
Research Article
AC_ICAP: A Flexible High Speed ICAP Controller

Luis Andres Cardona1 and Carles Ferrer1,2

1Departament Microelectrònica i Sistemes Electrònics, Universitat Autònoma de Barcelona (IEEC-UAB), Bellaterra,
08193 Barcelona, Spain
2Institut de Microelectrònica de Barcelona (CNM-CSIC), Bellaterra, 08193 Barcelona, Spain

Correspondence should be addressed to Luis Andres Cardona; luisandres.cardona@e-campus.uab.cat

Received 21 August 2015; Revised 12 November 2015; Accepted 19 November 2015

Academic Editor: Michael Hübner

Copyright © 2015 L. A. Cardona and C. Ferrer. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The Internal ConfigurationAccess Port (ICAP) is the core component of any dynamic partial reconfigurable system implemented in
Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs).We developed a new high speed ICAP controller, namedAC ICAP,
completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and
frames, AC ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last
characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution
to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were
implemented to evaluate its performance when connected to Peripheral Local Bus (PLB), Fast Simplex Link (FSL), and AXI
interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage
of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that
run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 𝜇s which implies a speed-up of more than
380x compared to the Xilinx XPS HWICAP controller.

1. Introduction

Field Programmable Gate Array (FPGA) devices persist
as fundamental components in the design and evaluation
of electronic systems. They are continuously reported as
final implementation platforms rather than only prototype
elements [1]. FPGAs have moved according to VLSI scaling
technology pace making it possible to develop these devices
in state-of-the-art fabrication processes. For instance, 7-
series family of Xilinx SRAM-based FPGAs are built on
28 nm, high-k metal gate process technology [2], Xilinx
Virtex UltraScale+ uses 16 nm FinFET+, and Altera Stratix
10 devices are produced using Intel-14 nm Tri-Gate (FinFET)
process technology [3]. This is one of the reasons that favor
the increasing presence of such devices as programmable
alternatives to ASICs.

In addition, technical improvements in design and fab-
rication of FPGAs have produced more robust and flex-
ible components embedding larger RAM memory blocks
(BRAMs), DSP blocks, processors, and dedicated hardwired

components.The inherent reconfigurable characteristics that
FPGAs offer are among one of themost important advantages
in the actual hardware implementation and redesign of
systems.

We focus on Xilinx devices because in addition to sup-
portingDynamic Partial Reconfiguration (DPR), it is possible
tomodify the bitstream. It implies that reverse engineering on
the bitstream structure can be performed, which is essential
in our approach to performDPR on LUTs as will be explained
in Section 3.

Xilinx SRAM-based FPGAs support DPR bymeans of the
Internal Configuration Access Port (ICAP). This hardwired
element, depicted in Figure 1, allows the configuration mem-
ory to be accessed at run time. Therefore, it is possible to
modify specific parts of the system while the rest continue
operating without being affected by the specific run-time
modification. Dynamic Partial Reconfiguration can be used
at different granularity levels. Considering the architecture of
the device, it can be employed to modify basic logic compo-
nents, such as Look-Up-Tables (LUTs), or bigger blocks, such

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2015, Article ID 314358, 15 pages
http://dx.doi.org/10.1155/2015/314358

2 International Journal of Reconfigurable Computing

ICAP

Configuration
memory

CLK

CE

WRITE

BUSY

I

O

8, 16, 32

8, 16, 32

Figure 1: ICAP hardwired primitive.

as IP cores. Therefore, DPR is employed in a wide range of
applications involving the design of self-adaptive systems and
the evaluation of critical systems that need to be exhaustively
tested before final production.

Xilinx tools such as PlanAhead or command line
“𝑏𝑖𝑡𝑔𝑒𝑛−𝑟” take the difference between two implementations
to produce partial bitstreams that allow for modifying the
specific parts that have been defined to change at run-
time. The partial bitstreams are then copied in external or
internal memory of the FPGA and from there are sent to the
ICAP when a new hardware task is required by the system.
In addition to this type of run-time reconfiguration that
is especially suitable for coarse grain modules, there exist
alternatives to dynamically modify basic elements, such as
LUTs, using certain software functions executed in an on-
chip processor.

With this in mind, the hardwired ICAP primitive and its
associated controller become fundamental and inseparable
modules in the design of dynamic run-time reconfigurable
systems.The ICAP controller is responsible for performing all
the commands to access and modify the configuration mem-
ory.Therefore, it is desirable that such controllermeets at least
two basic requirements: high reconfiguration throughput and
flexibility.

Xilinx tools provide general controllers to drive the
ICAP but they perform most of the processing as software
routines in the processor. It implies flexibility but avoids to
reach the maximum supported reconfiguration throughput.
Diverse alternatives to these controllers have been reported to
improve the reconfiguration speed. Most of them have been
oriented to manage partial bitstreams generated at design
time and also to manipulate frames that are the minimum
addressable configuration memory.

Going deeper into the granularity of the device, any
dynamicmodification on the LUTs of an implemented design
should also be available to increase the flexibility of the
system. For instance, it can be used in cryptographicmodules
to modify the logic behavior of the module and increase the
resistance against some type of external attacks. Therefore,
an efficient mechanism that allows for modifying LUTs at
run-time is also required as LUTs are basic components
to implement any logic function in FPGAs. The ICAP

controller should offer a way to perform DPR in LUTs at
maximum supported speed, not only limited to pregenerated
partial bitstreams, but presenting a simple interface doing the
complexity of the architectural device transparent to the user.

In this paper, we present a novel run-time reconfiguration
controller fully implemented in hardware and supporting
partial reconfiguration of LUTs in Xilinx FPGAs. The main
contributions of this work are

(i) design and implementation of the AC ICAP con-
troller that supportsDPRof LUTs, validated inVirtex-
5 and Kintex7 devices,

(ii) transparent on-chip translation of LUT coordinates
and LUT configuration values into frames locations,

(iii) speed-up of the LUT-DPR and similar reconfigura-
tion speed (compared to existing solutions) for partial
bitstreams located in BRAM or flash memory,

(iv) FSM standalone operation and IP versions adapted to
different embedded microprocessor interfaces (PLB,
FSL, and AXI).

The rest of the paper is organized as follows. In Section 2,
we review the most relevant works in the design of ICAP
controllers. In Section 3, we present the main considerations
regarding fine-grain partial reconfiguration. In Section 4,
we detail the new AC ICAP controller. In Section 5, the
extension of the controller to be accessible from on-chip
processors is presented. In Section 6, we describe the con-
siderations to follow in porting the controller to a newer
family of devices. In Section 7, we present the results of the
reconfiguration time and area required by the controller.This
is followed by Section 8where the controller is used tomodify
LUTs in a cryptographic module as a way to implement
countermeasures against external attacks. Finally, Section 9
concludes the paper and suggests future work.

2. Related Work

In this section, we outline some of the most relevant imple-
mentations of ICAP controllers used in FPGA Dynamic
Partial Reconfiguration.

Partial reconfiguration has been widely used in diverse
applications [5–7] that exploit the possibility to adapt hard-
ware modules at run-time. A common requirement when
using this technique is that the switching of hardware mod-
ules should be performed with minimal time overhead.

The most frequent approach to implement systems with
DPR capabilities is by using the ICAP controllers available
in Xilinx tools. XPS HWICAP [4], depicted in Figure 2,
AXI HWICAP, and OPB HWICAP are IP cores designed to
be connected to the PLB [8], AXI, and low speed OPB buses,
respectively. They are used as part of embedded processor
systems (PicoBlaze orMicroBlaze) and the support for partial
reconfiguration is given through a collection of software
functions provided with the processor API. The functions
allow for processing partial bitstreams located in memory,
accessing configuration frames (XHwIcap DeviceReadFrame,
XHwIcap DeviceWriteFrame), and modifying LUTs
(XHwIcap SetClbBits, XHwIcap GetClbBits). An example of

International Journal of Reconfigurable Computing 3

ICAP State
Machine

IP2INTC_Iprt

ICAP_Clk

ICAP

XPS HWICAP core

HWICAP

PLBv46 slave burst interface

PLB interface

IPIC_IF

Interrupt control unit

SZ register
CR register
SZ register

WFV register
RFO register

Read write
Asynchronous FIFOs

DS586_01

Figure 2: XPS HWICAP [4].

the utilization of the functions to modify specific LUTs is
detailed in [9] and authors in [10] use the functions tomodify
frames to emulate faults on the configuration memory.

