
Research Article
High Efficiency Generalized Parallel Counters for
Look-Up Table Based FPGAs

Burhan Khurshid and Roohie Naaz Mir

Department of Computer Science & Engineering, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India

Correspondence should be addressed to Burhan Khurshid; burhan 07phd12@nitsri.net

Received 29 June 2015; Revised 1 September 2015; Accepted 20 September 2015

Academic Editor: Martin Margala

Copyright © 2015 B. Khurshid and R. N. Mir. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Generalized parallel counters (GPCs) are used in constructing high speed compressor trees. Prior work has focused on utilizing
the fast carry chain and mapping the logic onto Look-Up Tables (LUTs). This mapping is not optimal in the sense that the LUT
fabric is not fully utilized. This results in low efficiency GPCs. In this work, we present a heuristic that efficiently maps the GPC
logic onto the LUT fabric. We have used our heuristic on various GPCs and have achieved an improvement in efficiency ranging
from 33% to 100% in most of the cases. Experimental results using Xilinx 5th-, 6th-, and 7th-generation FPGAs and Stratix IV and
V devices from Altera show a considerable reduction in resources utilization and dynamic power dissipation, for almost the same
critical path delay. We have also implemented GPC-based FIR filters on 7th-generation Xilinx FPGAs using our proposed heuristic
and compared their performance against conventional implementations. Implementations based on our heuristic show improved
performance. Comparisons are also made against filters based on integrated DSP blocks and inherent IP cores from Xilinx. The
results show that the proposed heuristic provides performance that is comparable to the structures based on these specialized
resources.

1. Introduction

Multioperand addition is an important operation in many
arithmetic circuits. It is frequently used in many applications
like filtering [1], motion estimation [2], array multiplication
[3–7], and so forth. Compressor trees form the basic elements
in multioperand additions. Compressor trees based on carry
save adders (CSA) typically provide higher speeds due to the
avoidance of long carry chains. Dadda [3] and Wallace [7]
trees are CSA based compressor trees which are frequently
used in application specific integrated circuit (ASIC) design.
However, the introduction of fast carry chains in FPGAs has
made ripple carry addition faster than the carry save addition.
Evidently CSA based compressor trees are not well suited for
implementation involving FPGAs [8].

Prior work on compressor tree synthesis using FPGAs has
used GPCs as basic constituent element. It has been demon-
strated that the usage of GPCs can lead to a considerable
reduction in the critical path delay with comparable resource
utilization [8–14]. Initial attempts in this regardweremade by

Parandeh-Afshar et al. [8–11]. In [9] they claim to report the
firstmethod that synthesizes compressor trees on FPGAs.The
proposed heuristic constructs compressor trees froma library
of GPCs that can be efficiently implemented on FPGAs.Their
latterwork [11] focuses on further reducing the combinational
delay and any increase in area by formulating the mapping of
GPCs as an integer linear programming (ILP) problem. The
authors reported an average reduction in delay by 32% and
area by 3% when compared to an adder tree. In [10] focus
is on reducing the combinational delay by using embedded
fast carry chains. This concept was further extended in [8]
and a delay reduction of 33% and 45% was achieved in Xilinx
Virtex-5 and Altera Stratix-III FPGAs, respectively.

Matsunaga et al. [12, 14] also formulated the mapping
of GPCs as an ILP with speed and power as optimization
goals. Their results show a 28% reduction in GPC count
when compared to [9]. A reduction in GPC count results in
reduction of compression stages thereby reducing the delay
and power consumption.

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2015, Article ID 518272, 16 pages
http://dx.doi.org/10.1155/2015/518272

2 International Journal of Reconfigurable Computing

I3

I2
I1
I0

I4

I5

I6

I7

+

+

4-LUT

4-LUT

4-LUT

4-LUT

Figure 1: Stratix IV, V ALM when used in arithmetic mode.

I2

I3

I0

I1

I4

I5

O6

O55-LUT

5-LUT

Figure 2: Xilinx 6-input dual LUT for 5th-, 6th-, and 7th-generation FPGAs.

Recent attempts from Kumm and Zipf [15, 16] focus on
exploiting the low-level structure of Xilinx FPGAs to develop
novel GPCs with high compression ratios and efficient
resource utilization. Both general purpose LUT fabric and
specialized carry chains have been used for synthesizing
resource-efficient delay-optimal GPCs.

All the abovementioned approaches (except [9]) focus on
exploiting the fast carry chain embedded in modern FPGAs.
The idea is to use the fast carry chain to connect the adjacent
logic cells and bypass the programmable routing network to
reduce delay [10]. This results in reduced critical path delay
and hence increased speed. The mapped GPCs, however,

International Journal of Reconfigurable Computing 3

d0

x3

x4 x2 x1

x0

Z4 Z3 Z2 Z1 Z0

c3 b0c2 c1 c0 a4 a3a2 a1a0

FA

FAFAFA FA

FA

Figure 3: Boolean network for (1, 4, 1, 5; 5) GPC.

