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Multi-FPGA hardware prototyping is becoming increasingly important in the system on chip design cycle. However, after
partitioning the design on the multi-FPGA platform, the number of inter-FPGA signals is greater than the number of physical
connections available on the prototyping board. Therefore, these signals should be time-multiplexed which lowers the system
frequency. The way in which the design is partitioned affects the number of inter-FPGA signals. In this work, we propose a set
of constraints to be taken into account during the partitioning task. Then, the resulting inter-FPGA signals are routed with an
iterative routing algorithm in order to obtain the best multiplexing ratio. Indeed, signals are grouped and then routed using the
intra-FPGA routing algorithm: Pathfinder.This algorithm is adapted to deal with the inter-FPGA routing problem.Many scenarios
are proposed to obtain the most optimized results in terms of prototyping system frequency. Using this technique, the system
frequency is improved by an average of 12.8% compared to constructive routing algorithm.

1. Introduction

With the ever increasing complexity of system on chip
circuits, the software and hardware developers can no longer
wait for the fabrication phase to test their designs [1].
Currently, it is estimated that 60 to 80 percent of an ASIC
design is spent in performing verification [2].

FPGA-based prototyping is an important step in the
creation of the final product and it is the key to the success
of marketing in time. The key advantage of FPGA-based
prototyping is the ability to run at high speed (sometimes at
almost real-time speed) a cycle-accurate, bit-accurate model
of the SoC [3]. The availability of automatic FPGA mapping
tools has streamlined the design conversion process, making
the path from ASIC design to FPGA implementation more
straightforward.

When the logic capacity of a single FPGA is less than the
size of the design under test, a multi-FPGA platform is used
to map the entire design. Because the silicon area overhead
of FPGA versus ASIC technology has been measured to be
about 40x [4], FPGA programming technology requires that

an ASIC logic design be partitioned across multiple FPGA
devices to achieve the necessary device logic capacity. The
number of FPGAs depends on the size of the prototyping
system, ranging from a few [5] up to 60 FPGAs [6].

In order to map the design into a multi-FPGA board,
a partitioning tool decomposes the design into pieces that
will fit within the logic resources of individual FPGA devices.
Partitioning is often performed to minimize required inter-
FPGA interconnect, control system-wide critical path delay
and localize memory access. For some systems, partitioning
must be performed so that routing restrictions in terms of
available FPGA pin count and system topology are taken
into account. These constraints are considered in order to
manage the large timing delays in inter-FPGA communica-
tions compared to intra-FPGA ones and also to cope with
the limited bandwidth problembetween FPGAs, which is due
to the limited I/Os per FPGA. Indeed, the number of I/Os
is increasing for each new FPGA generation, but the ratio
of FPGA I/Os over FPGA logic capacity is decreasing. Thus,
even though the logic capacity of the multi-FPGA board is
sufficient to map the complete design, the number of signals,
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which appear at the interface and which should be transmit-
ted between FPGAs, is significantly higher than the number
of available traces between those FPGAs.The communication
of interpartition signals between FPGAs is based on routing
algorithms. The most used routing algorithm involves the
determination of the shortest feasible path between FPGAs,
using available board interconnect resources for each cut
signal [7]. This approach is not recursive and leads inevitably
to a blockage.

In this paper, we propose a set of constraints to be
considered during the partitioning task.These constraints are
intended to get the best results in terms of the number of
cut signals and the critical path optimization. We propose
also a new approach to route the resulted inter-FPGA signals,
based on signal multiplexing technique. To reach this goal,
we use an iterative routing algorithm, called Pathfinder [8].
This algorithm was used to route the intra-FPGA signals. We
extend it for the inter-FPGA signals in order to obtain the best
routing results.

The rest of this paper is organized as follows. Section 2
is dedicated to the different techniques used in the state of
the art to route the inter-FPGA signals. Section 3 describes
the different steps of the design prototyping flow. In Sec-
tion 4, we present the proposed routing algorithm which
is used initially to route the intra-FPGA signals. Section 5
explains the scenarios we propose to test the performance
of the routing algorithm. These scenarios include the inter-
FPGA signal form and also the routing graph direction. In
Section 6, we describe the multiplexing IP that we use to
transfer the multiplexed signals. Section 7 is dedicated to the
experimental results and to the evaluation of the proposed
methods. Finally, Section 8 concludes the paper.