The Xilinx functions perform most of the operations as
software routines in the processor. Then, the commands to
manage the ICAP and process the partial bitstream header
executed in the processor, along with the bus latency, affect
the speed of the partial reconfiguration process. Therefore,
diverse alternative controllers have been developed to over-
come these limitations. Authors in [11] explore different
ICAP controllers analyzing the reconfiguration speed and
propose three variations to speed up the processing of partial
bitstreams but all of them require the presence of a processor.
It is also the case of [12, 13]. In the latter case, the controller
is integrated in the processor data path using the FSL link
to minimize the bus latency. In contrast, [14, 15] present
controllers for Virtex-5 devices able to load partial bitstreams
from BRAM and flash memory totally implemented in
hardware and independent of the processor. In a similar way,
[7, 16] report implementations of processor-independent
ICAP controllers for Virtex-4 FPGAs. Authors in [17] exploit
DPR for the design of fault tolerant systems. Such approaches
show improvements in reconfiguration speed that can reach
the maximum supported throughput when using BRAMs.
Further, some works, such as those presented in [7, 18],
achieve throughput speed higher than the specified one in the
technical documents by overclocking the ICAP.

All these works have been oriented to efficiently access
the partial bitstreams and perform the tasks of hardware
switching, but some further operations that a complete
controller should support are not considered. A robust
controller should be able to read back andwrite configuration
frames and also give the possibility to modify LUTs besides
to only control partial bitstreams. These last features are
of paramount importance in the implementation of critical
systems where the ICAP controller is a fundamental part of

the design [21].With this inmind, diverse approaches, such as
those reported in [20, 22–24], use improved ICAP controllers
as fundamental parts of fault tolerant systems in SRAM-based
FPGAs. In such systems, the ICAP is used for the detection
and correction of faults in the configuration memory. To do
that, it is not enough with controlling precomputed partial
bitstreams, they implement reading and writing of frames as
the fault detection is performed at this level. For instance,
once a frame is read, its CRC can be obtained to check if
errors are present in its constituent bits. In case of erroneous
values, the frame can be corrected and write back to the
configuration memory with the right values.Therefore, these
reported works include frame handling for both writing and
reading of configuration frames.

To the best of our knowledge, the only work reported
on performing run-time reconfiguration at LUT level imple-
mented as part of the ICAP controller is presented in [25], but
it is only valid for Xilinx Virtex-II devices where LUTs have
four inputs and the architecture of the device is considerably
different from newer Xilinx families. The frames cover the
full height of the device and it is not detailed how the LUT
configuration values are located on frames. In addition, this
family is currently considered obsolete.

In this work, we develop a novel ICAP controller
fully implemented in hardware with support for bitstreams
management, reading and writing of frames, and LUTs
modification. This approach offers improvement in LUT
reconfiguration speed and it is performed without the need
of precomputed partial bitstreams. In addition, it can be
easily adapted to on-chip processors in diverse Xilinx FPGA
families.

3. Dynamic Partial Reconfiguration for LUTs

In this section, we describe the general architecture of Xilinx
FPGAs and the relevant concepts of partial reconfiguration
taking as a reference the Virtex-5 XC5VLX110T device. But
the general ideas are also valid for newer devices, especially
when considering LUTs, as these remain the same; it is 6-
input LUTs, for Virtex-5, Virtex-6, and 7-series families.

FPGAs are organized as an array of Configurable Logic
Blocks (CLBs) connected to a switch matrix. Figure 3 shows
the disposition of the XC5VLX110T FPGA where it can be
observed that it is horizontally divided into two halves. In top
(0) and bottom (1) halves, we find a fixed number of rows that
depend on the size of the specific device.TheVirtex-5 LX110T
FPGA is divided into eight horizontal clock rows (HCLK):
four in each half. Each HCLK includes a determined number
of CLBs, BRAMs, DSPs, and I/Os. CLBs are distributed in
160 rows by 54 columns covering the whole device. Each CLB
consists of two Slices and every Slice contains 4 LUTs, 4 flip
flops, multiplexers, and carry logic. As a result, this FPGAhas
17280 Slices, 69120 LUTs, and 69120 registers.

One CLB column is defined as a group of 20 × 1 CLBs that
spans the HCLK height. It means that, in each CLB column
inside the HCLK rows, there are 40 Slices and 160 LUTs.

The configuration memory is organized in frames. One
frame is the smallest size of configuration memory able to
be addressed.Therefore, any action on configurationmemory

4 International Journal of Reconfigurable Computing

1 4 6 17 18 27 30 41 43 54 57 59 62

To
p

(0
)

Bo
tto

m
 (1

)

IO
B

IO
B

BR
A

M

X

Y

3

3

0

0

1

1

2

2

CLBCOLHCLKROW

BR
A

M

BR
A

M

BR
A

M

BR
A

M

D
SP

BBBBBB

Fr
am

e 0
Fr

am
e 1

Fr
am

e 3
3

LUT
D

LUT
C

LUT
B

LUT
A

Fr
am

e 2

Fr
am

e 3
4

Fr
am

e 3
5

1
H

CL
K:

 2
0

CL
B

522015

SLICE_XiYj, 0 ≤ i ≤ 107, 0 ≤ j ≤ 159

Yj

Xi

· · ·

1
3
1
2

bi
ts

Yj+1

Xi+1

Figure 3: Relationship between 𝑋, 𝑌 coordinates and Frame Addresses for XC5VLX110T.

should be carried out taking frames as reference. One frame
consists of 41 words of 32 bits each (1312 bits). Virtex-5 LX110T
requires 23712 configuration frames to configure the whole
chip. In consequence, the configuration file (bitstream) is
composed of 972464 32-bit words (3.7MB). It includes 272
words of control information in the header and the rest
corresponds to configuration frames.

Every time we want to configure the whole device, the
bitstream of 3.7MB containing the description of the circuit
to implement should be loaded into configuration memory.

Dynamic Partial Reconfiguration allows specific parts of
the system to be modified; in consequence, the complete
bitstream is not required but a smaller, partial bitstream,
with the information of the specific region to modify,
is used. Partial bitstreams are generated at design time
using the difference-based approach. PlanAhead [26] or
bitgen command line [27] is used to generate them. The
command 𝑏𝑖𝑡𝑔𝑒𝑛 − 𝑟 𝑐𝑜𝑛𝑓𝑖𝑔1.𝑏𝑖𝑡 𝑐𝑜𝑛𝑓𝑖𝑔2.𝑛𝑐𝑑 𝑝𝑎𝑟𝑡𝑖𝑎𝑙2.𝑏𝑖𝑡

takes as inputs the two different files for each configura-
tion (𝑐𝑜𝑛𝑓𝑖𝑔1 and 𝑐𝑜𝑛𝑓𝑖𝑔2) and the result is the partial
bitstream 𝑝𝑎𝑟𝑡𝑖𝑎𝑙2.𝑏𝑖𝑡, with the difference between them.
The minimum size of partial bitstreams corresponds to one
configuration frame increased with one extra dummy frame
and control information.

To configure a column of CLBs, 36 frames are required.
Inside the 36 frames, we have the information of every
individual element present in the 20 CLBs. We focus on

LUTs as these are the basic elements that implement all the
combinational logic in FPGAs.

