5 FPGA. Finally, the type2 divider,
which shows the best tradeoff in area and delay, is extended to
a floating-point divider that is fully IEEE 754-2008 compliant
for decimal64 data format, including gradual underflow
handling and all required rounding modes.

The architectures of the type1, type2, and type4 dividers
have already been published in [1]. However, this paper
gives a more detailed description of the previous research
and introduces two new dividers, which fill the design
gap between the type1 and type2 dividers because they are
based on two extreme examples of algorithms: the type1
divider implements a restoring quotient digit selection (QDS)
function that requires nine decimal carry-propagate adders
(CPAs) of full precision, whereas the nonrestoring QDS
function of the type2 divider is implemented fully by means
of a ROM with limited precision. In comparison, the new
dividers implement nonrestoring QDS functions that are
based on fast binary CPAs with limited precision.

The outline of this paper is given as follows: Section 2
motivates the use of decimal floating-point arithmetic and
its advantage compared to binary floating-point arithmetic.
The underlying decimal floating-point standard IEEE 754-
2008 is introduced in Section 3.The digit recurrence division
algorithms as well as the five different architectures of fixed-
point dividers are presented in Section 4. These fixed-point
dividers are extended to a decimal floating-point divider
in Section 5. Postplace and route results are presented in
Section 6, and finally in Section 7 the main contributions of
this paper are summarized.

2. Decimal Arithmetic

Since its approval in 1985, the binary floating-point standard
IEEE 754-1985 [2] is the most widely used implementation
of floating-point arithmetic and the dominant floating-point
standard for all computers. In contrast to binary arithmetic,
decimal units are more complex, require more area, and
are more expensive, and the simple binary coded decimal
(BCD) data format has a storage overhead of approximately
20%. Thus, at that time of approval the use of binary in
preference to decimal floating-point arithmetic was justified
by the better efficiency.

Most people in the world think in decimal arithmetic.
These decimal numbersmust be converted to binary numbers

when using a computer. However, some common finite
numbers can only be approximated by binary floating-point
numbers. The decimal number 0.1, for example, has a peri-
odical continued fraction 0.1

10
= 0.0001100

2
. It cannot be

represented exactly in a binary floating-point arithmetic with
finite precision, and the conversion causes rounding errors.

As a consequence, binary floating-point arithmetic can-
not be used for any calculations which do not tolerate
conversion errors between decimal and binary numbers.
These are, for instance, financial and business applications
that even require decimal arithmetic by law [3]. Therefore,
commercial application often use nonstandardized software
to perform decimal floating-point arithmetic. However, these
software implementations are usually from 100 to 1000 times
slower than equivalent binary floating-point operations in
hardware [3].

Because of the increasing importance, specifications for
decimal floating-point arithmetic have been added to the
IEEE 754-2008 standard for floating-point arithmetic [4]
that has been approved in 2008 and offers a more profound
specification than the former radix-independent floating-
point arithmetic IEEE 854-1987 [5]. Therefore, new efficient
algorithms have to be investigated, and providing hardware
support for decimal arithmetic is becoming more andmore a
topic of interest.

IBM has responded to this market demand and inte-
grates decimal floating-point arithmetic in recent processor
architectures such as z9 [6], z10 [7], Power6 [8], and Power7
[9]. The Power6 is the first microprocessor that implements
IEEE 754-2008 decimal floating-point format fully in hard-
ware, while the earlier released z9 already supports decimal
floating-point operations but implements them mainly in
millicode. Nevertheless, the Power6 decimal floating-point
unit is as small as possible and is optimized to low cost.
It reuses registers from the binary floating-point unit, and
the computing unit mainly consists of a wide decimal adder.
Thus, its performance is rather low. Other floating-point
operations such as multiplication and division are based
on this adder and are performed sequentially. The decimal
floating-point units of z10 and Power7 are designed similarly
to those of the Power6 [7, 9].

3. IEEE 754-2008

The floating-point standard IEEE 754-2008 [4] has revised
and merged the IEEE 754-1985 standard for binary floating-
point arithmetic [2] and IEEE 854-1987 standard for radix-
independent floating-point arithmetic [5]. As a consequence,
the choice of radices has been focused on two formats: binary
and decimal. In this paper we consider only the decimal data
format. A decimal number is defined by the triple consisting
of the sign (𝑠), significand (𝑐), and exponent (𝑞):

𝑥 = (−1)
𝑠
⋅ 𝑐 ⋅ 10

𝑞
, (1)

with 𝑠 ∈ {0, 1}, 𝑐 ∈ [0, 10
𝑝
− 1] ∩ N, and 𝑞 ∈ [𝑞min, 𝑞max] ∩

Z. IEEE 754-2008 uses two different designators for the
exponent (𝑞 and 𝑒) as well as for the significand (𝑐 and𝑚).The
exponent 𝑒 is applied when the significand is regarded as an
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(sign) (combination field) (trailing significand field)

+ 5 bits = · 10 bits

Figure 1: Decimal interchange formats [4].

Table 1: Interchange format parameters [4].

Parameter dec32 dec64 dec128
𝑘 : storage width (bits) 32 64 128
𝑝: precision (digits) 7 16 34
𝑞min: min. exponent −101 −398 −6176
𝑞max: max. exponent 90 369 6111
Bias = 𝐸 − 𝑞 101 398 6176
𝑠: sign bit 1 1 1
𝑤 + 5: combination field (bits) 11 13 17
𝑡: trailing significand field (bits) 20 50 110

integer digit and fraction field, denoted by 𝑚. The exponent
𝑞 is applied when the significand is regarded as an integer,
denoted by 𝑐. The relation is given through

𝑒 = 𝑞 + 𝑝 − 1, 𝑚 = 𝑐 ⋅ 𝑏
−𝑝+1

. (2)

In this paper we exclusively use the integer representation 𝑐

with the exponent 𝑞.
Unlike binary floating-point format, the decimal floating-

point number is not necessarily normalized. This leads to
a redundancy, and a decimal number might have multiple
representations. The set of representations is called the
floating-point number’s cohort. For example, the numbers
123 ⋅ 10

0, 1230 ⋅ 10−1, and 12300 ⋅ 10−2 are all members of the
same cohort.More precisely, if a number has 𝑛 ≤ 𝑝 significant
digits, the number of representations is 𝑝 − 𝑛 + 1.

IEEE 754-2008 defines three decimal interchange formats
(decimal32, decimal64, and decimal128) of fixed width 32, 64,
and 128 bits. As depicted in Figure 1, a floating-point number
is encoded by three fields: the sign bit 𝑠, the combination
field 𝐺, and the trailing significand field. The combination
field encodes whether the number is finite, infinite, or not a
number (NaN). Furthermore, in case of finite numbers the
combination field comprises the biased exponent (𝐸 = 𝑞 +

bias) and the most significant digit (MSD) of the significand.
The remaining 3 ⋅ 𝐽 digits are encoded in the trailing
significand field of width 𝑡 = 𝐽 ⋅ 10. The trailing significand
can either be implemented as a binary integer or as a densely
packed decimal (DPD) number [4]. Binary encoding makes
software implementations easier, whereas DPD encoding is
favored by hardware implementations, as it is the case in this
paper.

The encoding parameters for the three fixed-width inter-
change formats are summarized in Table 1.This paper focuses
on the data format decimal64 with DPD coded significand.
DPD encodes three decimal digits (four bits each) into a
declet (10 bits) and vice versa [4]. It results in an storage
overhead of only 0.343% per digit.

IEEE 754-2008 defines five rounding modes. These are
two modes to the nearest (round ties to even and round

ties to away) and three directed rounding modes (round
toward positive, round toward negative, and round toward
zero) [4]. As floating-point operations are obtained by first
performing the exact operation in the set of real numbers
and then mapping the exact result onto a floating-point
number, rounding is required whenever all significant digits
cannot be placed in a single word of length 𝑝. Moreover,
inexact, underflow, or overflow exceptions are signaled when
necessary.

4. Decimal Fixed-Point Division

Oberman and Flynn [10] distinguish five different classes
of division algorithms: digit recurrence, functional iteration,
very high radix, table look-up, and variable latency, whereby
many practical algorithms are combinations of multiple
classes. Compared to binary arithmetic, decimal division is
more complex. Currently, there are only a few publications
concerning radix-10 division.

Wang and Schulte [11] describe a decimal divider based
on the Newton-Raphson approximation of the reciprocal.
The latency of a decimal Newton-Raphson approximation
directly depends on the latency of the decimal multiplier.
A pipelined multiplier has the advantage that more than
one division operation can be processed in parallel; oth-
erwise the efficiency is poor. However, the algorithm lacks
remainder calculation, and the rounding is more complex.
The first FPGA-based decimal Newton-Raphson dividers are
presented in [12]. The dividers as well as the underlying
multipliers are sequential; hence, these dividers have a high
latency.