2. Related Works

To address the inter-FPGA signals routing problem, the
authors in [9, 10] proposed heuristic algorithms to solve mul-
titerminal routing signals in partial crossbar architectures.
In [11, 12], multiterminal signals are decomposed into two-
terminal nets.Therefore, routing algorithm is applied to these
nets.

In this paper, our goal is to find the best signal shape
which gives the best routing results. For this reason, many
scenarios are applied with the proposed routing graph in
order to get the best system frequency.

To remedy the number of pin limitations, Babb et al.
[13, 14] introduced time multiplexing of I/O pins. Multi-
plexing means that multiple design signals are assembled
and serialized through the same board connection and
then demultiplexed at the receiving FPGA. This technique
increases dramatically the available inter-FPGA communi-
cation bandwidth. On the other hand, it makes the proto-
typing system much slower since the system clock period is
composed of several phases. Each phase contains a number
of slots. Consequently, in each phase, the selected signals are
transmitted, each in a slot, between a pair of FPGAs. Signals
are selected based on their criticality which is calculated
depending on the logic dependency analysis. A signal is

selected if all signals it depends upon have been routed
in previous phases. The router then uses the shortest path
analysis with a cost function based on pin utilisation to
route as many selected signals as possible, routing the most
critical signals first. Any selected signals which cannot be
routed are delayed to the next phase. In this technique, all
the signals are multiplexed, without promoting the signals on
the critical path. Some critical signalsmay not bemultiplexed
to obtain a better performance in terms of system frequency.
Another disadvantage related to the combinational loops is
that any unpredictable delay of an inter-FPGA signal causes
the transmission of nonupdated values and then system
errors. Even though such a sophisticated approach may
realize faster verification speed, it decreases the reliability of
circuit verification which is the most critical issue of circuit
verification.

In [15, 16], the authors proposed a new multiplexing
approach based on the integer linear programming.Themain
objective of this study is to select which signals must be
multiplexed and those which must not. Using this technique,
all signals are transmitted on each phase, but only those
with updated values are considered. Since all the signals
are transmitted in each phase, the number of slots per
phase increases and the system frequency is decreased. This
technique, as the one in [9, 10], uses a constructive routing
algorithm which is not optimized. In fact, when a signal is
already routed, it cannot be rerouted to leave the routing
resources currently used to another signal that has the
greatest need for these resources. This disadvantage will be
solved using an iterative routing algorithm as proposed in
this study. In fact, the objective of our iterative approach is
that all the signals negotiate the use of the routing resources.
Each physical wire will be used by the signal which has the
biggest need to this resource. This negotiation will be done
through several iterations to solve all the conflicts, unlike the
constructive routing algorithm which is done only by one
iteration.

3. Prototyping Flow

Toprototype anASICdesign into amulti-FPGAplatform, the
input circuit is transformed into multi-FPGA configuration
bitstream to be downloaded onto the prototyping board.
Figure 1 presents the prototyping flow.

3.1. Logic Synthesis. The HDL description files of the pro-
totyping architecture are mapped onto the target library
of FPGA primitives. In this paper, the benchmarks are
synthesized with the Synplify industrial tool [18]. The output
of this task is a postsynthesis Verilog netlist.

3.2. Partitioning. After mapping the netlist onto the tar-
get technology, it is divided into partitions; each can fit
into a single target FPGA. The partitioner performs K-way
partitioning with multiobjective function. The partitioning
step is very critical since it has a significant impact on the
performance of the prototyping system. In this study, we use
the Wasga partitioning tool of Flexras technologies [19]. For
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Figure 1: Prototyping flow.

this tool, we set some constraints in order to have a good
trade-off between the following criteria.

(a) Minimize the Number of Cut Signals. For big designs, it
is difficult, if not impossible, to find a partitioning solution
which meets the constraint related to the number of physical
connections between FPGAs. As will be explained subse-
quently, the solution is to make a postpartitioning process
allowing a number of signals to share the same physical wire
in different time fractions.The insertion of thesemultiplexers
increases the delays on combinatorial paths. These delays are
correlated to the number ofmultiplexed signals (multiplexing
ratio). Thus, the main goal of the partitioner is to reduce the
number of the cut signals in order to get the lowest rate of
multiplexing.