The LUTs or logic-function generators are six-input ele-
ments that require 64 bits to define the function to perform.
The logic behavior of the LUT depends on the values (INIT
value) configured in these 64 bits. To handle any individual
LUT, it is necessary to define its location and its INIT value.
The location uses three parameters: (𝑋, 𝑌,Bel). 𝑋 and 𝑌 are
the coordinates of the Slice and Bel is an index to select
the individual LUT inside the Slice. The range of 𝑋 and
𝑌 depends on the size of the FPGA (108 × 160 in the
considered device). The Bel index ranges from 0 to 3, to
select one of the 4 LUTs (LUT-A, LUT-B, LUT-C, and LUT-
D) inside the Slice with coordinates (𝑋, 𝑌). Once the specific
LUT has been identified, its INIT value can be modified
through the 64 configuration bits. As explained in Section 2,
this LUT parameter can be modified at run-time thanks
to certain software routines provided by Xilinx API. The
function XHwIcap GetClbBits is used to read back the INIT
value of the LUT and store it in memory.XHwIcap SetClbBits
copies any INIT value from system memory into the LUT
configuration field. Both functions require the same type of
parameters: the coordinates of the LUT (𝑋, 𝑌, and Bel) and
the memory address to locate the INIT value. We found very
limited information about these functions and the operations
they perform.These are in format of object files (.o) and their
source code is not available. In addition, the time required to

International Journal of Reconfigurable Computing 5

INIT:

LUT
D

INIT:

LUT
C

INIT:

LUT
B

INIT:

LUT
A

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

LUT
A

LUT
B

LUT
C

LUT
D

W
or

d
1

W
or

d
2

W
or

d
40

W
or

d
41

W
or

d
1

W
or

d
2

W
or

d
40

W
or

d
41

Fr
am

e 0

Fr
am

e 1

Fr
am

e 2
6

Fr
am

e 2
7

Fr
am

e 2
8

Fr
am

e 2
9

Fr
am

e 3
5

Bit 0

Bit 31
Bit 0

Bit 31

Bit 0

Bit 31

Bit 16
Bit 15

Bit 0

Bit 31

Bit 16
Bit 15

X
odd

X
even

64bits

64bits

64bits

64bits

Y
=
1
9

Y
=
0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

...

...

...

1
3
1
2

bi
ts

Figure 4: Frame bits for LUT configuration.

read and write the configuration value of a LUT using these
functions is in the order of 2ms while the time for read-
ing and writing frames, using XHwIcap DeviceReadFrame
and XHwIcap DeviceWriteFrame functions, is in the order
of 30 𝜇s. These numbers, experimentally obtained using a
MicroBlaze-based system operating at 100MHz, offered us
opportunities to improve the reconfiguration time for LUTs.
Therefore, we performed experiments to deduce the rela-
tionship between LUT parameters and configuration frames.
By combining the XHwIcap SetClbBits function to write to a
specific LUT with the XHwIcap DeviceReadFrame to analyze
the programmed values on frames, we found that four frames
are used to reconfigure a single LUT.

As shown in Figure 4, the 64 bits of the INIT value span
four consecutive frames with each frame containing 16 INIT
bits. The 40 Slices inside every CLB column can be seen as 2
columns of 20 Slices. One Slice column contains the 20 Slices
with even values on 𝑋 coordinate while the other 20 Slices
presents odd values. The frames 26 to 29 enclose the LUT
configuration values for the 20 Slices with odd-𝑋 coordinates
while the frames 32 to 35 have the corresponding information
for the 20 Slices when 𝑋 coordinate is even. In a similar way,
Slice-𝑌 coordinate determines what specific word inside each
frame to use. For any CLB column, 𝑌 takes 20 consecutive
values. Depending on this value, a specific word in the frame
corresponds to a single LUT. Two consecutive frame words

have the partial information for the 4 LUTs of a Slice. 16 bits of
INIT LUT-A and 16 bits of INIT LUT-B configuration values
are in one 32-bit word. Similarly, LUT-C and LUT-D INIT
values are located in the following word.

4. AC_ICAP Implementation

The AC ICAP controller, detailed in Figure 5, offers simi-
lar functionality to the XPS HWICAP and AXI HWICAP
available in Xilinx tools but AC ICAP is fully implemented
in hardware, instead of doing most of the tasks as software
routines in the processor. It includes support for ReadFrames,
WriteFrames, Modify LUTs, and load partial bitstreams from
flash and BRAM memory. Compared to similar approaches
that also implement reading and writing of frames in
hardware [20], our controller is improved by the run-time
reconfiguration of LUTs without the need for precomputed
partial bitstreams.This last characteristic is of relevance in the
implementation of self-adapted systems that may require fine
modifications on the hardware according to values generated
at run-time, not only based on precomputed values. This
aspect will be addressed in more detail in Section 8.

The controller and its internal modules use Finite State
Machines (FSMs) to operate on diverse configuration levels
according to the values of the input Op sel specified in
Table 1.

6 International Journal of Reconfigurable Computing

Read frames

Write frames

Load partial
bitstreams

ICAP

Flash memory

Op_Sel

LUT2Frames

LU
T

D
PR

Flash controller

AC_ICAP

Reset

Start

XYBel

INIT

StartAddr

NumFrames

CLK

Op_done

WordBRAM

3

32

32

32

64 32

BRAM

Figure 5: AC ICAP detail.

Table 1: Coding of tasks.

Operation Op sel input
Read BRAM 000
ReadFrame 001
WriteFrame 010
Modify LUT 011
Recover LUT 100
Load partial bitstream from flash 101
Copy partial bitstream from flash to BRAM 110
Load partial bitstream from BRAM 111

The AC ICAP was initially developed using a board
equippedwith theVirtex-5 LX110T FPGA and the implemen-
tation flow was performed in Xilinx tools, version 14.7. Even
though the details are presented for Virtex-5 family, it should
be noted that the controller is also implemented in 7-series
family as described in Section 6.

As explained in Section 3, DPR of LUTs requires mod-
ifying specific parts of frames. Therefore, the two modules
for read and write frames are indispensable in the imple-
mentation of LUT run-time reconfiguration. We designed
the AC ICAP controller with a space of BRAM able to store
partial bitstreams that could reconfigure an area of 4 CLB
columns. Then, the controller has low influence on the total
BRAMs available in the device (148). In consequence, we
included 7–36Kbit BRAM elements (31.5 KB) configured as
dual port memory.This memory space serves to store frames
read and it is also used as the source of the frames to send
to the ICAP. The initial 2800 Bytes are reserved to perform
LUT modification and frame tasks. The remaining 28.7 KB
can be used for both frame or partial bitstreams storage,
as depicted in Figure 6. When partial bitstreams fit into the
available BRAM, the load partial bitstreams from BRAM
task can reach the maximum specified throughput because
of the direct connection between the on-chip BRAM and the

Extra word

Dummy frame

Data frame 1

Data frame N

Data frames

or

partial bitstreams

Bit 0Bit 31
0
1

699
700

8063

Word 1
41
42

Word 41
Word 1
Word 41 82

BR
A

M
 ad

dr
es

s

Figure 6: BRAMmemory map.

ICAP through a link of 32 bits. By using a clock of 100MHz,
one 32-bit word is available with every clock cycle, which
corresponds to the maximum ICAP supported throughput
(3.2 Gbps). We adhere to the constraints specified in the
technical documents regarding the maximum operation fre-
quency of the ICAP: 100MHz [4]. However, it should be
taken into account that Hansen et al. [18] reported the correct
operation of the ICAPwhen it is overclocked to achieve better
reconfiguration throughput speed.

The constituent modules of the AC ICAP controller are
detailed next.

4.1. ReadFrames. ReadFrames module uses two parameters
to define the location (𝐹𝐴𝑑𝑑𝑟) and number of frames (𝑁𝑓) to

International Journal of Reconfigurable Computing 7

read. 𝑁𝑓 takes the value 1 for a single frame read or any other
value for multiple frame read. It is limited by the available
BRAM memory on the controller. It should be noted that,
for LUT modification tasks, one BRAM block is enough but
we included six extra blocks to store frames or small partial
bitstreams. We store all the read frames on BRAM and there
they can be accessed to perform any operation on them.
Alternatively, an externalmodule able to process and store the
read frames could acquire more frames than those limited by
the size of the BRAM. For instance, theDDRmemory present
in the considered board has a capacity of 256MB. It can be
used to save configuration frames that occupy more than the
31.5 KB of the BRAM available with the AC ICAP.

In the case of multiple frames (𝑁𝑓 > 1), 𝐹𝐴𝑑𝑑𝑟 is the
address of the first frame where the reading process starts.
From there, the routine will read 𝑁𝑓 consecutive frames.
The steps involved in ReadFrames routine are depicted in
Figure 7.When op sel = “001” and the Start signal is asserted,
the ICAP is configured to read the specified frames. This is
done by writing to certain registers of the ICAP as detailed in
[28]. It is important to point out the correct assertion of the
CE andWRITE inputs to define reading orwriting operations
on the ICAP. In both cases,WRITE should bemodified before
CE to avoid causing an abort sequence. It is detailed in the two
boxes ICAPWRITE and ICAP READ in Figure 7.