Digit recurrence division is themost widely implemented
class of division algorithms. It is an iterative algorithm with
linear convergence; that is, a fixed number of quotient digits is
retired every iteration step. Compared to radix-2 arithmetic,
radix-10 digit recurrence division is more complex because,
on the one hand, decimal logic is less efficient by itself and,
on the other hand, the range of the quotient digit selection
(QDS) function comprises a larger digit set. Therefore, the
performance of the digit recurrence divider depends on
the choice of the QDS function and the implementation of
decimal logic.

Nikmehr et al. [13] select quotient digits by comparing
the truncated residual with limited precision multiples of
the divisor. Lang and Nannarelli [14] replace the divisor’s
multiples by comparative values obtained by a look-up table
and decompose the quotient digit into a radix-2 digit and
a radix-5 digit in such a way that only five and two times
the divisor are required. Vázquez et al. [15] take a different
approach: the selection constants in the QDS function are
obtained of truncated multiples of the divisor, avoiding look-
up tables. Therefore, the multiples are computed on-the-
fly. Moreover, the digit recurrence iteration implements a
slow carry-propagate adder, but an estimation of the residual
is computed to make the determination of the quotient
digits independent of this carry-propagate adder.Thedecimal
divider of the Power6 microprocessor [16] uses extensive
prescaling to bound the divisor to be greater than or equal
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to 1.0 but lower than 1.1112 in order to simplify the digit
selection function. However, this prescaling is very costly, it
requires a 2-digit multiply, and it needs overall six cycles on
each operand. Furthermore, the digit selection function still
requires a look-up table.

The first decimal fixed-point divider designed for FPGAs
applies digit recurrence algorithm and is proposed by Ercego-
vac andMcIlhenny [17, 18]. However, it has a poor cycle time,
because it does not fit well on the slice structure of FPGAs
but would probably fit well into ASIC designs with dedicated
routing.

4.1. Digit Recurrence Division. In the following, we use
different decimal number representations. A decimal number
B is called BCD-𝛽

0
𝛽
1
𝛽
2
𝛽
3
coded when B can be expressed by

𝐵 =

𝑝−1

∑

𝑖=0

𝐵
𝑖
⋅ 10
𝑖

with 𝐵
𝑖
=

3

∑

𝑘=0

𝐵
𝑖𝑘
⋅ 𝛽
𝑘
, 𝐵
𝑖𝑘
∈ {0, 1} .

(3)

A number representation is called redundant if one or more
digits have multiple representations.

Moreover, we consider a division 𝑧 = 𝑥/𝑑 in which the
decimal dividend 𝑥 and the decimal divisor 𝑑 are positive
and normalized fractional numbers of precision 𝑝, that is,
0.1 ≤ 𝑥, 𝑑 < 1. The quotient 𝑧 and the remainder rem are
calculated as follows:

𝑥 = 𝑧 ⋅ 𝑑 + rem, rem ≤ 𝑑 ⋅ ulp, ulp = 10
−𝑝
. (4)

Then the radix-10 digit recurrence is implemented by

𝑤 [𝑗 + 1] = 10𝑤 [𝑗] − 𝑧
𝑗+1

⋅ 𝑑, 𝑗 = 0, 1, . . . , 𝑝 (5)

with the initial residual 𝑤[0] = 𝑥/10 and with the quotient
digit calculated by the selection function

𝑧
𝑗+1

= SEL (10𝑤 [𝑗] , 𝑑)

with 𝑧 = 𝑧
1
.𝑧
2
𝑧
3
⋅ ⋅ ⋅ 𝑧
𝑝
=

𝑝−1

∑

𝑗=0

𝑧
𝑗+1

⋅ 10
−𝑗
.

(6)

Digit recurrence division is subdivided into the classes of
restoring and nonrestoring algorithms, that differ in the
quotient digit selection (QDS) function and the dynamical
range of the residual. A restoring divider selects the next
positive quotient digit 0 ≤ 𝑧

𝑗+1
≤ 9 such that the next partial

residual is as small as possible but still positive. The IBM
z900 architecture, for instance, implements such a decimal
restoring divider [19]. By contrast, the QDS function of a
decimal nonrestoring divider uses a digit set that is positive
as well as negative −𝑎 ≤ 𝑧

𝑗+1
≤ 𝑎, and the partial residual

𝑤[𝑗 + 1]might also be negative.
One advantage of restoring division is the enhanced

performance since estimates of limited precision (𝑤[𝑗] ≈

𝑤[𝑗] and 𝑑 ≈ 𝑑) might be used in the QDS function

SEL (10𝑤[𝑗], 𝑑).This performance gain is achieved by using a
redundant digit set, −𝑎 ≤ 𝑧

𝑗
≤ 𝑎, which defines a redundancy

factor

𝜌 =
𝑎

10 − 1
=
𝑎

9
. (7)

Then, in each iteration step the quotient digit 𝑧
𝑗+1

should be
selected such that the next residual 𝑤[𝑗 + 1] is bounded by

−𝜌𝑑 ≤ 𝑤 [𝑗 + 1] ≤ 𝜌𝑑, (8)
which is called the convergence condition [20].

This paper presents five different decimal fixed-point
dividers that are described in the following. The first divider
(type1) is a restoring divider whereas the four others (type2,
type3.a, type3.b, and type4) are nonrestoring dividers.

4.2. Type1 QDS Function. The QDS function of the type1
algorithm is very simple. Nine multiples of the divisor
(1𝑑, . . . , 9𝑑) are subtracted in parallel from the residual by
carry-propagate adders (CPAs), and the smallest positive
result is selected. The CPAs exploit the FPGA’s internal fast
carry logic, as described in [21].

The nine multiples are precomputed and are composed
of the multiples 1𝑑, 2𝑑, 5𝑑, 10𝑑 and their negatives (10’s
complement), which require at most one additional CPA per
multiple. The multiples 2𝑑 and 5𝑑 can be easily computed by
digit recoding and constant shift operations

(𝑋)BCD-5421 ≪ 1 ≡ (𝑋 ⋅ 2)BCD-8421, (9)

(𝑋)BCD-8421 ≪ 3 ≡ (𝑋 ⋅ 5)BCD-5421, (10)
where (9) is read as follows. A BCD-5421 coded number
X left-shifted by one bit is equivalent to the corresponding
BCD-8421-coded number multiplied by two. In a similar
fashion we obtain a multiplication by five using (10).

The implementation of the type1 digit recurrence divider
is characterized by a high area use, due to the utilization of
nine parallel CPAs.The corresponding algorithm of the type1
digit recurrence is shown in Algorithm 1.

4.3. Type2 QDS Function. The approach of the type2 division
algorithm is based on the implementation of the QDS
function fully by a ROM.This ROM is addressed by estimates
of the residual and divisor. The use of estimates is feasible
because a signed digit set together with a redundancy greater
than 1/2 is used. The estimates 1̂0𝑤[𝑗] and 𝑑 are obtained
by truncation; that is, only a limited number of MSDs of
the residual 10𝑤[𝑗] and divisor 𝑑 are regarded. Further-
more, the residual is implemented in BCD-4221 carry-save
representation such that the maximum error introduced by
an estimation with precision 𝑡 (one integer digit and 𝑡 − 1

fractional digits) is bounded by 𝜖 = 2 ⋅ 10
−𝑡+1. Negative

residuals are represented by their 10’s complement.
The divisor is subdivided into subranges [𝑑

𝑖
, 𝑑
𝑖+1

) of
equal width 𝑑

𝑖+1
− 𝑑
𝑖
= 10
−𝛿. For each subrange 𝑖, the QDS

function 𝑧
𝑗+1

= SELROM (1̂0𝑤[𝑗], 𝑑) is defined by selection
constants𝑚

𝑘
(𝑖):

𝑧
𝑗+1

= 𝑘 ⇐⇒ 𝑚
𝑘
(𝑖) ≤

̂
10𝑤 [𝑗] < 𝑚

𝑘+1
(𝑖) . (11)
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(1) Compute 𝛿
1
= 10𝑤 [𝑗] − 𝑑

...
𝛿
9
= 10𝑤 [𝑗] − 9𝑑

(2) if 𝛿
1
< 0 then
𝑧
𝑗+1

= 0 and 𝑤 [𝑗 + 1] = 10 ⋅ 𝑤 [𝑗]

else if 𝛿
2
< 0 then

𝑧
𝑗+1

= 1 and 𝑤 [𝑗 + 1] = 𝛿
1

...
else if 𝛿

9
< 0 then

𝑧
𝑗+1

= 8 and 𝑤 [𝑗 + 1] = 𝛿
8

else
𝑧
𝑗+1

= 9 and 𝑤 [𝑗 + 1] = 𝛿
9

Algorithm 1: Pseudocode for type1 digit recurrence division.