On the other side, the ratio between the number of cut
signals and the number of available wires should be balanced
between all pairs of FPGA. Therefore, the objective of the

partitioning tool is to minimize the 𝐶𝑝 parameter presented
in

𝐶𝑝 = √

𝑁

∑

𝑝=0

(
𝑆𝑝

𝑇𝑝

)

2

, (1)

with 𝑁 being the number of FPGA pairs in the prototyping
platform, 𝑆𝑝 being the number of signals between the pair𝑝of
FPGAs, and 𝑇𝑝 being the number of available tracks between
the same pair.

Finally, the partitioner aims to provide guidance about the
signals which should not be multiplexed since they affect the
critical path.

(b) Combinatorial Paths. The system frequency is imposed
by the delay of the longest combinatorial path (between
two registers). The delay on a combinatorial path is strongly
correlated with the number of times a path crosses the border
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Figure 2: Combinatorial hop example.

of an FPGA, called combinatorial hop. This is because the
transmission through inter-FPGA connection ismuch slower
than the one inside the FPGA. Therefore, it is important
to absorb the signals belonging to the critical combinatorial
paths. In Figure 2(a), the number of combinatorial hops is
equal to 2, and the number of cut signals is equal to 2.
If the partitioner identifies the best module to move, the
partitioning solution will be improved since the number of
inter-FPGA signals and the number of combinatorial hops
will be reduced as shown in Figure 2(b).

(c) Logical Resources Limitation. The number of logical
resources in the FPGA circuits is limited. During the par-
titioning, an occupancy rate constraint is set, so the par-
titioning tool must take into account this number and try
to make a partitioning solution which meets the available
resources. These resources are heterogeneous since they
include different types (LUT, Ram, DSP, etc.). The occupancy
rate should consider the additional logical area which will
be occupied by the multiplexing IPs after the inter-FPGA
routing tasks.

Unlike most of commercial tools, the partitioning tool
used in our experiments operates on synthesized netlists
which gives accurate information about the size of the design
so it can meet the available logical resources of each FPGA.

3.3. Routing and Multiplexing. The system clock is the clock
of the logic design being prototyped.The system clock period
is divided into a number of slots as shown in Figure 3. Each
signal is transmitted between a pair of FPGA within one slot
period. These slots are controlled by an I/O clock which is

faster than that of the system in order to transfer all the signals
within one system clock period.

The system clock period is given by the following equa-
tion:

𝑇SYS CLK = settle start + comm delay + settle end. (2)

Settle start and settle end correspond to the intradelay of
propagation inside the source and destination FPGA, respec-
tively.During the intra-FPGAplace and route tasks, we define
amulticycle path constraint to set the intra-delay propagation
to 3 times the intercommunication period; that is, 3 ∗ 𝑇IOclk
in order to relax the timing constraint inside each FPGA.The
comm delay is the delay of the inter-FPGA communication.
This delay should be reduced in order to optimize the system
frequency. The communication delay is represented by the
following expression:

Comm delay = 𝑇mux + 𝑇routing hop + 𝑇latencies. (3)

𝑇mux is the amount of delay spent to transfer all signals via the
same physical wire and it is proportional to the multiplexing
ratio. The 𝑇routing hop is the delay spent to cross all the routing
hops. In fact, the number of routing hops is the number of
FPGAs to cross to route a signal between the source and
the destination. Finally, 𝑇latencies is the latency of the SERDES
modules.

In order to reduce themultiplexing ratio, the effort should
be spent on the routing task. Indeed, using an appropriate
routing algorithm, the router can find the optimized solution
related to the given constraints. As shown in Figure 4, the
router takes as input the architecture of the prototyping
platform, the list of cut signals to be routed, and the initial
mux ratio parameter which is the number of inter-FPGA
signals to be transmitted through the same physical wire.This
parameter is calculated as the max of the multiplexing ratio
of all the FPGA pairs. The mux ratio of one FPGA pair is
the ratio between the number of signals and the number of
connection wires between these two FPGAs.