Z4 Z3 Z2 Z1 Z0

d0 c3 b0c2 c1 c0 c2 c1 c0 a4a3 a0a2 a1 a3 a2 a1

FA FA FA FA

Figure 4: FPGA realization of (1, 4, 1, 5; 5) GPC using fast carry chain.

d0 c3 b0c2 c1 c0 c2 c1 c0 a4a3 a2 a1 a3 a2 a1

FA FA FA FA

1234

Figure 5: Boolean network for (1, 4, 1, 5; 5) GPC with no carry logic.

d0 c3 b0c2 c1 c0 a4a3 a2 a1

FAFA

Figure 6: Boolean network for (1, 4, 1, 5; 5) GPC after node combination.

4 International Journal of Reconfigurable Computing

d0 c3 b0c2 c1 c0 a4a3 a2 a1

FA FA

Figure 7: Covering of the combined network using 6-input dual LUTs.

a4a5 a3 a2 a1

FAHA

(a)

a4a5 a4a5a3 a2 a1 a3 a2 a1

FAHAFAHA

(b)

Figure 8: Covering for (0, 6; 3) GPC. (a) Combined network. (b) Restructuring for optimal covering.

d0

d0

c3

c3

b0

b0

c2 c1 c0 a4

a4

a0a3 a2 a1

Z4 Z3 Z2 Z1 Z0

FA FA

Figure 9: Area optimal mapping for (1, 4, 1, 5; 5) GPC.

suffer from poor efficiency. In this paper, we use a heuristic
that improves the efficiency of the mapped GPCs by reducing
the number of LUTs required to map the GPC logic. Our
heuristic mainly targets 6-input LUTs from Xilinx FPGAs
that can implement a single 6-input function or two 5-input
functions with shared inputs. However, the same heuristic

can be used for Altera FPGAs that support decomposition
of 6-input LUTs into dual 4-input LUTs, when used in the
arithmetic or shared-arithmetic mode. Additionally in both
devices the fast carry chain is used to handle the carry
rippling so that there is no increase in the critical path
delay.

International Journal of Reconfigurable Computing 5

Z2 Z1 Z0

b0

b0

a4a3 a2 a1

a1

a0

a4 a4a3a2 a1 a3a2a1a5 a5

Z2 Z1 Z0

Z2 Z1 Z0

b1

b1

b0 a2a1

a1

a0

a0

FA

FAHAFAHA

(0, 6; 3)

(2, 3; 3)

(1, 5; 3)

Figure 10: Area optimal mapping for different GPCs using proposed heuristic on Xilinx FPGAs.

The rest of the paper is organized as follows: Section 2
briefly introduces the basic preliminaries about the GPCs,
the Xilinx and Altera LUT architecture, and the terminology
used in this paper. Section 3 discusses the heuristic used to
synthesize different GPCs. Synthesis and implementation are
carried out in Section 4. Conclusions are drawn in Section 5
and references are listed at the end.

2. Preliminaries and Terminology

A compressor tree is a circuit that takes 𝑘, 𝑛-bit unsigned
operands 𝐴𝑘−1, 𝐴𝑘−2 ⋅ ⋅ ⋅ 𝐴1, 𝐴0 and generates two output
values, sum (𝑆) and carry (𝐶), such that

𝑘−1

∑

𝑖=0

𝐴 𝑖 = 𝑆 + 𝐶. (1)

6 International Journal of Reconfigurable Computing

Z2Z3 Z1 Z0 Z2Z3 Z1 Z0

Z2Z3 Z1 Z0Z2Z3Z4 Z1 Z0

Z2Z3 Z1 Z0 Z2Z3 Z1 Z0

a4a3a2 a1
a4

a3 a2 a1

a5
a4a5 b0b0

b0
b1b2

b2 b2b1 b1b0 b0b3

b3

b3

b4
b4

b5 b3
b3 b4 b3

b2b1 b0b3c0 a4 a3a3 a2

a2

a2 a5 a1
a0

a0 a0

a0

a1

a1

a1

a0

a1

a1

a0

a1 a4a3a2a1

b2b1b0

b2b1b0 b2b1b0

a5c0

HA

HA
HA

HA

(1, 6; 4)

FA

FAFA

(3, 5; 4)

FA FA

HA

FA

HA

(1, 4, 0, 6; 5)

HAFAHAFA

(4, 4; 4)

HA

FAHAFAHA

(5, 3; 4)

FA

(6, 2; 4)

FA

Figure 11: Area optimal mapping for different GPCs using proposed heuristic on Xilinx FPGAs.

International Journal of Reconfigurable Computing 7

SC

a0a0

a0

b0 a4 a3 a2 a4 a3 a2

Z2 Z1 Z0 Z2 Z1 Z0 Z2 Z1 Z0

a3a2a5 a1 a3a2 a1a4 a5 a4 a5a6 a4a5a6 a4 a2a3 a1 a2a3 a1

a1

+ +
+ + + +

C1 S1 C0 S0 C1 S1 C0 S0

FA

(1, 5; 3)

HA

(0, 6; 3)

FA FAHA FA

(0, 7; 3)

FAFAFAFA

Figure 12: Area optimal mapping for different GPCs using proposed heuristic on Altera FPGAs.