These selection constants are bounded by selection intervals
𝑚
𝑘
(𝑖) ∈ [𝐿

𝑘
, 𝑈
𝑘−1

], with the containment condition [20]

𝐿
𝑘
(𝑑
𝑖
) = (𝑘 − 𝜌) 𝑑

𝑖
, (12a)

𝑈
𝑘
(𝑑
𝑖
) = (𝑘 + 𝜌) 𝑑

𝑖
. (12b)

Furthermore, the continuity condition states that every
value 10𝑤[𝑗] must belong at least to one selection interval
[20]. Considering the maximum error due to truncation, the
continuity condition can be expressed by

𝑈
𝑘−1

(𝑑
𝑖
) − 𝐿
𝑘
(𝑑
𝑖+1

) ≥ 𝜖 = 2 ⋅ 10
−𝑡+1

. (13)

If we suppose the subrange width to be constant (𝑑
𝑖+1

− 𝑑
𝑖
=

10
−𝛿) and consider that the minimum overlapping occurs for

minimum 𝑑min and maximum 𝑘max, then we obtain the term

𝑥 := (𝑘max − 1 + 𝜌) 𝑑min

− (𝑘max − 𝜌) (𝑑min + 10
−𝛿
) ≥ 2 ⋅ 10

−𝑡+1
.

(14)

We choose 𝜌 = 8/9 (𝑘max = 8) and𝑑min = 0.4 that leads to 𝛿 =

2 and 𝑡 = 2. Thus, for the divisors’s estimation 𝑑 is required
an accuracy of two fractional digits, and for the residual’s
estimation 1̂0𝑤 is required an accuracy of one integer and one
fractional digit. Furthermore, the divisor must be pre-scaled
such that 0.4 ≤ 𝑑 < 1.0.

The P-D diagram is a visualization technique for design-
ing a quotient digit selection function and for computing the
decision boundaries𝑚

𝑘
(𝑖). It plots the shifted residual versus

the divisor. The P-D diagram for the type2 quotient digit
selection functionwith the selection constants𝑚

𝑘
(𝑖) is shown

in Figure 2.
The two MSDs of the dividend and residual address the

ROM in order to obtain the signed quotient digit, which
comprises 5 bits. In order to reduce the ROM’s size, the two
MSDs of the divisor and the residual are implemented by
using a nonredundant radix-2 representation. This leads to
an address that is composed of 15 bits: seven bits from the

Re
sid

ua
l 1

0·

( )
( + 1)

( + 2)

+1 +2

( )
( + 1)

( + 2)

+1

+1

=

≥

Figure 2: P-D diagram for the type2 QDS function.

(1) compute 𝐿
𝑘
(𝑑
𝑖
) and 𝑈

𝑘
(𝑑
𝑖
) for each 𝑑

𝑖
∈

{0.40, 0.41, . . . , 0.99} and 𝑘 ∈ {−8, . . . , +8} according
to (12a) and (12b)

(2) for all 10 ⋅ 𝑤
𝑛
∈ {−8.8, −8.7, . . . , +8.8} with |𝑤| ≤

𝜌 ⋅ 𝑑max = 0.88 compute the quotient digits 𝑧 as
follows:
if 10 ⋅ 𝑤

𝑛
≥ 𝑈
7
− 𝜖 = 𝑈

7
− 0.2 then 𝑧 = 8

else if 10 ⋅ 𝑤
𝑛
≥ 𝑈
6
− 0.2 then 𝑧 = 7

...
else if 10 ⋅ 𝑤

𝑛
≥ 𝑈
0
− 0.2 then 𝑧 = 1

else if 10 ⋅ 𝑤
𝑛
≥ 𝐿
0
then 𝑧 = 0

...
else if 10 ⋅ 𝑤

𝑛
≥ 𝐿
−8

then 𝑧 = −8

Algorithm 2: Algorithm for the calculation of the type2 ROM
entries.

unsigned radix-2 representation of the divisor’s two MSDs
and eight bits from the signed radix-2 representation of the
residual’s twoMSDs.Hence, the size of theROM is 215× 5 bits.
Unfortunately, the use of radix-2 representation complicates
the multiplication by 10, which is required according to (5).
Therefore, an additional binary adder is needed:

10 ⋅ 𝑤 [𝑗] = 8 ⋅ 𝑤 [𝑗] + 2 ⋅ 𝑤 [𝑗] = 𝑤 [𝑗] ≪ 3 + 𝑤 [𝑗] ≪ 1.

(15)

The corresponding algorithm for the calculation of the
ROM entries can be derived from the P-D diagram and is
depicted in Algorithm 2. It should be noted that the radix-
2 representations of 𝑑 and 𝑤 are truncations of 𝑑 and 𝑤; that
is, 𝑑 ≤ 𝑑 and 𝑤 ≤ 𝑤.

Once the quotient digit 𝑧
𝑗+1

has been determined, the
multiple 𝑧

𝑗+1
⋅ 𝑑 is subtracted from the current residual to

compute the next residual, as stated in (5). The subtracter
is a fast redundant BCD-4221 carry-save adder (CSA), as
described in [21], except for the two MSDs in wich we apply
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Figure 3: Block diagram of type2 digit recurrence.

(1) Select 𝑧
𝑗+1

= SELROM(
̂
10𝑤 [𝑗], 𝑑)

(2) Compute (𝑤
𝑠
[𝑗 + 1] + 𝑤

𝑐
[𝑗 + 1]) =

10 (𝑤
𝑠
[𝑗] + 𝑤

𝑐
[𝑗]) − 𝑧

𝑗+1
⋅ 𝑑

Algorithm 3: Pseudocode for the type2 digit recurrence.

radix-2 CPAs. Thus, the multiple 𝑧
𝑗+1

⋅ 𝑑 is composed of two
summands:

𝑧
𝑗+1

⋅ 𝑑 = 𝑑
1

𝑗+1
+ 𝑑
2

𝑗+1
, (16)

where 𝑑1,2 ∈ {0, ±1𝑑, ±2𝑑, ±5𝑑, ±10𝑑} are precomputed. The
multiplies 2𝑑 and 5𝑑 can be easily and fast computed by digit
recoding and constant shift operation as shown in (9) and
(10). The 10’s and 2’s complements are applied for 𝑑1,2 < 0.
For both, radix-2 and BCD-4221 radix-10 representation, the
complements can be computed by inverting each bit and
adding one. In summary, the subtraction uses a (3 : 1) radix-2
CPA for the two MSDs and a redundant radix-10 (4 : 2) CSA
for the remaining digits. The digit recurrence algorithm of
the type2 divider is summarized in Algorithm 3, and its block
diagram is depicted in Figure 3.

4.4. Type3QDS Function. The frequency limiting component
of the type2 divider is the digit recurrence step, which
comprises the ROM (BRAM) to calculate the next quotient
digit. This BRAM is slower compared to common FPGA
logic. Hence, it appears to be beneficial to remove the slow
BRAM from the critical path and use fast FPGA logic instead.
To analyze this impact of the BRAM delays, we implement
two dividers (type3.a and type3.b), which can also be realized
without BRAM in the critical path.

Lang and Nannarelli [14] propose a divider that imple-
ments a quotient digit selection function based on CPAs
and sign detection. These CPAs subtract fixed values from
the current residual with limited precision. These fixed
values depend on the estimates of the divisor and are pre-
computed and stored in a ROM. Furthermore, the quotient
digit is divided into two parts, which further simplifies the
quotient digit selection function and reduces the critical path.
Unfortunately, this divider cannot be implemented efficiently

on FPGAs because the required carry-save adder with small
error estimation shows a poor performance on the FPGA’s
slice structure. Nevertheless, to investigate the impact of
BRAM delays in the type2 divider, we implement another
two dividers (type3.a and type3.b) that have no BRAM in
the critical path but a CPA-based quotient digit selection
function instead.

The type3 dividers are modifications of the type2 divider.
The common architectural features are

(i) the multiples of the divisor are compos of two
components: 𝑧

𝑗+1
⋅ 𝑑 = 𝑑

1

𝑗+1
+ 𝑑
2

𝑗+1
, where 𝑑

1,2
∈

{0, ±1𝑑, ±2𝑑, ±5𝑑, ±10𝑑},
(ii) the fast redundant BCD-4221 carry-save adders for

the digit recurrence step as stated in (5),
(iii) the radix-2 implementation of the two MSDs, and
(iv) the 10’s and 2’s complements for 𝑑1,2 < 0.

Furthermore, since the architectures of the type2 and type3
dividers are similar, with the exception of the quotient digit
selection function, most of the dividers’ characteristics are
also identical, including the

(i) the P-D diagram,
(ii) the redundancy factor 𝜌 = 8/9, 𝑘max = 8,
(iii) the need of prescaling the divisor 0.4 ≤ 𝑑 < 1.0,
(iv) the accuracy of the divisor’s estimation 𝛿 = 2, and
(v) the accuracy of the residual’s estimation 𝑡 = 2.

Contrary to the type2 divider, the QDS functions of the
type3 dividers are implemented by 16 carry-propagate adders
with sign detection. These adders subtract fixed selection
constants from the estimation of the current residual. The
selection constants are dependent on the current divisor and
are stored in a ROM, which is then no more part of the
critical path.The selection constants are computed according
to Algorithm 4. The common digit recurrence algorithm of
the type3.a and type3.b dividers is shown in Algorithm 5, and
the corresponding block diagram is depicted in Figure 4.