Figure 4 shows the proposed flow to reduce the multi-
plexing ratio. Depending on the given inputs, the router tries
to route all inter-FPGA signals by meeting the mux ratio
calculated initially. If a feasible solution exists, the mux ratio
is decremented and the router attempts to find another
routing solution with the new mux ratio. Otherwise, the
router exits with the best obtained multiplexing ratio.

3.4. FPGA Place and Route. Once the routing is achieved, the
multiplexing IPs are inserted on the source and destination
FPGAs to ensure the inter-FPGA signals transmission in the
corresponding time slots. One netlist is generated for each
FPGA. Each netlist must be processed with FPGA specific
automated place and route software to generate configuration
bitstreams.

4. Inter-FPGA Signals Routing Strategy

To route inter-FPGA signals, it is necessary to find an algo-
rithm that can assign, in an optimized manner, signals to the
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available resources. The techniques mentioned in Section 2
use constructive routing algorithm. This algorithm keeps
the track of the reserved and available physical connections
between FPGAs. The router applies Dijkstra’s shortest path
algorithm [20] to determine the shortest path between the
source and destination FPGAs. If the shortest path exists,
the capacity of all used resources is decremented; then, they
cannot be used to route the next signals. Otherwise, router
returns unsuccessfully.Themain disadvantage of thismethod
is its irreversibility. Indeed, when a signal is already routed, it
cannot be rerouted to leave the routing resources currently
used to another signal that has the greatest need for these
resources. In the example of Figure 5, signals are routed
randomly. If the signal S1 is first routed through FPGA1,
then S2 cannot be routed since the wire between FPGA1 and
FPGA2 is used by S1. In this case, the design is considered
nonroutable. To avoid this problem, we route the inter-FPGA
signals by an iterative routing algorithm. Among existing
techniques, the Pathfinder routing algorithm seems to be best

suited to our problem as it offers a compromise between
performance and routability goals.

4.1. Routing Graph. Since we have chosen Pathfinder to route
all inter-FPGA signals, our interest was about the modelling
of the multi-FPGA board. Therefore, we chose to model all
the routing resources by an oriented routing graph 𝐺(𝑉, 𝐸).
The set of vertices, 𝑉 = V1, . . . , V𝑛, in the graph represents
the I/O pins of all FPGAs, and each FPGA is represented by
a top vertex. The set of edges, 𝐸 = 𝑒1, . . . , 𝑒𝑛, represents all
the inter-FPGA connections. An unidirectional connection is
modelled by a directed edge, while a bidirectional connection
(e.g., between a vertex and a top vertex) is represented by two
directed edges.

Figure 6 presents a routing graph of a three-FPGA-based
platform.

4.2. Routing Algorithm: Pathfinder. Pathfinder is used pri-
marily for routing intra-FPGA signals. We adapt it to deal
with the inter-FPGA signals [21]. Pathfinder uses an iterative,
negotiation-based approach to successfully route all the
signals. The routing problem for a given signal is to find
a directed tree embedded in 𝐺 that connects the source of
the signal to each of its FPGA destinations. During the first
routing iteration, the signals are freely routed without paying
attention to resource sharing. Individual signals are routed
usingDijkstra’s shortest path algorithm [20]. At the end of the
first iteration, resources may be congested because multiple
signals have used them. During subsequent iterations, the
cost of using a resource is increased, based on the number of
signals that share the resource and the history of congestion
on that resource. Thus, signals are forced to negotiate for
routing resources. If a resource is highly congested, nets
which can use lower congestion alternatives are forced to do
so. On the other hand, if the alternatives are more congested
than the resource, then a signal may still use that resource.
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Observing the final routing results, we notice that inter-
FPGA signals can be directly routed between source and
destination FPGAs or intermediate through-hops may be
necessary.

5. Routing Algorithm Adaptation

Taking into account some problems to be detailed later, we
adapt our routing approach to the new routing topology.
In this section, we discuss the proposed solutions and the
various changes we make.

5.1. Convention. All FPGAs on the prototyping board are
indexed sequentially, starting at 0. We say that a signal has
a direct direction if the index of the FPGA source is lower
than its FPGA destination. Signal with indirect direction is
the signal which is directed towards the opposite.