The inputs 𝐹𝐴𝑑𝑑𝑟 and 𝑁𝑓 are used in the two steps of
the flow identified with the word Input. These two values are
adapted to the format of the corresponding registers. 𝐹𝐴𝑑𝑑𝑟

should have the format of the Frame Address Register, that is,
one 32-bit word with the fields: block type, Top, HCLK row,
column, and frame inside the column. 𝑁𝑓 is used to calculate
the number ofwords to read (𝑁) and generate a type 2word to
send to the ICAP. 𝐹𝐴𝑑𝑑𝑟 and 𝑁𝑓 can be specified by the user
through the inputs 𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟 and𝑁𝑢𝑚𝐹𝑟𝑎𝑚𝑒𝑠, respectively.
Or they can be generated by the 𝐿𝑈𝑇2𝐹𝑟𝑎𝑚𝑒𝑠module, as will
be explained in Section 4.3.

Wemust consider that any reading of frames includes one
extra dummy frame generated at the beginning of the process
and also one extra word. With this in mind, the number of
words to read for the Virtex-5 device can be calculated as

𝑁 = 41 ∗ (𝑁𝑓 + 1) + 1. (1)

Equation (1) is valid for any Virtex-5 FPGA as in these
devices all the configuration frames have the same size. It
is 41 32-bit words. The dummy frame is represented by the
addition of 1 to 𝑁𝑓. The last addition represents the initial
word.

The state READNWords from FDRO performs the actual
read of the 𝑁 32-bit words that compose the frames. With
every word read from the FDRO register of the ICAP, the
BRAM address is increased to store the frames on this
memory. Figure 6 shows the location of the frames and the
extra word.

4.2. WriteFrames. This module was designed following the
same approach as that presented in ReadFrames. The main
differences are in the configuration commands required to
prepare the ICAP to write to the configuration memory.

Default Start = 1?

No

Dummy word
Yes

Sync word

Type 1 NOOP word 0

Type 1 write 1 word to CMD

RCRC command

Type 1 NOOP word 0

Type 1 write 1 word to CMD

RCFG command

Type 1 NOOP word 0

Type 1 write 1 word to FAR

Input: address of frame to read

Type 1 read 0 words fromFDRO

Input: number of words to read

ICAP READ

Read N words from FDRO

Type 1 write 1 word to CMD

DESYNCH command

Type 1 NOOP word 0

ICAP disabledEnd of read frames

ICAP WRITE

ICAP disabled

WRITE asserted

ICAP enabled

ICAP WRITE

CE: active low
WRITE: 0 = WRITE, 1 = READ

ICAP WRITE

ICAP disabled

WRITE deasserted

ICAP enabled

ICAP READ

WRITE
CE

CE
WRITE

Type 1 NOOP word 0 ×2

Figure 7: Read frame FSM.

WriteFrames module is activated when the Op sel input,
defined in Table 1, is “010” and the Start signal is asserted. To
reach the maximum throughput speed, the preferred source
for the frames to write is BRAM. If the frames are located in
the BRAM of the AC ICAP, one 32-bit word is available with
every clock cycle.

As this module is normally used in combination with
ReadFrames, the frames to be written have already been read
and stored on BRAM. Then, WriteFrames module uses the
samememory space, detailed in Figure 6, where ReadFrames
placed the reading back frames.

In the same way that ReadFrames module needs to
consider one dummy frame, in every write frames routine,
the dummy frame should be sent to the ICAP at the last part
of the process. Therefore, data frames start at BRAM address
= 42 and finish at address 41 ∗ (𝑁𝑓 + 1). Immediately after
data frames are sent, the dummy frame should follow. To do
that, the starting address changes to 1 and finishes when 41
words (1 frame) are sent. The extra word at address 0 is not
used in writing processes.

We generate the Op done output to signalize the end
of a writing process. It is necessary to guarantee that the
ICAP tasks finish properly. After all the words are sent, it

8 International Journal of Reconfigurable Computing

LUT2Frames

32

64

CLK

Start

X, Y, Bel

INIT

32

16 fword1
16 fword2
16

fword3
16

fword4

FAddr

Word_offset

msb_lsb

Ready

8

Figure 8: LUT2Frames module.

is necessary to send the DESYNC command and disable
the ICAP. Op done goes high when the ICAP receives and
processes the DESYNC command. It is observed when the
output port O changes from 0xDF to 0x9F.This process has a
delay of 6 clock cycles independently of the value on the input
CE.

4.3. DPR of LUTs with LUT2Frames Module. The
LUT2Frames module allows the Dynamic Partial Recon-
figuration of LUTs by doing the translation of the LUT
parameters into frames representation. As described in
Section 3, the LUTs are characterized by the coordinates
(𝑋, 𝑌,Bel) and the INIT value. The LUT2Frames module,
depicted in Figure 8, carries out two main tasks: (1) translat-
ing the 𝑋, 𝑌,Bel coordinates into FAR format and (2) trans-
forming the INIT (64 bits) LUT function into 4 words of 16
bits each.

The 𝑋, 𝑌,Bel inputs, merged into one 32-bit word, and
the INIT value are used by the LUT2Frames module when
the Start input is set. Based on the coordinate values, one
32-bit word with the format of the Frame Address Register
(𝐹𝐴𝑑𝑑𝑟) is generated to define the frame where the reading
and writing start. In addition, 𝑋, 𝑌 and Bel values determine
the word offset that is the concrete word of each frame (the
first one of the 2–41 words) that needs to be manipulated.
From the 32-bit word, only 16 bits correspond to a specific
LUT.Therefore, the signalmsb lsb indicates which part of the
32-bit word should bemodified: 0 for the LSB part of theword
(LUT-A or LUT-C) and 1 for the 16 MSB (LUT-B or LUT-D).

In parallel with the previous processing, LUT2Frames
module generates four 16-bit words (fword1⋅ ⋅ ⋅ fword4) that
correspond to the INIT value transformed and adapted to the
four frames.

All the complexity of the frames location and addressing
is transparent to the user. The LUT2Frames module imple-
ments all the translations and computes adequate addresses
and memory management to allow for the user a simple
operation when required to modify any LUT throughout the
device.

When a LUT modification is required, the steps con-
trolled by an FSM, as depicted in Figure 9, are executed. The
process is triggered by the Start signal; then, the LUT2Frames
module is activated. With the values generated by this

Idle Backup
words

Modify
frames

Write
frames

Read
frames

LUT2
frames

Figure 9: FSM for DPR of LUTs.

module, 4 frames starting at 𝐹𝐴𝑑𝑑𝑟 are read and stored in
BRAM (read frames). Word offset and msb lsb signalize the
specific words that should be modified. These 4 words are
backed up (backup words), modified with the four words that
LUT2Frames produced, and copied back to BRAM. At this
point, the BRAM contains the frames with the new words,
and the WriteFrames module performs the writing of the 4
frames corresponding to the LUT.

The Recover LUT routine uses the four backed up values
obtained at the backup words stage to recover the LUT to its
previous configuration value. Considering Figure 9, it only
performs the last two steps of a LUT modification routine.
It modifies the 4 frames on BRAM and then these are sent
through WriteFrames module to recover the LUT to its
previous INIT value. This routine is useful in applications
that need to recover the previous function of a LUT before
modifying another. By following this approach, we avoid
reading four frames again as these are already on BRAM.

The correct operation of the controller was verified using
ChipScope Pro Debugger [29]. Figure 10 shows the details
for a LUT modification process. We specified the 𝑋, 𝑌, Bel,
and INIT values of the LUT to modify. The steps shown
in Figure 9 can be identified in Figure 10. The LUT2Frames
module requires only two clock cycles and the information
it generates is used to address the four frames to read and to
modify the four specific words in these frames.