The sign signals of the binary carry-propagate adders are
used to determine the corresponding quotient digit and to
select the multiples of the divisor in the digit recurrence
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(1) compute 𝐿
𝑘
(𝑑
𝑖
) and 𝑈

𝑘
(𝑑
𝑖
) for each 𝑑

𝑖
∈

{0.40, 0.41, . . . , 0.99} and 𝑘 ∈ {−8, . . . , +8} according
to (12a) and (12b)

(2) compute the selection constants𝑚
𝑘
(𝑑
𝑖
):

𝑚
8
(𝑑
𝑖
) = 𝑈

7
(𝑑
𝑖
) − 𝜖 = 𝑈

7
(𝑑
𝑖
) − 0.2

𝑚
7
(𝑑
𝑖
) = 𝑈

6
(𝑑
𝑖
) − 0.2

...
𝑚
1
(𝑑
𝑖
) = 𝑈

0
(𝑑
𝑖
) − 0.2

𝑚
0
(𝑑
𝑖
) = 𝐿

0
(𝑑
𝑖
)

...
𝑚
−7
(𝑑
𝑖
) = 𝐿

−7
(𝑑
𝑖
)

Algorithm 4: Algorithm for the calculation of the type3 selection
constants.

(1) if𝑚
8
(𝑑
𝑖
) −

̂
10𝑤 [𝑗] < 0 then 𝑧

𝑗+1
= 8

else if𝑚
7
(𝑑
𝑖
) −

̂
10𝑤 [𝑗] < 0 then 𝑧

𝑗+1
= 7

...
else if𝑚

−7
(𝑑
𝑖
) −

̂
10𝑤 [𝑗] < 0 then 𝑧

𝑗+1
= −7

else 𝑧
𝑗+1

= −8

(2) Compute (𝑤
𝑠
[𝑗 + 1] + 𝑤

𝑐
[𝑗 + 1]) =

10 (𝑤
𝑠
[𝑗] + 𝑤

𝑐
[𝑗]) − 𝑧

𝑗+1
⋅ 𝑑

Algorithm 5: Pseudocode for the type3 digit recurrence.

iteration step. The advantage of the type3 QDS function
is its short critical path, which comprises only one 8-bit
binary carry-propagate adder. However, this short critical
path is bought at a high price because the complexity is
moved to the selection of the divisors multiples. Hence,

large fan-in multiplexers with poor latencies are required.
In order to minimize the impact of these multiplexers, we
designed a new dedicated (17 : 1) multiplexer that exploits the
FPGA’s fast carry chains and has a delay of only one LUT
instance. In the following we name the divider with improved
fast multiplexers type3.b and with traditional multiplexers
type3.a.Thenewdedicated (17 : 1)multiplexer uses the 16-sign
bits as select lines and is coded as follows:

if sel =

1111.1111.1111.1111

 then 𝑦 = 𝑥 (16)

if sel =

0111.1111.1111.1111

 then 𝑦 = 𝑥 (15)

...

if sel = 0000.0000.0000.0001 then 𝑦 = 𝑥 (1)

if sel = 0000.0000.0000.0000 then 𝑦 = 𝑥 (0) ,

(17)

with sel(−1) := 1 and sel(16) := 0. In other words, bit 𝑥(𝑖)
is selected when sel(𝑖) = 0 and sel(𝑖 − 1) = 1. The selection
of two input signals is implemented in one (5 : 1) LUT, and all
signals are combined by a long OR gate that is implemented
exploiting the FPGA’s fast carry chain. Therefore, one (17 : 1)
multiplexer requires nine LUTs, and the type3.b divider with
fast multiplexers uses much more LUTs than the type3.a
divider (see Section 6). The block diagram of such a (17 : 1)
multiplexer is depicted in Figure 5.

4.5. Type4 QDS Function. The type4 divider applies a new
algorithm as proposed by us in a previous paper [22]. It
is based on the decomposition of the signed quotient digit
into three components having values {−5, 0, 5}, {−2, 0, 2}, and
{−1, 0, 1} as well as a fast constant digit selection function. In
this implementation, neither a ROM for the QDS function
nor a multiplexer to select the multiple 𝑧

𝑗
⋅ 𝑑 in the digit

recurrence iteration step is required. The divider is intended
to utilize less resources than other implementations. As
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Figure 5: Fast multiplexer.

the type2, type3.a, and type3.b dividers, the type4 divider
uses signed-digit redundant quotient calculation, carry-save
representation of the residual, fast BCD-4221 CSAs for the
digit recurrence, and a radix-2 implementation of the MSDs.

Quotient digits are decomposed into three components
𝑧
𝑗+1

= 5 ⋅ 𝑧
3

𝑗+1
+ 2 ⋅ 𝑧

2

𝑗+1
+ 𝑧
1

𝑗+1
, and each component 𝑧𝑖 is

computed by a distinct selection function.These components
can hold three values 𝑧

𝑖
∈ {−1, 0, 1} so that only two

comparators per component are required to distinguish
between these values. Since −8 ≤ 𝑧

𝑗+1
≤ 8, we get a

redundancy factor of 𝜌 = 8/9. Furthermore, the selection
functions become very simple due to prescaling of the divisor
(0.4 ≤ 𝑑 < 0.8); that is, they are constant functions SEL𝑖 that
do not depend on the divisor anymore:

𝑧
3

𝑗+1
= SEL3 (10̂𝑤[𝑗]) , (18a)

𝑧
2

𝑗+1
= SEL2 (̂𝑣1 [𝑗]) , (18b)

𝑧
1

𝑗+1
= SEL1 (̂𝑣2 [𝑗]) . (18c)

The recurrence is then defined as follows:

𝑣
1
[𝑗] = 10𝑤 [𝑗] − 𝑧

3

𝑗+1
⋅ 5𝑑, (19a)

𝑣
2
[𝑗] = 𝑣

1
[𝑗] − 𝑧

2

𝑗+1
⋅ 2𝑑, (19b)

𝑤 [𝑗 + 1] = 𝑣
2
[𝑗] − 𝑧

1

𝑗+1
⋅ 𝑑. (19c)

The multiples 2𝑑 and 5𝑑 can be easily and fast com-
puted according to (9) and (10). Each selection function
requires two comparators implemented as carry-save adders
that subtract constant values from the residuals’ estimations
(𝑤[𝑗], 𝑣1[𝑗], and 𝑣2[𝑗]). As we will show in the following,
these estimations require only the two most significant digits
(MSDs) of the corresponding exact values.

First, the selection intervals [𝐿𝑖
𝑘
, 𝑈
𝑖

𝑘
] for 𝑧𝑖

𝑗+1
= 𝑘 with

𝑘 ∈ {−1, 0, 1} and 𝑖 ∈ {1, 2, 3} have to be determined, where
𝐿
𝑖

𝑘
is the smallest and 𝑈𝑖

𝑘
is the greatest value of the selection

constant 𝑚
𝑘
(𝑖) such that the next residual is still bounded.

Applying the convergence condition (8), the digit recurrence
(19a), (19b), and (19c), and the redundancy factor 𝜌 = 8/9, we
obtain

𝑤 [𝑗]
 ≤ 𝜌𝑑 =

8

9
𝑑, (20a)


𝑣
2
[𝑗]


≤ (𝜌 + 1) 𝑑 =

17

9
𝑑, (20b)


𝑣
1
[𝑗]


≤ (𝜌 + 1 + 2) 𝑑 =

35

9
𝑑. (20c)

From the recurrence 𝑣1[𝑗] = 10𝑤[𝑗] − 𝑧
3

𝑗+1
⋅ 5𝑑, 𝑣1[𝑗] ≤

(35/9)𝑑, 𝑧3
𝑗+1

∈ {−1, 0, 1}, and replacing 10𝑤[𝑗] by the upper
limit 𝑈3

𝑘
, we get

𝑈
3

𝑘
= (5𝑘 + 𝜌 + 3) 𝑑 = (5𝑘 +

35

9
) 𝑑. (21a)

Similarly, we obtain the upper limits 𝑈2
𝑘
and 𝑈

1

𝑘
from the

recurrence (19b) and (19c), respectively,

𝑈
2

𝑘
= (2𝑘 + 𝜌 + 1) 𝑑 = (2𝑘 +

17

9
) 𝑑, (21b)

𝑈
1

𝑘
= (𝑘 + 𝜌) 𝑑 = (𝑘 +

8

9
𝑑) . (21c)

Likewise, the lower limits 𝐿𝑖
𝑘
can be computed

𝐿
3

𝑘
= (5𝑘 − 𝜌 − 3) 𝑑 = (5𝑘 −

35

9
) 𝑑, (22a)

𝐿
2

𝑘
= (2𝑘 − 𝜌 − 1) 𝑑 = (2𝑘 −

17

9
) 𝑑, (22b)

𝐿
1

𝑘
= (𝑘 − 𝜌) 𝑑 = (𝑘 −

8

9
𝑑) . (22c)
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Figure 6: P-D diagram for the type4 QDS function.