5.2. Signal Direction Conflicts. The Pathfinder routing algo-
rithm processes each signal independently. Each routing
resource (node) may be shared by more than one signal.
Signals that share the same resource aremultiplexed together.
As mentioned above, we model our architecture by a bidi-
rectional routing graph. This causes direction conflicts since
the signals sharing the same resources can have different
directions.

5.2.1. Unidirectional Routing Graph. To avoid direction con-
flicts, we apply the Pathfinder routing algorithm on a unidi-
rectional graph. The idea is to assign, according to criteria to

No

Yes
Success?

Start Pathfinder

Unidirectional routing graph
modelling

Best mux ratio

Compute initial mux ratio

Mux ratio

Set nodes capacity to
“mux ratio”

Figure 7: Routing flow on unidirectional graph.

be detailed later, a definite direction to all physical wires. In
the routing graph, this is translated by a single edge between
each pair of nodes.

Figure 7 represents the routing flow on a unidirectional
graph. The first step generates the unidirectional graph
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depending on the number of inter-FPGA signals between
each pair. The number of physical wires that transmit direct
(resp., indirect) signals between two FPGAs is proportional
to the number of direct (resp., indirect) signals between these
two FPGAs.The following equation represents the number of
physical wires in a given direction:

NBwires[𝑓𝑖→𝑓𝑗] =
Sig
[𝑓𝑖→𝑓𝑗]

Sig
[𝑓𝑖 ,𝑓𝑗]

∗ NBwires[𝑓𝑖 ,𝑓𝑗]. (4)

Sig
[𝑓𝑖→𝑓𝑗]

and Sig
[𝑓𝑖 ,𝑓𝑗]

are, respectively, the number of direct
signals between FPGA𝑖 and FPGA𝑗 and the total number
of signals between the same pair. NBwires[𝑓𝑖, 𝑓𝑗] is the total
number of available physical wires between FPGA𝑖 and
FPGA𝑗.

In the example of Figure 8, the number of direct wires
is set to 3, and the number of indirect wires is set to 2. The
second step consists in computing the initial mux ratio. This
parameter is calculated as follows:

mux ratio = Max𝑓1→𝑓2∈FPGAs
Sig
𝑓1→𝑓2

Wires𝑓1→𝑓2
. (5)

The maximum mux ratio of all the FPGA pairs is the ratio
between the number of signals and the number of available
physical wires between each pair.

After calculating themultiplexing ratio, the capacity of all
nodes is set to mux ratio.Then, Pathfinder routing algorithm
tries to find a feasible solution in which all signals should
be routed and each node should not be shared by more
than “mux ratio” signals. If these two constraints are met,
the mux ratio parameter is decremented and the router tries
to find a feasible solution with the new value of mux ratio.
Otherwise, the router exits with the best solution found.

5.2.2. Bidirectional RoutingGraph. Theselection of the unidi-
rectional wires proportional to the number of signals between
each pair of FPGA is not an optimized decision. For this
reason, we keep the bidirectional graph and we assemble
signals into groups. Indeed, signals that have the same source
and the same destinations are grouped together in “GSignals”
and are considered as a single signal. Each GSignal contains a
maximum of mux ratio signals. Therefore, the capacity of all
resources in the routing graph is set to 1. The bidirectional
graph allows a better use for available routing wires of the
multi-FPGA prototyping board.

Figure 9 presents the steps to route inter-FPGA signals
on a bidirectional routing graph. The first step creates the
graph using two edges of opposite directions to represent
each physical wire. Next, the initial mux ratio parameter is
calculated in the sameway as in the unidirectional graph.This
parameter determines the number of signals to be grouped
together into one GSignal.

After running the Pathfinder algorithm to route the
GSignals, all GSignals should be routed and each node should
be used by only one GSignal. Finally, the router retains the
routing solution with the best mux ratio.

This method avoids conflict management, since the
Pathfinder algorithm prevents congestion; at the end of every

FPGA 0 FPGA 1

Figure 8:Unidirectional wires selection proportional to the number
of signals.

Start Pathfinder

Success?

No

Yes

Bidirectional routing graph
modelling

Compute initial mux ratio

Best mux ratio

Mux ratio

Create GSignals containing N 
signals, with N ≤ mux ratio

Figure 9: Routing flow on bidirectional graph.

iteration, no node is used by more than one group of signals
or GSignals, which all have the same direction.