4.4. Load Partial Bitstreams. This module follows an
approach similar to the described in Section 2 in regard to
the speed-up of partial reconfiguration by loading partial
bitstreams. The load partial bitstreams module performs
three main tasks: (1) load partial bitstreams from flash, (2)
copy partial bitstreams from flash to BRAM, and (3) load
partial bitstreams from BRAM. To do that, this module
includes a memory access controller to read the partial
bitstreams from flash memory. Therefore, the data read
from flash can be directly sent to the ICAP I port or it can
be copied into internal BRAM. When partial bitstreams
are on BRAM, the maximum configuration speed on the
ICAP can be reached. If partial bitstreams are on external
memory, the reconfiguration time depends on the latency
of the access to the memory. In this case, we use the Intel
StrataFlash memory 28F256P30 which requires 26 clock
cycles at 100MHz to get a 32-bit word.

The size of the partial bitstreams that can be placed
on BRAM is limited by the available BRAM memory on
the controller. From the 7–36Kbit BRAM present in the
AC ICAP, we reserved 2800 Bytes to perform LUTmodifica-
tion and frame tasks. Therefore, the maximum size of partial
bitstreams that can be placed is 28.7 KB. It can be increased as

International Journal of Reconfigurable Computing 9

Bus/signal X O
5 45 85 125 165 205 245 285 325 365 405 445 485 525

T X

wea_s(0) 0 0

START_ICAP_RDn 1 1

read_done_s 0 0

done_s 0 0

Start_TRANSn 0 1

ready_LUT2fr 1 0

START_ICAP_WRn 1 1

addra_s 166 0 0 166

addrb_s 0 0 0430 0

dataINa 000022 CAFEC 00002222

I AAAAB FFFFF 0000000000000000

ReadWordICAP 000000 000000 000000DF

WordBRAM_s 000000 000000 000000000000FFFF00000000 00000000

00. . . 00. . . 00. . . 00. . .

00. . . 00. . . 00. . .

00. . . 00. . . 00. . .

00. . . 00. . . 00. . . 00. . .

. . .000

. . .000

AAAA. . .

0000. . .

. . .

LUT2
frames

Readback
commands

Read
frames

Backup
words

Modify
frames

Write
commands

Write
frames

ΔX-T: 498

Dummy frame1 frame2 frame3 frame4

Dummyframe1 frame2 frame3 frame4

Figure 10: Chipscope detail of LUT-DPR with AC ICAP in Virtex-5.

the FPGA includes more BRAMs (148 in the LX110T device)
but it depends on the application constraints.

The partial bitstreams are generated following the stan-
dard Xilinx flow; it is using PlanAhead or bitgen tools. These
configuration files include header information regarding the
type of device, size of the configuration data, date and time
of the generation of the bitstream, and so forth. We adapt
the partial bitstreams to remove unnecessary information
from the header and keep only the last header-field that
corresponds to the size (in Bytes) of the partial bitstream not
including the header. Therefore, our controller firstly reads
the word that contains the size of the partial bitstream and
uses this information to calculate the number of words (16-
bit word for flash and 32-bit word for BRAM) to read from
memory. With this approach, the only required parameter
is the initial address where partial bitstreams are located.
The controller automatically calculates the end address and
performs the reading process. Depending on the operation
selected by the input Op sel, the data is sent to the ICAP
or to BRAM. In a similar way, when Op sel is set to
“111,” this module configures the ICAP control signals and
BRAM address to allow high throughput partial reconfigura-
tion.

5. AC_ICAP Adapted to On-Chip Processor

Tomake the controller able to be attached to processor-based
designs, it was adapted to the Peripheral Local Bus and Fast
Simplex Link interfaces used by MicroBlaze systems. To this
end, the AC ICAP was considered as a black box with the
I/O ports depicted in Figure 5 and these were adapted to the
respective buses. This approach offers increased flexibility as
the controller can be easily commanded from the processor.
We created a collection of functions adapted to each interface
to perform the tasks presented in Table 1. Such functions,
depicted in Code 1, use specific routines from the Xilinx API
to access the PLB and FSL interfaces.

Code 1. Functions to drive the AC ICAP IPs are as follows:

ReadBRAM (StartAddr);

ReadFrame (StartAddr, NumFrames);

WriteFrame (StartAddr, NumFrames);

ModifyLUT (XYBel, INIT);

RecoverLUT (XYBel);

LoadPBitsFlash (StartAddr);

CopyFlash2BRAM (StartAddr);

LoadPBitsBRAM (StartAddr);

The 𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟 parameter refers to a unique input that
should be adapted according to the 𝑜𝑝 𝑠𝑒𝑙 value. In the case
of read and write frames, it corresponds to the address of
the initial frame (𝐹𝐴𝑑𝑑𝑟). For the other functions, it is the
memory address where data are stored. 𝑁𝑢𝑚𝐹𝑟𝑎𝑚𝑒𝑠 is the
number of frames to read or write and 𝑋, 𝑌, 𝐵𝑒𝑙, 𝐼𝑁𝐼𝑇 are
the parameters that control single LUTs. These are the only
values required to command the AC ICAP controller as this
performs internally all the operations such as transforming
the 𝑋, 𝑌, 𝐵𝑒𝑙 and 𝐼𝑁𝐼𝑇 into frame format, compute end
address after reading the size of a partial bitstream, and so
forth.

5.1. PLB IP. The PLB bus is used to connect peripherals to
the MicroBlaze processor. The original AC ICAP, designed
in VHDL, is instantiated in a PLB wrapper to generate
the custom PLB AC ICAP IP. The inputs and outputs of
the controller are connected to signals of the PLB bus and
then the processor can access them using register addresses.
In consequence, the PLB AC ICAP can be attached to any
MicroBlaze-based system such as the depicted in Figure 11.
This architecture includes the flash memory where the full
and partial bitstreams that modify the reconfigurable areas
are located. The direct connection to the flash memory is
also performed in the IP design by defining the AC ICAP

10 International Journal of Reconfigurable Computing

PLB_AC_ICAP

MicroBlaze
processor

Flash memory

UART Timer

PLB bus

Partial
bitstreams

Reconfigurable
area

Fullconfiguration.bit

Figure 11: Architecture with PLB AC ICAP IP.

FSL_AC_ICAP

MicroBlaze
processor

Flash memory

UARTTimer

PLB bus

Partial
bitstreams

Reconfigurable
area

FSL

Fullconfiguration.bit

Figure 12: Architecture including FSL AC ICAP coprocessor.

connections to the flash as external ports. Once included in
the hardware design in EDK, the software running in the
processor is able to control the PLB AC ICAP peripheral
by using the functions listed in Code 1. In consequence, a
partial reconfiguration related task uses any of the functions
specified in Code 1 and monitors the output op done until it
goes high as confirmation that the task has been completed.

5.2. FSL Coprocessor. Fast Simplex Link is an interface of
the MicroBlaze processor that allows for including dedi-
cated hardware routines with high execution priority and,
therefore, implies low latency in the communication with
the processor. In this approach, we adopted a solution
similar to the presented in [13], in order to obtain minimal
degradation in the performance of the controller due to the
bus latency. Thus, the VHDL-based AC ICAP was adapted
to the FSL interface to be easily connected as a coprocessor
and consequently exploit all the flexibility of the processor
but taking advantage of the hardware acceleration in the
ICAP related tasks. Figure 12 presents a system using the
FSL AC ICAP coprocessor.

The FSL AC ICAP coprocessor is accessed in a similar
way to that considered in the PLB AC ICAP IP, that is, by

means of a collection of functions such as that presented in
Code 1. The main differences are in the type of routines that
these functions require to drive the FLS. In this case, we incor-
porate the blocking routines putfsl and getfsl available
with Xilinx API as we consider that the reconfiguration tasks
are of high priority.

6. Using the AC_ICAP in Newer
Device Families

To validate the controller in 7-series devices, we use the
KC705 board equipped with a Kintex7 XC7325T FPGA [30].
This FPGA contains 50,950 Slices; inside every Slice, 4 6-
input LUTs and 8 FF are present.The 445 BRAMs correspond
to 2002KB and the bitstream size is 10.9MB. To adapt the
AC ICAP, designed for Virtex-5, to 7-series devices, certain
changes are required. The main differences are summarized
as follows:

(i) The number of words per frame in 7-series family
is 101 instead of 41 (Virtex-5). It is because the CLB
columns in 7-series FPGAs are 50 high by 1 wide
which implies that 100 Slices are present in the CLB
columns. Similarly, the number of HCLK rows is
different; for this specific device, it is 7 (3 top and 4
bottom).