Due to the redundancy factor 𝜌 = 8/9 > 1/2we have overlap-
ping regions [𝐿𝑖

𝑘+1
, 𝑈
𝑖

𝑘
], where more than one quotient digit

component 𝑧𝑖
𝑗+1

may be selected. The decision boundary of a
selection function should lie inside this overlapping regions.
Figure 6 shows the P-D diagram for 𝑧3. The figures for 𝑧2
and 𝑧

1 look similar. As 𝑧3 can hold three different values,
the selection function requires two decision boundaries.
Generally, it is implemented by a staircase function (see
Figure 2), but for the bounded divisor 𝑑 ∈ [0.4, 0.8) it
is independent of the divisor and is reduced to a constant
function (see Figure 6). Fortunately, the selection functions
for 𝑧2 and 𝑧1 are also independent of the divisor and can also
be implemented by constant functions in a similar fashion.

We now determine the required number of fractional
digits for the estimates 1̂0𝑤, 𝑣1, and 𝑣2. Moreover, we choose
suitable selection constants 𝑚𝑖pos and 𝑚

𝑖

neg. These constants
depend on the maximum error due to the estimates and on
the minimum overlapping width, which is given by𝑈𝑖

0
(0.4) −

𝐿
𝑖

1
(0.8) as well as 𝑈𝑖

−1
(0.8) − 𝐿

𝑖

0
(0.4). Since we use BCD-4221

carry-save redundant digit representation, for a precision of 𝑡
digits (one integer digit and 𝑡 − 1 fractional digits), we have a
maximum error of 𝜖 = 2 ⋅ 10

−(𝑡−1). Moreover, the estimations
𝑤 are computed by truncations (𝑤 − 𝑤 ≤ 𝜖). This means, for
given positive and negative selection constants𝑚𝑖pos > 0 and
𝑚
𝑖

neg < 0, the following expressions must be true:

𝑈
𝑖

0
(0.4) − 𝑚

𝑖

pos ≥ 𝜖, 𝐿
𝑖

1
(0.8) ≤ 𝑚

𝑖

pos, (23)

𝐿
𝑖

0
(0.4) ≤ 𝑚

𝑖

neq, 𝑈
𝑖

−1
(0.8) − 𝑚

𝑖

neg ≥ 𝜖. (24)

If we choose the selection constants as listed in Table 2,
all conditions are fulfilled for a precision of 𝑡 = 2 digits,
and each selection function is reduced to two simple 2-digit
comparators.

As soon as one component 𝑧𝑖 of the quotient digit is
computed, the corresponding multiple of the divisor must
be subtracted from the partial residual. Each component 𝑧𝑖
can hold three different values 𝑧

𝑖
∈ {−1, 0, +1} that are

multiplied with the corresponding weighted divisor 𝑛 ⋅𝑑with
𝑛 ∈ {5, 2, 1}. In other words, 𝑛 ⋅ 𝑑 is either passed, negated,

Table 2: Constants for type4 quotient digit selection function.

𝑚
𝑖

pos 𝑚
𝑖

neg 𝑈
𝑖

0
(0.4) −𝑚

𝑖

pos 𝑈
𝑖

−1
(0.8) − 𝑚

𝑖

neg

𝑧
3 0.9 −1.5 0.656 0.611
𝑧
2 0.1 −0.7 0.656 0.611
𝑧
1 0.1 −0.3 0.255 0.211

or reset. Passing and resetting the multiple of the divisor is
performed at no extra cost. Negation is accomplished by bit
inversion and adding +1 through the carry inputs of the carry-
save adders in (19a), (19b), and (19c). In summary, this is a
very fast operation and requires only two LUTs per digit.

Similar to type2 and type3 division, we implement the
two MSDs of the type4 residual by using a nonredundant
radix-2 representation, which requires less LUTs and results
in faster quotient digit selection function.Thepseudocode for
the digit recurrence iteration is shown in Algorithm 6, and
the corresponding block diagram is depicted in Figure 7.

4.6. Proposed Decimal Fixed-Point Divider. For each type
of division algorithms presented in the preceding sections
we have implemented a corresponding fixed-point divider,
which is described in the following. For all fixed-point
dividers we expect the input operands to be normalized.

The block diagram of the type1 divider is depicted in
Figure 8. First, the divisor multiples {2𝑑, . . . , 9𝑑} are precom-
puted. In the following cycles 𝑝 = 16 quotient digits (16+ 1 if
the first digit is zero) are computed one by one, followed by an
additional rounding digit. The quotient (Z) and the quotient
+1 (ZP1) are computed on-the-fly by using two registers that
are updated every cycle. The algorithm has the advantage
that no additional slow decimal CPA is required to compute
the incremented quotient. It is described more precisely in
Section 5. The normalization of the result is also performed
on-the-fly by locking the conversion when 16 + 1 quotient
digits for the significand and the rounding digit have been
computed; that is, in the worst case, when the first quotient
digit is zero, 16+1+1 = 18 cycles are required. Furthermore,
the sticky bit is calculated, which is required for rounding. It
is set to one whenever the final remainder is unequal to zero.

The architectures of the type2, type3.a, type3.b, and type4
are similar in their structure but differ in their digit recur-
rence algorithm and scaling. The common block diagram is
shown in Figure 9. First, the dividend and the divisor are re-
scaled

𝑑 ∈ [0.1, 1.0)

⇒ 𝑑

∈ {

[0.4, 1.0) for type2, type3.a/b
[0.4, 0.8) for type4

(25)

and five as well as two times the divisor are precomputed
according to (9) and (10). Then, the operands are recoded
because the digit recurrence iteration uses a redundant digit
representation with BCD-4221 carry-save adders.

The digit recurrence retires in each iteration one signed
quotient digit 𝑧

𝑘
. The on-the-fly-conversion algorithm con-

verts this signed-digit representation to the BCD-8421-coded
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𝑤 . bin

𝑤 . dec𝑠
𝑤 . dec𝑐

𝑣1 . bin

𝑣1 . dec𝑠
𝑣1 . dec𝑐
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Figure 7: Block diagram of type4 digit recurrence.

Normalized dividend Normalized divisor

Compute divisor multiples

Compute 16 + 1 + 1 digit recurrence steps
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on-the-fly Determine sticky bit

Z ZP1 sb

𝑧𝑘 𝑤[𝑘]

{2 · 𝑑, 3 · 𝑑, . . . 9 · 𝑑}

Figure 8: Block diagram of the normalized type1 division.

(1) select

𝑧
3

𝑗+1
=

{{

{{

{

1 if 0.9 ≤ 1̂0𝑤 [𝑗]

0 if −1.5 ≤ 1̂0𝑤 [𝑗] < 0.9

−1 if 1̂0𝑤 [𝑗] < −1.5

and compute
(𝑣
1

𝑠
[𝑗] + 𝑣

1

𝑐
[𝑗]) = 10 (𝑤

𝑠
[𝑗] + 𝑤

𝑐
[𝑗]) − 𝑧

3

𝑗+1
⋅ 5𝑑

(2) select

𝑧
3

𝑗+1
=

{{

{{

{

1 if 0.1 ≤ 𝑣1 [𝑗]

0 if − 0.7 ≤ 𝑣1 [𝑗] < 0.1

−1 if 𝑣1 [𝑗] < −0.7

and compute
(𝑣
2

𝑠
[𝑗] + 𝑣

2

𝑐
[𝑗]) = (𝑣

1

𝑠
[𝑗] + 𝑣

1

𝑐
[𝑗]) − 𝑧

2

𝑗+1
⋅ 2𝑑

(3) select

𝑧
1

𝑗+1
=

{{

{{

{

1 if 0.1 ≤ 𝑣2 [𝑗]

0 if −0.3 ≤ 𝑣2 [𝑗] < 0.1

−1 if 𝑣2 [𝑗] < −0.3

and compute (𝑤
𝑠
[𝑗 + 1] + 𝑤

𝑐
[𝑗 + 1]) =

(𝑣
2

𝑠
[𝑗] + 𝑣

2

𝑐
[𝑗]) − 𝑧

1

𝑗+1
𝑑

Algorithm 6: Pseudo code for the type 4 digit recurrence.

Compute the quotient
on-the-fly

sb

Compute divisor multiples

BCD-8421 to BCD-4221 BCD-8421 to BCD-4221

Determine sticky bit and
sign of the remainder

Normalized dividend Normalized divisor

for type2
for type3

sign rem

Scale divisor 𝑑 ∈ [0.1, 1) → 𝑑 ∈ {[0.4, 1)[0.4, 0.8)

Compute 16+ 1+ 1 digit recurrence steps

𝑧𝑘 𝑤[𝑘]

Z ZP1

MUX

ZM1 Z ZP1

𝑅

2 · 𝑑 and 5 · 𝑑

Figure 9: Block diagram of the normalized type2, type3.a, type3.b,
and type4 divisions.

result [20] and computes the quotient (Z), the quotient +1
(ZP1), and quotient −1 (ZM1). This conversion is accom-
plished every iteration step and does not need a slow CPA.
The incremented and decremented quotients are required for
rounding. Moreover, the quotient is also normalized on-the-
fly by locking the conversion when 16 + 1 quotient digits
(including the rounding digit) have been computed. The
algorithm is described explicitly in Section 5 because it is
accomplished together with the gradual underflow handling
of the floating-point divider.