However, this method is not fully optimized. Indeed,
from a source “𝑆” to destination “𝐷,” the number 𝑁 of
existing signals can be much below the maximum number
of signals allowed in a GSignal, which is equal to mux ratio.
Consequently, since the capacity of the nodes is set to 1, in a
path between “𝑆” and “𝐷,” only 𝑁 signals are routed, which
means a bad routing resource utilization.

5.3. Signal Modelling. For better routing results, we notice
that the choice of signal form is essential with two possibilities
to consider the signal shape: a multiterminal or a two-
terminal signal.

5.3.1. Multiterminal Signal. After partitioning the prototyp-
ing design, the next step routes all nets from the part contain-
ing the driver of this net to all parts containing destinations.
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Figure 10: Routing solutions of multiterminal net.

Actually, a signal can have more than one destination. The
Pathfinder routing algorithm can route multiterminal nets.
In fact, the algorithm starts by selecting the source and the
list of all destinations. After routing the first one, Pathfinder
moves to the next destination and so on. Such a signal can
be routed in 2 different ways as shown in Figure 10. The first
solution is to use 2 different paths to route the source to its
2 destinations. Indeed, after routing the first destination via
path 1, the router selects the second destination and tries to
route it. An uncongested path can be found via a second
one that does not intersect with path 1. This solution is
represented by Figure 10(a). The second solution is to route
a destination using a part of path used to route an already
routed destination. It means that a destination can be reached
from the last routed one as shown in Figure 10(b).

Although the routing of multiterminal signals can be the
optimal solution, considering the number of used I/O pins,
the design is considered unflexible, especially when grouping
those signals into GSignals. Indeed, in some cases, signals
with the same source and the same destinations are not
numerous; consequently, some GSignals do not contain the
max number of signals, equal to mux ratio.

5.3.2. Two-Terminal Signal. In order to make the design
more flexible, we decompose the multiterminal signals into
branches, each with one source and only one destination.
The Pathfinder routing algorithm tries to find separately a
routing path for each branch. With this decomposition, only
the solution shown in Figure 10(a) is feasible.

6. Multiplexing IP

Theapproach described above determines which signals to be
multiplexed together. These signals are transmitted through
the same physical wire and transferred using 2 multiplexing
IP placed in the sending and receiving FPGAs, as shown
in Figure 11. To ensure the inter-FPGA communications,

dedicated output parallel-to-serial converters (OSERDES)
and input serial-to-parallel converters (ISERDES) are instan-
tiated in the sending and receiving FPGAs. The low-voltage
differential signalling (LVDS) is used to transfer the data
between SERDES converters. The LVDS is a signalling stan-
dard providing high-speed data transfers.

When the number of cut signals exceeds the num-
ber of available I/O pins, the partitioning tool inserts 4-
bit wide SERDES converters. Nevertheless, if the number
of cut signals is not a multiple of 4, some OSERDES
inputs (resp., ISERDES outputs) can be left unconnected.
The maximum number of signals transmitted between an
ISERDES/OSERDES pair is defined as mux ratio (2 ≤
mux ratio ≤ 4).

In highly connected designs, the number of signals can
still exceed the capacity of transmission between a pair of
FPGA, even after implementing the SERDES converters. In
this case, 𝑛-bit wideMUXs (resp., DEMUXs) are added at the
input of the OSERDES (resp., at the output of the ISERDES).
The number 𝑛 equals the number of 4-bit data words to be
sent. When the mux ratio is less or equal to 4, then 𝑛 = 1. On
the other side, if mux ratio ≥ 5, then 𝑛 ≥ 2.

The combination of one 4-bit wide SERDES with one
𝑛-bit wide MUXs/DEMUXs constitutes the multiplexing IP.
This IP manages the inter-FPGA communication by sending
the data, as well as a 4-bit start pattern (for the inter-FPGA
synchronisation) and a 4-bit checksum (to verify the integrity
of the transmitted data). Since 2 inter-FPGA clock cycles are
required to send a 4-bit word, then 2 + 2 + 2 ∗ 𝑛 are needed
to send the start pattern, the checksum, and the 𝑛 4-bit data.
If we consider the SERDES converters latencies as well as
the IP latency, 12 + 2 ∗ 𝑛 cycles are needed to complete the
communication between a pair of FPGA.