(ii) The address of the frame where to start reading or
writing is defined by the FAR register. For 7 series, this
register uses 26 bits of the 32 available while in Virtex-
5 FAR it uses 24. It is due to the increased size of the
FPGA.

(iii) As opposed to Virtex-5, for 7 series, no extra word is
required at the beginning of a read frames task.There-
fore, the number of words (𝑁words7) to read/write
from these devices can be computed according to (2)
that is valid for any 7 series FPGA as in these devices
all the configuration frames have the same size. The
dummy frame is represented by the addition of 1 to
the number of frames (𝑁𝑓):

𝑁words7 = 101 ∗ (𝑁𝑓 + 1) . (2)

(iv) Theword offset that indicates what specific word on a
frame should bemodified in a LUT-DPR process now
has a range of 0 to 100. It varies between 0 and 40 for
Virtex-5. In a similar way, the skip columns (columns
that contain resources different from CLBs: BRAMs,
DSPs I/O) and the major column numbering require
to be updated.The first column inKintex7 has amajor
address of 2, while it is 1 for Virtex-5.

(v) In 7-family, the primitive ICAPE2 does not have the
BUSY output. Instead, we should consider 3 clock
cycles after CE assertion to get the valid data.

(vi) The WriteFrames module also required some
changes. In Virtex-5, it is possible to bypass the
CRC calculation by setting a configuration register
(COR0-bit28) and loading the value 0xDEFC to the
CRC register every time that the FAR is modified. In

International Journal of Reconfigurable Computing 11

Bus/signal X O
70 150 230 310 390 470 550 630 710 790 870 950 1030 1110

T X

CE 1 1

word_ready 0 0

wea_s 0 0

START_ICAP_RDn 1 1

read_done_s 0 0

write_done_s 0 0

ICAP_WRITEn 1 1

ready_LUT2fr 1 0

START_ICAP_WRn 1 1

addra_st 459 0 0 459

addrb_st 101 101 0156 101

dataINa 00002A CAFEC 00000000 00002A2A

I AAAABAAAAB 0000000000000000 AAAABBB

ReadWordICAP FFFFF FFFFF FFFFFFDB00000000 FFFFFF9B

WordBRAM_s 000000 000000 0000000000002A2A 00000000

ΔX-T: 1091

0. . . 0. . . 0. . .

0. . . 0. . . 0. . .

0. . . 0. . . 0. . .

0. . . 0. . . 0. . .

−10

DEV:0 MyDevice0 (XC7K325T) unit:0 MyILA0 (ILA) page index: (row = 0, col = 0) (window = 0 sample = 0, window = 0 sample = 1160)

Figure 13: Chipscope detail of LUT-DPR with AC ICAP in Kintex7.

7-family, such register is not present; by default, the
new control register (COR1-bits15-16) is set to allow
a continuous operation for the system after CRC is
computed and therefore such steps were removed.

(vii) The flash memory available in this board is of the
same type as the one present in the Virtex-5 but as
the size is different, the flash controller was modified
to include two extra address lines.

The number of frames required to configure a CLB
column remain the same (36), so do the specific frames that
contain the information for LUTs. We used 22 BRAM blocks
to occupy a similar percentage (5%) as in Virtex-5.

Once the presented changes were performed in the
AC ICAP, it was implemented in the Kintex7 FPGA and
tested with all the operations it supports. In Figure 13, we
present again the details for DPR of one LUT as it involves
diverse tasks available in the controller.

This new AC ICAP was adapted to the AXI interface as
this is used for all new Xilinx families. This IP is identified as
AXI AC ICAP and supports the same functions presented in
Code 1 that were adapted to the AXI API.

Based on the previous descriptions, we have different
variations of the controller to evaluate: AC ICAP,
the standalone hardware version; PLB AC ICAP and
AXI AC ICAP, adapted to PLB and AXI buses, respectively;
and FSL AC ICAP, used as a coprocessor. We used
PlanAhead 14.7 and Vivado 2015.3 to define reconfigurable
partitions of different sizes (from 1 to 10 CLB columns) and
generate different partial bitstreams.

For the Xilinx-based controllers, we implemented archi-
tectures such as those depicted in Figure 11 but instead of
using the PLB AC ICAP we added the XPS HWICAP or
the AXI HWICAP with the parameters that allow the best
performance in reconfiguration throughput (Write FIFO

Depth = 1024, Read FIFO Depth = 256, and FIFO type
enabled). For these two cases, the Xilinx flash memory
controller was also included to have access to the partial
bitstreams located in this memory. In doing this, we can get
accurate comparisons as we used the same tools version and
synthesis options.

7. Experimental Results

This section summarizes the main results regarding the
reconfiguration speed and resources utilization of the diverse
versions of the AC ICAP controller. We consider as primary
reference comparing the Xilinx XPS HWICAP for Virtex-
5 and the AXI HWICAP for Kintex7 as these are, among
the reported alternatives, the ones that support most of the
DPR tasks. We take into account that for partial bitstreams
that configure up to 4 CLB columns it is possible to copy
them into BRAM as it is limited to 28.7 KB for Virtex-5 and
to 99KB for Kintex7. To record the time performance of
the AC ICAP (standalone version), the ChipScope Pro was
used. For versions adapted to processor interfaces, the timer
included in the systems was used to register the number of
clock cycles required for the specific tasks.These numbers are
reported in Table 2. Here, we want to mention some issues
in regard to the values obtained for Kintex7 FPGA. The LUT
functions that the AXI HWICAP includes do not support
the 7-family. With the most recent version of the tools at the
moment of performing the experiments (Vivado 2015.3 and
driver hwicap v10 0), the support is only given for Virtex6
and previous devices and we cannot modify them as the
source code is not available. The functions for read and write
frames using the AXI HWICAP required themodification of
some header files as these present some erroneous values.The
file xhwicap i.h: uses the values for Virtex6 in the 7-family but
these should not be the same. For instance, it is declared that

12 International Journal of Reconfigurable Computing

Table 2: Timing behavior of AC ICAP.

Controller LUT
Reconf. [𝜇s]

ReadFrame
[𝜇s]

WriteFrame
[𝜇s]

Reconf. throughput
from BRAM [MB/s]

Reconf.
throughput

from flash [MB/s]

Kintex7∗
AC ICAP 10.91 2.39 2.33 380.47 14.66

AXI AC ICAP 11.78 3.06 3.01 378.37 14.65
AXI HWICAP [19] n/a 58.08 63.54 n/a 1.25

Virtex-5∗∗

AC ICAP 4.98 1.18 1.17 381.03 14.67
PLB AC ICAP 5.88 1.90 1.90 378.73 14.66
FSL AC ICAP 5.36 1.57 1.56 378.85 14.67

XPS HWICAP [4] 1912.17 29.21 32.16 n/a 1.32
[15] n/a n/a n/a 384.29§ 6.57
[14] n/a n/a n/a n/a 0.86

Virtex-4†
[20] n/a n/a n/a 371.42 n/a

BRAM HWICAP [11] n/a n/a n/a 371.4 n/a
ICAP-I [16] n/a n/a n/a 180 29‡

∗All 7-series FPGAs are 6-input LUTs, frames of 101 32-bit words.
∗∗Virtex-5: 6-input LUTs, frames of 41 32-bit words.
‡Valid for SD memory AT49BV322A.
†Virtex4: 4-input LUTs, frames of 41 32-bit words.
§Estimated value, not implemented.

the number of words in a frame for both families is 81. But for
7-series families, the correct value is 101. Something similar
happens with the FAR creation. The driver creates the FAR
with some parameters that are valid for Virtex-6 but not for
Kintex7 and these were modified to obtain correct operation.

As can be observed from Table 2, the reconfiguration
time of LUTs using the AC ICAP is, to the best of our
knowledge, the fastest reported alternative. Compared to the
XPS HWICAP in Virtex-5, it implies speed-up of more than
320 times for the PLB AC ICAP, the slowest version, and the
standalone AC ICAP offers improvement in reconfiguration
time of LUTs of more than 380 times. In a similar way, the
speed-up of read and write frame tasks, considering both
Virtex-5 and Kintex7, experiences improvements of more
than 18 and 21 times, respectively.