International Journal of Reconfigurable Computing 11

if (qNaN
𝑋
∧ sNaN

𝑋
) ∧ (qNaN

𝐷
∨ sNaN

𝐷
) then

𝐶


𝑋
= 𝐶
𝐷
, 𝐶



𝐷
= 0 . . . 01

𝑞


𝑋
= 𝑞
𝐷
, 𝑞


𝐷
= 0 + bias = 398

else if (qNaN
𝑋
∨ sNaN

𝑋
) then

𝐶


𝑋
= 𝐶
𝑋
, 𝐶



𝐷
= 0 . . . 01

𝑞


𝑋
= 𝑞
𝑋
, 𝑞


𝐷
= 0 + bias = 398

else // no changes
𝐶


𝑋
= 𝐶
𝑋
, 𝐶



𝐷
= 𝐶
𝐷

𝑞


𝑋
= 𝑞
𝑋
, 𝑞


𝐷
= 𝑞
𝐷

Algorithm 7: Algorithm of NaN handling.

Furthermore, the sticky bit is calculated,which is required
for rounding. It is set to one whenever the final remainder
is unequal to zero. Moreover, when the final remainder is
negative, the quotient of the type2, type3.a, type3.b, and type4
dividers has to be adjusted by subtracting one LSD. This
subtraction does not need another slow CPA because the
quotient −1 (ZM1) has already been computed on-the-fly.
The calculations of both, the sticky and sign bit, require the
reduction of the redundant remainder by a CPA. This CPA
might be subdivided into multiple smaller CPAs to keep the
latency low.

5. IEEE 754-2008 Floating-Point Division

The IEEE 754-2008 compliant decimal floating-point divider
is an extension of the normalized fixed-point divider. The
divider presented in this paper supports the interchange
format IEEE 754-2008 decimal64 with DPD encoding, but
it can be easily adapted to any other precision and exponent
range.

The block diagram of the divider is depicted in Figure 10.
TheDFP division begins with decoding of the dividendX and
divisor D and the extraction of their signs, significands, and
exponents. In the following, the significands of the operands
X (𝑐
𝑋
) and D (𝑐

𝐷
) are regarded as integers. Therefore, the

corresponding exponents are 𝑞
𝑋
and 𝑞
𝐷
.

According to [4], if one of the operands is a signalingNaN
(sNAN) or quiet NaN (qNAN), then the result is also a quiet
NaN with the payload of the original NaN. Hence, in order
to preserve the payload while using an unmodified divider,
the NaN handling unit sets the NaN holding operand as the
dividend and resets the divisor to 1.0 ⋅ 10

0, as depicted in
Algorithm 7.

The fixed-point dividers presented in Section 4 require
normalized operands. Therefore, the number of leading
zeros for both operands is counted, and the significands are
normalized by barrel shifters. Due to performance issues, the
leading zeros counter exploit the FPGA’s fast carry chains, as
proposed in [23].

The exponent of a floating-point division is first estimated
by the normalized quotient in fractional representation
(QNF) and is updated iteratively in each digit recurrence step.
Since most of the decimal floating-point numbers specified
by IEEE 754-2008 have multiple representations of the same

value, the result of a division might also have more than one
correct representations that differ in the exponent. However,
to obtain a unique and reproducible result in the case of such
an ambiguity, IEEE 754-2008 defines the exponent of the
result, which is called preferred exponent (QP).

Both exponents, QNF and QP, are positive integers and
are determined as follows:

Δ𝑞 := (𝑞
𝑋
− 𝑞
𝐷
) ,

ΔLZ := (LZ
𝑋
− LZ
𝐷
) ,

(26)

QNF = Δ𝑞 − ΔLZ + offset1,

QP = Δ𝑞 + offset1.
(27)

The offset1 is a bias and assures the quotients to be positive
since unsigned integer calculation is used in this paper. The
bias is composed of

offset1 = 783

= 398 // IEEE754-2008 bias

+ 369 // 𝑞max

+ 15 // conversion fractional to integer

+ 1 // normalization of the result.

(28)

The normalized fixed-point division unit then computes 𝑝 =

16 significand digits and one additional rounding digit. Addi-
tionally, the divider encompasses the on-the-fly conversion
unit that also detects and handles gradual underflow with
zero delay overhead. One signed quotient digit 𝑧

𝑗
is retired in

each cycle, and the on-the-fly-conversion algorithm converts
this signed-digit representation into the BCD-8421-coded
partial result [20].The conversion is accomplished every iter-
ation step and does not need a slow CPA (see Algorithm 8).
The partial quotient is stored in a register Z. Moreover,
two additional registers ZM1 and ZP1 are provided. ZM1
is the partial quotient decremented by one least significant
digit (LSD), and ZP1 is the partial quotient incremented
by one LSD. ZM1 is selected when the final residual in
the last iteration is negative, and ZP1 is required by the
following rounding operation. Furthermore, the exponent for
the normalized significand in integer representation (QNI)
is calculated (see (29)), and gradual underflow handling is
performed at no extra cost (see Algorithm 8). The exponent
QNI is computed by decrementing the exponent of the
normalized significand in fractional representation (QNF)
in each iteration step by one. The recurrence iteration
terminates earlier in case of gradual underflow. The gradual
underflow signal (GUF) is asserted high when QNI = 𝑞min,
and the calculated integer quotient is less than 10

𝑝:

QNI =
{{

{{

{

𝑞min if GUF = 1

QNF − (𝑝 − 1) if 𝑧
1
> 0

QNF − 𝑝 if 𝑧
1
= 0.

(29)

The extended quotient (composed of the calculated quotient
and the rounding digit) must be decremented by one if the
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DPD decoder DPD decoder

NaN handling

Leading zeros count and
QNF and QP calculations

Dividend normalization Divisor normalization

Normalized fixed-point division
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GUF QNI TZ Z ZP1 sb

QP

On-the-fly conversion with
gradual underflow handling

Exponent
calculation
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of uf

DPD encoder

Quotient 

Overflow, underflow,
gradual underflow,

inexact, invalid, div0

Exception unit Rounding unit

Divisor Divisor

𝑠𝑋 𝑞𝑋 𝑐𝑋 𝑠𝐷 𝑞𝐷 𝑐𝐷

Z𝑒 ZP1𝑒

𝑞𝑍 𝑐𝑍 𝑠𝑍

𝑠𝑋 𝑠𝐷

𝑅

𝑅

Figure 10: Block diagram of the floating-point divider.

final remainder is less than zero. The sticky bit (sb) is used
for rounding and is asserted high whenever the remainder is
unequal to zero.

Moreover, the number of trailing zeros (TZ) is computed
on-the-fly. This number indicates by how many digits the
computed quotientmight be shifted to the right without loos-
ing accuracy. The number of trailing zeros has to be counted
only for Z because if ZM1 is selected, the residual will be
unequal to zero and TZ = 0 anyway. The number of trailing
zeros is used for the selection between the preferred exponent
(QP) and the normalized exponent for integer representation
(QNI), as described in the following paragraph.

The exponent calculation unit selects either QP or QNI.
The preferred exponent should be selected whenever possi-
ble. This is only feasible when QNI < QP ≤ QNI + TZ;
that is, there is a sufficient number of trailing zeros to shift
the significand to the right. Furthermore, the final exponent
must satisfy the minimum and maximum exponent range.
The algorithm of the exponent calculation is illustrated in
Algorithm 9, where the value

offset2 = 783 − bias = 783 − 398 = 385 (30)

is used to add the IEEE 754-2008 bias and to remove offset1
again (which was introduced in (27)).

QNI = QNF + 1
Z = ZM1 = ZP1 = 0
TZ = 0, 𝑗 = 0

while (Z < 10
𝑝) and (QNI ≥ 𝑞min) {

Z = {
10 ⋅ Z + 𝑧

𝑗+1
if 𝑧
𝑗+1

≥ 0

10 ⋅ ZM1 + (𝑧
𝑗+1

+ 10) if 𝑧
𝑗+1

< 0

ZM1 = 10 ⋅ Z + (𝑧
𝑗+1

− 1)

10 ⋅ ZM1 + (𝑧
𝑗+1

+ 9)

if 𝑧
𝑗+1

> 0

if 𝑧
𝑗+1

≤ 0

ZP1 = {
10 ⋅ Z + (𝑧

𝑗+1
+ 1) if 𝑧

𝑗+1
≥ −1

10 ⋅ ZM1 + (𝑧
𝑗+1

+ 11) if 𝑧
𝑗+1

< −1

TZ = {
TZ + 1 if 𝑧

𝑗+1
= 0

0 else
QNI = QNI− 1
𝑗 = 𝑗 + 1

}

QNI = QNI + 1 // remove the impact of the rounding digit

𝑅

= {

𝑧
𝑗+1

− 1 if remainder < 0

𝑧
𝑗+1

else
ZM1 = ⌊ZM1 ⋅ 10−1⌋
Z = ⌊Z ⋅ 10−1⌋
ZP = ⌊ZP1 ⋅ 10−1⌋

(Z, ZP1,𝑅) = {
(ZM1,Z, 𝑅 + 10) if 𝑅 < 0

(Z,ZP1, 𝑅) else

sb = {
0 if remainder = 0

1 else

GUF =

{{

{{

{

1 if QNI = 𝑞min and Z < 10
𝑝

and (sb = 1 or 𝑅 ̸= 0)

0 else
if GUF = 1 then underflow!