On the other hand, some signals are routed through hops
since the direct path from the source to the destination does
not exist. So, when a signal is routed through one or more
routing hops,we insert 5 registers in the netlist of each routing
hop in order to recover the 4-bit data before sending it to the
next FPGAon the routing path.Therefore, 5 cycles are needed
to cross a hop.

According to (3), the communication delay is equal to

Comm delay = NB𝑅 hop ∗ 5 + 12 +
mux ratio
2
. (6)

Since the comm delay causes the biggest delay, we neglect the
effect of the intradelays into the sending and the receiving
FPGAs defined in (2). Therefore, the system frequency is
represented in

Sys freq =
I/O frequency

NB𝑅 hop ∗ 5 + 12 +mux ratio/2
. (7)

7. Experimental Results

We use the benchmark generator [22] to generate several
synthetic designs.The generated benchmarks are hierarchical
since the partitioner operates on high levels of hierarchy in
order to reduce the partitioning runtime and the number
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Figure 11: Multiplexing IP architecture.

Table 1: Comparison between routing results of WASGA and CERTIFY partitioning tools.

Benchmarks WASGA CERTIFY
Cut signals NB FPGA R hop Mux ratio Cut signals NB FPGA R hop Mux ratio

CPU20 occ10 1545 6 0 3 3316 6 0 10
CPU20 occ20 1002 4 0 3 1634 4 0 4
CPU30 occ20 1710 4 0 3 3076 4 0 6
CPU30 occ30 1487 4 0 4 2521 3 0 7
CPU50 occ30 2819 4 0 5 5279 4 0 11
CPU50 occ50 2202 4 0 6 4019 3 0 9
CPU125 occ50 7809 6 1 11 NR NR NR NR
CPU125 occ65 7644 5 0 12 NR NR NR NR

of managed elements. The targeted multi-FPGA prototyping
board that we use for the experiments is a DNV6F6PCIe
from the Dini group [17]. As shown in Figure 12, this
board contains 6 FPGAs Virtex-6 LX550T using all the same
package FF1759, meaning that they have the same number
of total user I/Os. The inter-FPGA clock frequency is set to
500MHz. Applying this frequency on the multiplexing IPs
(ISERDES/OSERDES with LVDS), the inter-FPGA commu-
nication data rate on this board is 1 Gbps using double data
rate (DDR).

To map the designs into this board, we use the WASGA
partitioning flow provided by Flexras Technologies [19].
WASGA partitions the designs and outputs the list of inter-
FPGA signals that should be routed. After routing these
signals, using the routingmethodology detailed in this paper,
WASGAgenerates a netlist for each FPGAwhich contains the
multiplexing IP to ensure the transmission of themultiplexed
signals. The resulting netlists are entered into the FPGA flow
to execute the place and route and the bitstream generation
individually for each FPGA.

Firstly, we set the constraints listed in Section 3.2 to the
WASGA partitioning tool. Table 1 presents the routing results
obtained by WASGA flow and CERTIFY partitioning tool

[23]. The number of cut signals obtained by the WASGA
partitioner is considerably less than the number of the
signals obtained by CERTIFY. WASGA aims to optimize the
number of combinational hops. Therefore, for all the tested
designs, the mux ratio results are improved compared to
those obtained by CERTIFY. Table 1 shows results related to
the number of routing hops used in each benchmark. The
number of routing hops is the number of FPGAs crossed by a
signal from the source until reaching its destination. Results
presented in Table 1 reflect the importance of partitioning on
the system frequency. We should notice that for the 2 last
benchmarks, the designs are not routable (NR) with the CER-
TIFY tool. In fact, since the number of cut signals is becoming
larger, the mux ratio is more and more important. CERTIFY
provides multiplexing IP with a maximum width equal to 32
[24]. Thus, all the designs which need a multiplexing ratio ≥
32 are not routable.

On the other hand, we tried to select the best shape of
the routing signals. Table 2 shows the results for each routing
scenario described in Section 5. These scenarios are defined
depending on the signal shape and the routing graph. Four
scenarios are selected to test the performance of the iterative
routing algorithm on the multi-FPGA prototyping platform.
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Figure 12: Prototyping board based on six Virtex-VI from Dini group [17].