The reconfiguration throughput for load partial bit-
streams from BRAM, for the AC ICAP, is 380.47 and
381.03MB/s for Virtex-5 and Kintex7, respectively. It is close
to the maximum supported throughput of 400MB/s and to
the reported values on [15, 20]. For the work reported on
[15], it should be noted that the value is estimated and not
measured in a real implementation; since that controller does
not include BRAMs. The deviation of our controller from
the 400MB/s value is due to the extra clock cycles required
to start reading the BRAM and processing the DESYNC
command (0x0D) by the ICAP. For every ICAP related task,
we consider it finishes when the DESYNC command is
acknowledged. It is done by monitoring the O port of the
ICAPwhich changes from0xDF to 0x9F inVirtex-5 and from
0xFFFFFFDB to 0xFFFFFF9B in Kintex7, as a confirmation
of the success in completing the tasks. This implies six extra
clock cycles after the last data is sent to the ICAP.

For the PLB, AXI, and FSL versions, there is some
degradation in time due to the latency of the interfaces, but

in all cases, they offer improvements of more than 11 times for
load partial bitstream from flash.

The time to copy the partial bitstream from flash to
BRAM is on the same range as the required one to load
partial bitstream from flash. Instead of sending data to ICAP,
these are stored on BRAM. Therefore, it can be especially
useful when the application can copy the partial bitstreams
to BRAM before the execution starts, for instance, at booting
time.

In regard to resources utilization, Table 3 presents the
details for every module of the AC ICAP controller. It should
be noted that the AC ICAP includes the flash memory
controller, which is not the case for XPS HWICAP and
AXI HWICAP. Table 4 summarizes the resources required
by the diverse options of the controller. The extra resources
of PLB, AXI, and FSL versions of the AC ICAP are due to
the wrapper logic required to adapt the controller to these
interfaces. It can be seen that the most resource demanding
approach uses 5% of the Slices, which can be considered a
reasonable size as all the operations are done in hardware.

Finally, in Table 5, we compare the resources required by
complete MicroBlaze-based architectures including different
versions of the ICAP controller. We can see that the systems
using the AC ICAP adapted to the PLB and FSL require on
average 3% more resources of the Virtex-5 FPGA than the
XPS HWICAP alternative. This is the area overhead to pay
in order to speed up all the reconfiguration tasks, such as
the reconfiguration time of LUTs that is improved in 356x
when the FSL AC ICAP is used. When we see the data for
Kintex7, the area percentage is lower as the devices are bigger.
Therefore, the speed-up of tasks takes increased relevance
as the quantity of configuration data to manage has become
bigger but the speed and bus width supported by the ICAP
primitive remains the same since the Virtex-4 generation

International Journal of Reconfigurable Computing 13

Table 3: Resource utilization of AC ICAP.

Module Virtex-5 Kintex7
LUT FF BRAM LUT FF BRAM

AC ICAP 1667 1161 7 1286 1193 22
+Top FSM 691 471 0 452 585 0
++BRAM 36 3 7 27 3 22
++Load partial
bitstreams 109 133 0 70 130 0

+++Flash
controller 129 112 0 73 68 0

++Lut2Frames 119 118 0 39 136 0
++ReadFrames 230 138 0 232 113 0
++WriteFrames 353 186 0 393 158 0

Table 4: Resource utilization of ICAP controllers.

Controller Slices LUTs Flip flops BRAM

Virtex-5

AC ICAP 690 (3%) 1667 (2%) 1161 (1%) 7 (4%)
PLB AC ICAP 952 (5%) 2375 (3%) 1609 (2%) 7 (4%)
FSL AC ICAP 903 (5%) 2329 (3%) 1484 (2%) 7 (4%)
XPS HWICAP
[4] 453 (2%) 714 (1%) 745 (1%) 3 (2%)

[15] ∗ 96 87 0
[14] ∗ ∗ ∗ ∗

Kintex7
AC ICAP 595 (1%) 1286 (1%) 1193 (1%) 22 (5%)
AXI AC ICAP 734 (1%) 1578 (1%) 1332 (1%) 22 (5%)
AXI HWICAP 248 (1%) 546 (1%) 741 (1%) 2 (1%)

∗Not reported.

Table 5: Resource utilization of full systems with different ICAP
controllers.

System using Slices LUTs Flip
flops BRAM

V5

PLB AC ICAP 2084
(12%)

4556
(6%)

3516
(5%)

23
(15%)

FSL AC ICAP 2094
(12%)

4643
(6%)

3450
(4%)

23
(15%)

XPS HWICAP 1631
(9%)

3077
(4%)

2981
(4%) 19 (12%)

K7
AXI AC ICAP 2054

(4%)
4160
(2%)

3725
(1%) 37 (8%)

AXI HWICAP 1471
(2%)

3311
(1%)

2708
(1%) 17 (3%)

(32-bits@100MHz). From the presented data, we can sum-
marize that the best performance-area trade-off is given by
theAC ICAPwhich uses 3% of the FPGA resources but offers
speed-up of 380x in LUTs DPR.

Dynamic Partial Reconfiguration of LUTs using this
approach presents the advantage that it does not require
precomputed partial bitstreams for each modification to be
performed. It allows run-time LUT modification with any
boolean value and it is not limited by the availability of partial

bitstreams in memory. This fine partial run-time reconfigu-
ration is of increasing relevance in applications such as fault
injection platforms and in cryptographic implementations
where the hardware can be modified at LUT level to avoid
certain types of attacks. A case application of these fine-grain
modifications is presented in the next section.

8. AC_ICAP for LUT Evaluation of
an AES Module

In this section, we use the AC ICAP to evaluate an AES
module available in [31]. The idea is to have a way to
identify critical configuration values for LUTs. With such
information, it is possible to design countermeasures strate-
gies against external attacks. For instance, this approach could
be employed to modify the logic behavior of certain LUTs
to produce erroneous values without stopping the system.
In doing so, the AES can be continuously working giving
a false sense of correct operation that can be exploited as
countermeasures against attacks such as differential power
analysis.

If the partial bitstream approach is used to modify the
LUTs, a partial bitstream is required for every LUT tomodify.
These should be generated at design time and copied to
memory.Therefore, all the possiblemodifications of the LUTs
should be defined at design time and once the system is
operating it is very difficult to include any variation such as
a new LUT modification because it implies time consuming
process to generate new partial bitstreams. The advantage of
DPR of LUTs supported by the AC ICAP is that no partial
bitstreams are required and any logic modification can be
dynamically performed. To evaluate this approach, we used a
pseudo randomnumber generator (PRNG) to produce the 64
bits of the configurationmemory for the LUTs to bemodified.
We do not focus on the details of AES or PRNG. Our goal is
to offer a way to easily identify LUTs and its key values to be
used in the evaluation and design of critical modules.

The architecture of the system is depicted in Figure 14
and it is implemented in a Virtex-5 FPGA. We included
two replicas of the AES module to have online comparison
of the outcomes and the BRAM stores the information of
the LUTs. A single copy of the AES requires 8360 FF and
13952 LUTs. The DUT replica was constrained in area and
defined as a partition to be used keeping the routing defined
in the initial implementation. An area of 88 CLB columns
(14080 LUTs) was defined to place the AES. As we can
reuse the implemented partition in other designs, the values
obtained with the DPR of LUTs remain valid for different
implementations. The system, controlled by the FSM, uses
the PRNG to get random configuration values to configure
the LUTs and the AC ICAP is used to modify the LUTs on
the DUT area by using the 𝑋, 𝑌 coordinates of the Slices.
Once a LUT is modified, some test bench inputs are applied
to both the golden and DUT components and the outputs
are analyzed to determine if the LUT modification produced
erroneous values. After all input patterns are applied, the
effect of such modification is classified. If this produced
erroneous values, the LUT address and the configuration

14 International Journal of Reconfigurable Computing

FSM

AC_ICAP

AES 256
golden

AES 256
DUT

PRNG

BRAM

Figure 14: Architecture for AES with DPR of LUTs.

value are stored. The LUT is recovered to the previous
value and a new LUT is tested. If no erroneous values
were produced, it can be bypassed or tested with a new
configuration value.Therefore, this approach allows a flexible
alternative to evaluate the system exhaustively or in a more
relaxed way. The information stored in BRAM is then used
to decide what LUTs and its associated configuration values
could be employed to intentionally modify logic functions
when the system is being attacked.