TZ = {
0 if sb = 1

TZ else

Algorithm 8: On-the-fly conversion with gradual underflow han-
dling.

Rounding is required when the number of significant
digits of the quotient exceeds the length 𝑝 of a decimal word.
The divider presented in this paper provides the five rounding
modes as requested by [4]. Rounding either selects the integer
quotient Z

𝑒
or the incremented quotient ZP1

𝑒
= Z
𝑒
+ 1. As

proven by Theorem A.1 in the appendix, rounding overflow
cannot occur in DFP division. Rounding overflow would
occur, if Z

𝑒
+1 overflows due to rounding.The selection of the

quotient depends on the rounding mode, the rounding digit
(R), the sticky bit (sb), and the least significant digit (LSD)
of the quotient. The calculation of the round up detection is
summarized in Table 3.

Finally, the result is encoded again, and the exception
unit might assert six exception signals. These are division by
zero, invalid operation, result is infinite, inexact, overflow,
and underflow. Division by zero is asserted when the divisor
equals zero but the dividend is unequal to zero.The operation
is called invalid when both operands are zero, both operands
are infinity, or any of the operands is either a signaling
or a quiet NaN. The inexact flag is asserted when the
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Table 3: Round-up detection.

Rounding mode Round-up detection

Round Ties To Even (𝑅 > 5) + (𝑅 ≡ 5) ⋅ sb
+(𝑅 ≡ 5) ⋅ sb ⋅ LSD(0)

Round Ties To Away (𝑅 ≥ 5)

Round Toward Positive sign ⋅ ((𝑅 > 0) + sb)
Round Toward Negative sign ⋅((𝑅 > 0) + sb)
Round Toward Zero 0
Legend: “+”: logical OR, “⋅”: logical AND.

offset2 = 783 − 398 = 385
if (QP ≤ QNI) or (QNI + TZ < QP)

or (QP > 𝑞max) then
(a) QNI > 𝑞max ⇒ overflow!
(b) 𝑞min ≤ QNI ≤ 𝑞max ⇒

𝑞
𝑍
= QNI − offset2

Z
𝑒
= Z

ZP1e = ZP1
(c) QNI < 𝑞min ⇒ underflow!

else
(a) 𝑞min ≤ QP ≤ 𝑞max ⇒

𝑞
𝑍
= QP − offset2

Z
𝑒
= Z≫ (QP − QNI)

ZP1
𝑒
= ZP1≫ (QP − QNI)

(b) QNI < 𝑞min ⇒ underflow!

Algorithm 9: Exponent calculation.

rounding digit or the sticky bit is unequal to zero. Overflow
and underflow are computed as described in the exponent
calculation unit and are listed in Algorithms 8 and 9. The
infinity exception is asserted when the result is greater than
the largest number, that is, when either overflow or division
by zero exception is asserted, or when the dividend is infinity
while the divisor is a finite number.

6. Implementation Results

All dividers are modeled using VHDL and are implemented
for Xilinx Virtex-5 devices with speed grade −2 using Xilinx
ISE 10.1. The postplace and route results of the fixed-point
dividers are listed in Table 4.

All five types of fixed-point dividers require 19 cycles to
perform a division. This includes 17 cycles to determine the
quotient digits and the rounding digit, one additional cycle
to normalize the result (when the first quotient digit is zero),
and one cycle latency to perform on-the-fly conversion and
sticky bit determination. As expected, the type1 divider uses
themost resources in terms of look-up tables (LUTs) and flip-
flops (FFs).The type2, type3.a, and type3.b divider consumes
less LUTs but require, further five (type2) or two (type3.a
and type3.b) BRAMs. However, comparing the delay of the
three dividers leads to an unexpected result. Contrary to
decimal divider implementations in ASIC designs, on FPGA
platforms the shift-and-subtract algorithm is the fastest. The

reason is that the signal propagation on the FPGA’s internal
fast carry chains is faster than interconnections between
slices over the FPGA’s general routing matrix. The type1
divider exploits this fast carry chains, whereas type2, type3.a,
type3.b, and type4 dividers only use the normal, slow slice
interconnection resources. In ASIC implementations, for
instance, the longest paths of the type4 divider would be
much shorter than the longest path of the type1 divider, but
on FPGA architectures the situation is the opposite.

One of the fastest decimal fixed-point divider on ASICs
is the design of Lang and Nannarelli [14]. They minimize the
critical path in the digit recurrence by using a fast quotient
digit selection function based on binary carry-propagate
adders that subtract fixed values from the estimation of
the current residual. These fixed values are dependent on
estimations of the divisor and are precomputed and stored
in a ROM. Therefore, the latency of the ROM does not
contribute to the critical path of the digit recurrence. The
implementation of such a divider on FPGAs would have
a poor performance because the required carry-save adder
with small error estimation cannot be implemented effi-
ciently on the FPGA’s slice structure. However, the concept
of removing the ROM from the critical path is applied to
the type3.a and type3.b dividers, and the corresponding
postplace and route results are shown in Table 4. These
results point out that the type3.a utilizes a similar amount
of LUTs as the type2 divider but the cycle time is much
higher. The reason for this increased cycle time can be
explained by the raised complexity of the multiplexers for
the selection of the divisor’s multiples in the digit recurrence
step. These multiplexers show a poor performance in terms
of propagation delay because they are implemented as a
tree with slow slice interconnections. On the contrary, the
type3.b divider applies dedicated fast multiplexers, which
have a propagation delay of only one LUT instance and eight
fast carry chains. This dedicated fast multiplexer speeds up
the divider and reduces the maximum cycle time by one
nanosecond. Unfortunately, the number of used LUTs is
increased dramatically by approximately 1000 LUTs.

The comparison of the type2, type3.a, type3.b, and type4
dividers in terms of speed and area (number of occupied
LUTs and FFs combined) shows that the type2 algorithm is
the fastest and requires the least number of slices. Hence,
there is no benefit in removing the ROM’s latency from
the critical path because the complexity is moved to the
selection of the divisor’s multiples. The type1 divider is only
5% faster than the type2 divider, but the speed is bought at
a high price because the number of occupied slices is 75%
higher. Therefore, the type2 divider shows a good tradeoff in
terms of area and latency and is used for the floating-point
divider presented in this paper. In the following paragraph
we compare the type2 implementation with other published
fixed-point dividers.

Four other FPGA-based dividers are presented by Ercego-
vac andMcIlhenny [17, 18], Deschamp and Sutter [24], Zhang
et al. [25], and Véstias and Neto [12]. These implementations
are compared to our type2 divider in the following. The
divider presented in [17, 18] is based on a digit recurrence
algorithm that only requires limited-precision multipliers,
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Table 4: Results for normalized decimal fixed-point dividers, 𝑝 = 16 + 1.

Type1 Type2 Type3.a Type3.b Type4
Number of LUTs 3595 1704 1749 2751 1846
Number of FFs 1234 1126 1262 1262 1031
Number of LUTs and FFs combined 3868 2210 2304 3240 2203
Number of 36 k BRAM 0 5 2 2 0
Number of LUTs normalized to the type2 divider 2.11 1.00 1.03 1.61 1.08
Number of FFs normalized to the type2 divider 1.10 1.00 1.12 1.12 0.92
Number of LUTs and FFs combined normalized to the type2 divider 1.75 1,00 1.04 1.47 1.00
Cycle time (ns) 8.1 8.5 10.1 9.1 12.1
Overall latency (ns) (19 × cycle time) 154 162 192 173 230
Max. frequency (MHz) 123 118 99 110 83
Max. frequency normalized to the type2 divider 1.05 1.00 0.84 0.93 0.70

Table 5: Performance comparison of fixed-point dividers.