Table 2: Comparison of routing strategies effects on prototyping system performance.

Benchmarks Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mux ratio R hop Freq (MHz) Mux ratio R hop Freq (MHz) Mux ratio R hop Freq (MHz) Mux ratio R hop Freq (MHz)

Circuit A 12 2 17.85 15 2 16.66 4 2 20.83 4 1 26.31
Circuit B 18 3 13.88 24 2 14.7 4 3 17.24 7 1 23.8
Circuit C 24 3 12.82 44 2 11.36 11 3 15.15 11 1 21.73
Circuit D 50 3 9.61 50 2 10.63 15 3 14.28 20 1 18.51
Circuit E 119 6 4.9 116 4 5.55 57 2 9.8 56 4 8.33
Circuit F 160 3 4.67 168 3 4.5 68 3 8.19 68 1 9.8
Circuit G 220 5 3.4 256 1 3.44 89 2 7.46 86 3 7.14

In these experiments, we use benchmarks where 70% of
signals are multiterminal ones.

(i) In scenario 1, multiterminal signals are routed on a
unidirectional routing graph.

(ii) In scenario 2, two-terminal signals are routed into a
unidirectional routing graph where the nodes capac-
ity can be greater or equal to 1.

(iii) In scenario 3, multiterminal signals are grouped into
GSignals. These GSignals are routed into a bidirec-
tional routing graph where all node capacities are set
to 1.

(iv) Finally, in the fourth scenario, the two-terminal
branches are combined into groups and routed into
a bidirectional routing graph.

Results show that routing on a bidirectional graph givesmuch
better results since the router has more flexibility to select
the routing path. On the other hand, routing multiterminal
signals is not always optimized, even if the mux ratio of
scenario 3 is sometimes less than the one of scenario 4, but
using large number of routing hops penalizes the system
frequency.
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Table 3: Comparison between OAR and NCR strategies on system performance.

Benchmarks OAR NCR Gain
R hop Mux ratio Freq (MHz) R hop Mux ratio Freq. (MHz)

CPU50 occ30 0 9 29.41 0 9 29.41 0%
CPU125 occ50 2 16 16.66 1 16 20 20.04%
CPU150 occ30 3 24 12.82 1 29 15.62 21.84%
CPU150 occ50 2 51 10.41 1 51 11.62 11.65%
CPU375 occ80 2 51 10.41 1 51 11.62 11.65%
CPU375 occ85 2 79 8.06 2 69 8.77 8.8%
CPU700 occ80 2 134 5.61 2 109 6.49 15.68%

Since we have demonstrated that scenario 4 gives usu-
ally the best results, we apply Pathfinder and the obstacle
avoidance routing algorithms (constructive algorithms) to
route inter-FPGA signals, all with one source and one des-
tination (branch), and grouped into GSignals. Table 3 shows
the results of comparison. OAR means obstacle avoidance
routing and NCR refers to negotiated congestion routing.
Results show the important impact of the NCR iterative
routing and its efficiency to improve systemperformance.The
frequency is increased on average by 12.8% and the impact of
NCR is important for highly congested partitioning results.
In fact, thanks to its negotiation aspect, it avoids easily local
minima and reduces the path length from a source FPGA to
a destination FPGA. In addition, it leads to a good trade-off
between maximummultiplexing ratio and routing hops.

8. Conclusion

Prototyping is no longer optional due to the cost of chips
and difficulty to simulate huge designs. To validate designs
more efficiently, the highest frequency should be reached.The
system frequency depends on the way the inter-FPGA signals
are routed. In this paper, we presented our approach to route
these inter-FPGA signals. We set a number of constraints
to the partitioning tool in order to get the best partitioning
solution which leads to the optimal routing. We extend the
Pathfinder routing algorithm to deal with the inter-FPGA
signals. In order to select the best signal shape, we tested
the performance of this iterative routing algorithm on four
scenarios.

The best scenario in terms of system frequency consists
in grouping signals into GSignals where each one has 1
source and only 1 destination. Compared to commonobstacle
avoidance algorithms, we obtain a significant prototyping
system frequency improvement of 12.8%.
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