9. Conclusion and Future Work

We presented the AC ICAP, a new ICAP controller verified
in Virtex-5 and Kintex7 FPGAs. It is able to load partial
bitstreams, read and write frames, and also modify any LUT
in the FPGA, in this last case without the need for pregen-
erated partial bitstreams. The controller was adapted to be
easily included in systems with embedded processors using
the PLB, FSL, and AXI links. Reconfiguration speed analysis
of the processor-independent version shows improvement
of more than 380 times in run-time reconfiguration of
LUTs compared to XPS HWICAP functions for Virtex-5
FPGAs. As our controller is fully implemented in hardware, it
obviously requires more resources, but in any case it occupies
more than 5% of the available elements on the XC5VLX110T
device. Therefore, the AC ICAP offers a complete high speed
solution to perform diverse Dynamic Partial Reconfiguration
tasks with acceptable FPGA footprint. It was used in the
design of an AES module that can modify specific LUTs as
a possible countermeasure against attacks.

As future work, we plan to extend the AC ICAP with a
DDR controller to speed up the reconfiguration tasks when
these are based on precomputed partial bitstreams not able
to be copied into BRAM due to their size. Therefore, DDR
memory is as an alternative to overcome the limitations that
available BRAM imposes.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Keysight Technologies,M9451A-DPD PXIeMeasurement Accel-
erator, 2015.

[2] Xilinx, 7 Series FPGAs Overview DS180 (v1.16.1), Xilinx, 2014.
[3] Altera, A New FPGA Architecture and Leading-Edge FinFET

Process Technology Promise to Meet Next Generation System
Requirements WP-01220-1.1, Altera, San Jose, Calif, USA, 2015.

[4] Xilinx, LogiCORE IP XPS HWICAP (v5.01a) DS586, Xilinx,
2011.

[5] L. A. Cardona, J. Agrawal, Y. Guo, J. Oliver, and C. Ferrer,
“Performance-area improvement by partial reconfiguration
for an aerospace remote sensing application,” in Proceedings
of the International Conference on Reconfigurable Computing
and FPGAs (ReConFig ’11), pp. 497–500, Cancun, Mexico,
November-December 2011.

[6] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards
rapid dynamic partial reconfiguration in video-based driver
assistance systems,” in Reconfigurable Computing: Architectures,
Tools and Applications, P. Sirisuk, F.Morgan, T. El-Ghazawi, and
H. Amano, Eds., vol. 5992 of Lecture Notes in Computer Science,
pp. 55–67, Springer, Berlin, Germany, 2010.

[7] S. Bhandari, S. Subbaraman, S. Pujari et al., “High speed
dynamic partial reconfiguration for real timemultimedia signal
processing,” in Proceedings of the 15th Euromicro Conference on
Digital System Design (DSD ’12), pp. 319–326, Izmir, Turkey,
September 2012.

[8] IBM, 128-Bit Processor Local Bus Architecture Specifications,
IBM Corporation, Armonk, NY, USA, 2007.

[9] K. Glette and P. Kaufmann, “Lookup table partial reconfigura-
tion for an evolvable hardware classifier system,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC ’14),
pp. 1706–1713, Beijing, China, July 2014.

[10] L. Sterpone and M. Violante, “A new partial reconfiguration-
based fault-injection system to evaluate SEU effects in SRAM-
based FPGAs,” IEEE Transactions on Nuclear Science, vol. 54,
no. 4, pp. 965–970, 2007.

[11] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial
reconfiguration speed investigation and architectural design
space exploration,” in Proceedings of the International Confer-
ence on Field Programmable Logic and Applications (FPL ’09),
pp. 498–502, August 2009.

[12] C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hübner, and
J. Becker, “A multi-platform controller allowing for maximum
dynamic partial reconfiguration throughput,” in Proceedings
of the International Conference on Field Programmable Logic
and Applications (FPL ’08), pp. 535–538, Heidelberg, Germany,
September 2008.

[13] M. Hübner, D. Göhringer, J. Noguera, and J. Becker, “Fast
dynamic and partial reconfiguration data path with low hard-
ware overhead on Xilinx FPGAs,” in Proceedings of the IEEE
International Symposium on Parallel and Distributed Processing,
Workshops andPhdForum (IPDPSW ’10), pp. 1–8, IEEE,Atlanta,
Ga, USA, April 2010.

[14] S. Lamonnier, M. Thoris, and M. Ambielle, “Accelerate partial
reconfiguration with a 100% hardware solution,” Xcell Journal,
no. 79, pp. 44–49, 2012.

[15] J. Tarrillo, F. A. Escobar, F. L. Kastensmidt, and C. Valderrama,
“Dynamic partial reconfiguration manager,” in Proceedings of
the IEEE 5th Latin American Symposium onCircuits and Systems
(LASCAS ’14), pp. 1–4, IEEE, Santiago, Chile, February 2014.

International Journal of Reconfigurable Computing 15

[16] V. Lai and O. Diessel, “ICAP-I: a reusable interface for the
internal reconfiguration of Xilinx FPGAs,” in Proceedings of
the International Conference on Field-Programmable Technology
(FPT ’09), pp. 357–360, Sydney, Australia, December 2009.

[17] M. Straka, J. Kastil, and Z. Kotasek, “Generic partial dynamic
reconfiguration controller for fault tolerant designs based
on FPGA,” in Proceedings of the 28th Norchip Conference
(NORCHIP ’10), pp. 1–4, IEEE, Tampere, Finland, November
2010.

[18] S. G. Hansen, D. Koch, and J. Torresen, “High speed partial
run-time reconfiguration using enhanced ICAP hard macro,”
in Proceedings of the 25th IEEE International Parallel and
Distributed Processing Symposium, Workshops and Phd Forum
(IPDPSW ’11), pp. 174–180, Shanghai, China, May 2011.

[19] Xilinx, AXI HWICAP v3.0, Xilinx, San Jose, Calif, USA, 2015.
[20] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, “A novel high-

performance fault-tolerant ICAP controller,” in Proceedings of
the NASA/ESA Conference on Adaptive Hardware and Systems
(AHS ’12), pp. 259–263, IEEE, Erlangen, Germany, June 2012.

[21] A. Ebrahim, T. Arslan, and X. Iturbe, “On enhancing the
reliability of internal configuration controllers in FPGAs,” in
Proceedings of the NASA/ESA Conference on Adaptive Hardware
and Systems (AHS ’14), pp. 83–88, IEEE, Leicester, UK, July 2014.

[22] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP
controller for high-reliable internal scrubbing,” in Proceedings
of the IEEE Aerospace Conference, pp. 1–10, IEEE, Big Sky, Mont,
USA, March 2008.

[23] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, “Multiple-
clone configuration of relocatable partial bitstreams in Xilinx
Virtex FPGAs,” in Proceedings of the NASA/ESA Conference on
Adaptive Hardware and Systems (AHS ’13), pp. 178–183, Torino,
Italy, June 2013.

[24] U. Legat, A. Biasizzo, and F. Novak, “SEU recovery mechanism
for SRAM-Based FPGAs,” IEEE Transactions on Nuclear Sci-
ence, vol. 59, no. 5, pp. 2562–2571, 2012.

[25] C. Schuck, B. Haetzer, and J. Becker, “An interface for a
decentralized 2D reconfiguration on Xilinx Virtex-FPGAs for
organic computing,” International Journal of Reconfigurable
Computing, vol. 2009, Article ID 273791, 11 pages, 2009.

[26] Xilinx, Partial Reconfiguration User Guide UG702 (V14.7),
Xilinx, 2013.

[27] Xilinx, Command Line Tools User Guide UG628 (v 14.7), Xilinx,
San Jose, Calif, USA, 2013.

[28] Xilinx, Virtex-5 FPGA Configuration Guide UG191 (V3.11),
Xilinx, 2012.

[29] Xilinx,ChipScope Pro Software andCores, Xilinx, San Jose, Calif,
USA, 2012.

[30] Xilinx, Xilinx Kintex-7 FPGA KC705 Evaluation Kit, Xilinx, San
Jose, Calif, USA, 2015.

[31] Opencores, “AES project,” 2015, http://opencores.org/project.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