Occupied area Cycle time (ns) Latency (ns)
Ercegovac and McIlhenny [17] (𝑝 = 14, Virtex-5) 1263 (6 : 2) LUTs 13.1 197
Type2 divider, equalized to 𝑝 = 14 1692 (6 : 2) LUTs 8.5 136
Deschamps and Sutter [24] (𝑝 = 16, Virtex-4)

(i) Nonrestoring algorithm 2974 (4 : 1) LUTs 21.4 386
(ii) SRT-like algorithm 3799 (4 : 1) LUTs 16.6 300

Zhang et al. [25] (𝑝 = 16, Virtex-II Pro) 3976 slices 20.0 420
Véstias and Neto [12] (𝑝 = 16, Virtex-4, Newton-Raphson)

(i) Type A3 (0 DSPs, 118 cycles) 2756 (4 : 1) LUTs 3.4 394
(ii) Type A4 (0 DSPs, 90 cycles) 3768 (4 : 1) LUTs 3.4 306
(iii) Type A5 (7 DSPs, 112 cycles) 2091 (4 : 1) LUTs 3.4 380
(iv) Type A6 (10 DSPs, 86 cycles) 2718 (4 : 1) LUTs 3.4 292

Type2 divider, equalized to 𝑝 = 16 1704 (6 : 2) LUTs 8.5 153

adders, and LUTs. Furthermore, a compensation term is
computed in the digit recurrence that compensates the error
caused by this limited precision. The design is optimized for
Virtex-5 FPGAs and has a good area characteristic (a 14-
digit divider requires 1263 LUTs) but suffers from a high cycle
time of 13.1 ns, which is more than 50% higher compared
to the type1 or type2 design proposed in this paper. The
reason for that high cycle time is (similar to the type4
divider) the long critical paths across many LUTs that cannot
exploit the FPGA’s fast carry chains. Therefore, the design
would probably fit better on ASICs with dedicated routing.
The dividers implemented in [24] apply two different digit
recurrence algorithms with a redundancy of 𝜌 = 1. The
quotient digit selection function is very complex because
it requires three MSDs of the divisor and four MSDs of
the residual. The cycle times are high but it must be taken
into account that these designs are optimized for Virtex-
4 FPGAs. Nevertheless, the number of used LUTs is very
high. The divider presented in [25] applies a radix-100 digit
recurrence algorithm with comprehensive prescaling of the
dividend and divisor. It is optimized for Virtex-II Pro devices;
hence, it is hard to compare it with the dividers presented
in this paper. However, the critical path includes a decimal
carry-save adder tree, two carry-propagate adder stages, and
three multiplexer stages. It can therefore be assumed that this

algorithm would also have a poor performance on Virtex-
5 devices, although two quotient digits are retired in each
iteration step. Véstias and Neto [12] propose four different
decimal dividers optimized for different speed and area
tradeoffs. Contrary to the circuits presented in this paper,
the dividers apply the Newton-Raphson algorithm. The used
multiplier is sequential; therefore, many cycles per division
are required. However, each divider has a higher delay and a
greater LUT usage compared to our type2 implementation.

Table 5 lists the results of the dividers presented in [17, 24,
25] together with the results of the type2 divider. However,
for a fair performance comparison the precision of the type2
divider is equalized to match the number of calculated
quotient digits of the corresponding divider. Furthermore it
should be noted that the dividers presented in [12, 17, 24, 25]
do not provide rounding support.

For the floating-point implementation, the fixed-point
divider of type2 is used because type1 and type3.b consume
too many resources, and type3.a and type4 are too slow.
However, five additional BRAMs are required, but these are
available in sufficient quantities on Virtex-5 devices. The
corresponding postplace and route results for two config-
urations with different numbers of serialization stages are
listed in Table 6. A comparisonwith other implementations is
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Table 6: Postplace and route result of the floating-point divider
based on type2.

Config. 1 Config. 2
Number of cycles per float division 23 21
Number of LUTs 3231 3205
Number of FFs 1630 1377
Number of LUTs and FFs combined 3571 3566
Cycle time (ns) 8.5 9.1
Overall latency (ns) 195.5 191
Max. frequency (MHz) 118 110

Table 7: Postplace and route result of a 64-bit binary floating-point
divider (Core Gen).

Cycles per division
1 10 20 55

No. of LUTs 3161 592 425 394
No. of FFs 196 518 469 542
No. of LUTs and FFs comb. 3232 917 675 675
Cycle time (ns) 153.7 20.8 8.9 6.8
Overall latency (ns) 153.7 208 178 374
Max. frequency (MHz) 6.5 48 112 147

complicated because there are no other FPGA-based imple-
mentations of decimal floating-point dividers published yet.
Therefore, we can only compare the decimal divider with
binary dividers implemented on the same FPGA. In Table 7
postplace and route results of binary floating-point dividers
for the double data format on a Virtex-5 provided by the
Xilinx Core Generator [26] are listed. The dividers also
provide exception signals overflow, underflow, invalid opera-
tion, and divide-by-zero. Unfortunately, the binary floating-
point divider does not support gradual underflow because
this feature increases the complexity. The divider with one
cycle per division is an unpipelined and fully parallel design,
and the divider that requires 55 cycles per division is a
fully sequential design. The binary floating-point divider
with 20 cycles per division is best suited for a comparison
with the decimal floating-point divider because it requires a
comparable number of cycles for one operation. Obviously,
decimal arithmetic has a great overhead regarding the total
number of used LUTs, but the cycle time and latency are
similar. This resource overhead can be explained, on the one
hand, by the inefficient representation of decimal values on
binary logic and, on the other hand by the more complex
specification of the decimal standard IEEE 754-2008. For
instance, decimal floating-point division requires additional
encoders, decoders, and a normalization stage.

7. Conclusion

In this paper we have presented five different radix-10 digit
recurrence division algorithms.The type1 divider implements
the simple shift-and-subtract algorithm. The type2 divider is
based on a nonrestoring algorithmwith ROM-based quotient
digit selection function. The type3.a and type3.b dividers are

both similar to type2 but use fast binary carry-propagate
adders in the quotient digit selection function. However,
the type3.a divider uses LUT-based multiplexers whereas the
type3.b uses fast carry chain-based multiplexers. The type4
divider applies a new algorithm with constant digit selection
functions. This type4 divider requires neither a ROM nor
multiplexers to select multiples of the divisor.

Wehave shown that the subtract-and-shift algorithmwith
theworst latency inASIC architectures is the fastest design on
FPGAs, but uses the most FPGA resources in terms of LUTs.
A good tradeoff between latency and area is the architecture
type2with a redundant carry-save representation of the resid-
ual, a radix-2 representation of the twoMSDs, and a quotient
digit selection function implemented in ROM. Furthermore,
we have extended thisfixed-point to a fully IEEE 754-2008
compliant decimal floating-point divider for decimal64 data
format, and, finally, we have shown implementation results of
all dividers.

Appendix

Proofs

Theorem A.1 (rounding overflow). Let us consider a decimal
floating-point division 𝑄 = 𝑋/𝐷 with the signs 𝑠

𝑖
, the

significands 𝑐
𝑖
, the exponents 𝑞

𝑖
, and the precision p

(−1
sQ ⋅ cQ ⋅ 10

qQ) =
(−1

sX ⋅ cX ⋅ 10
qX)

(−1sD ⋅ cD ⋅ 10qD)
. (A.1)

Then, rounding overflow, that is, an overflow that arises due to
adding +1 to the least significant digit of the final result, cannot
occur.

Proof. Assume to the contrary that there are a floating-point
dividendX, a floating-point divisorD, and a proper rounding
mode, where the decimal floating-point division produces a
rounding overflow. Without loss of generality we consider
in the following only positive operands (𝑠

𝑋
= 𝑠
𝐷

= 0),
normalized significands (𝑐

𝑋
, 𝑐
𝐷
≥ 10
𝑝−1), and the exponents

to be zero (𝑞
𝑋
= 𝑞
𝐷
= 0). In the case of rounding overflow, the

𝑝 digits of the quotient must be all nines, and the remainder
must be unequal to zero, that is,

𝑐
𝑋⏟⏟⏟⏟⏟⏟⏟

𝑝 digits

= 𝑐
𝑄
⋅ 𝑐
𝐷
+ rem = 9.9 ⋅ ⋅ ⋅ 9⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝 digits
⋅ 𝑐
𝐷⏟⏟⏟⏟⏟⏟⏟

𝑝 digits

+ rem⏟⏟⏟⏟⏟⏟⏟

𝑝 digits
, (A.2)

with 0 < rem < 𝑐
𝐷
⋅ 10
−𝑝+1

. (A.3)

Condition (A.2) is fulfilled for

𝑐
𝐷
= 10
𝑝−1

, 𝑐
𝑋
= 9.9 ⋅ ⋅ ⋅ 9⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝 digits
, (A.4)

but this violates condition (A.3) because the remainder is zero
(rem = 0); that is, the result is exact, no round-up is applied,
and hence no rounding overflow occurs.
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Otherwise, if the divisor is greater than 10
𝑝−1 it follows

that
𝑐
𝑋⏟⏟⏟⏟⏟⏟⏟

𝑝 digits

= (9.9 ⋅ ⋅ ⋅ 9) ⋅ 𝑐
𝐷
+ rem

= (10 − 10
−𝑝+1

) ⋅ 𝑐
𝐷
+ rem

= 10 ⋅ 𝑐
𝐷
+ (−10

−𝑝+1
⋅ 𝑐
𝐷
+ rem)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

<0

= 10 ⋅ 𝑐
𝐷
+ 𝜇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⩾𝑝+1 digits

(A.5)

with −10 < 𝜇 < 0. The left term of the equation has,
by definition, a precision of 𝑝 digits while the right term
of the equation has a precision of more than 𝑝 digits. This
contradiction, finally, proves that no rounding overflow can
occur.
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