(1, 6; 4)

a0

Z3 Z2 Z1 Z0

b0b0 a4a5 a4a5 a3 a2 a1 a3 a2 a1

+ + +

C1 S1C2 S2 C0 S0

HA FAHA FAHA HA

a0

Z3 Z2 Z1 Z0

a1

b2 b1 b0 b2 b1 b0 a4 a3 a2 a4 a3 a2

+++

C1 S1 C0 S0

FAFAFAFA

(3, 5; 4)

(4, 4; 4) (5, 3; 4)

(6, 2; 4) (1, 4, 1, 5; 5)

(1, 4, 0, 6; 5) (5, 0, 6; 5)

a0

Z3 Z2 Z1 Z0

a1

b2 b1 b0 b0b3 b2 b1b3 a3 a2 a3 a2

++ +

C1 S1C2 S2 C0 S0

HAFA HAFA HA HA

a0

Z3 Z2 Z1 Z0

a1

b2 b1 b0b2 b1b4 b3b4 b3 b0

a2

+++

C1 S1 C0 S0

HA FAHA FA

Z3 Z2 Z1 Z0

a0

a1

b2 b1 b0 b2 b1 b0b3b4b5 b3b4b5

+ + +

C1 S1 C0 S0

FA FAFA FA

Z4 Z3 Z2 Z1 Z0

a0

a1

b0c0 a4 a3 a2 a4 a3 a2d0 c3 c2 c1 c3 c2 c1

++++

C1 S1 C0 S0

FAFAFAFA

Z4 Z3 Z2 Z1 Z0

a0

a1

b2 b1 b0b3 b2 b1b3c0 a4 a3 a2 a4 a3 a2a5 a4a3 a2a5

+ + + +

C1C2 S1

C0 S0

FA FA

HA

FA

HA

FA FA

Z4 Z3 Z2 Z1 Z0

a0

a1

b2 b1b3 b2 b1b4 b0b3b2 b1b4 b3 a4 a3 a2 a4a3 a2a5 a4 a3 a2a5

+ + + +

C1

C2

C3

S1 C0 S0

FA FA

HA

FA

HA

FA FA

HA

FA

HA

Figure 13: Area optimal mapping for different GPCs using proposed heuristic on Altera FPGAs.

8 International Journal of Reconfigurable Computing

40
7 69

7

13
03

23
77

40
6 69

7

13
00

23
71

44
1 73

0

13
79

24
96

44
1 73

2

13
76

24
92

8 16 32 64

N
um

be
r o

f L
U

Ts
N

um
be

r o
f L

U
Ts

N
um

be
r o

f L
U

Ts
N

um
be

r o
f L

U
Ts

Filter order
8 16 32 64

Filter order

8 16 32 64
Filter order

8 16 32 64
Filter order

Area usage

53
2 80

2

15
26

26
98

38
1 66

4

13
02

23
62

56
7 82

4

15
87

27
61

40
2 71

6

13
34

24
00

Area usage

50
2 78

1

14
82

26
71

35
9 64

1

12
89

23
23

54
1 79

7

15
47

27
21

38
0 69

3

13
00

23
51

Area usage

52
1

10
31

17
51

32
69

30
1 62

8 96
2

18
04

60
1 10

82

19
13

33
52

33
6 67

2 10
25

19
01

Area usage

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 14: Area usage for filters based on different GPCs on Kintex-7 FPGA. ∗with area as optimization goal. ∗∗with speed as optimization
goal.

A generalized parallel counter computes the sum of bits
having different weights. A GPC is traditionally represented
as a tuple (𝐾𝑖−1, 𝐾𝑖−2 ⋅ ⋅ ⋅ 𝐾1, 𝐾0; 𝑛), where 𝐾𝑖 denotes the
number of input bits of weight 𝑖 and 𝑛 is the number of output
bits. The upper limit on the value of GPC is given by

𝑀 = 𝐾02
0
+ 𝐾12

1
+ ⋅ ⋅ ⋅ + 𝐾𝑖−12

𝑖−1

𝑀 =

𝐾−1

∑

𝑖=0

𝐾𝑖2
𝑖

𝑛 = ⌈log
2
(𝑀 + 1)⌉ .

(2)

The efficiency of a GPC is measured by the number of
reduced bits in relation to the hardware resources and is given
by

𝐸 =
(𝑏𝑖 − 𝑏𝑜)

𝑘
, (3)

where 𝑏𝑖 is the number of input bits; 𝑏𝑜 is the number of output
bits; and 𝑘 is the number of LUTs used. As an example, a (1,
4, 1, 5; 5) GPC has five input bits of weight 0; one input bit

of weight 1; four input bits of weight 2; and one input bit of
weight 3. The upper limit on the output value is 31 and five
bits are required to represent the output.

Logic synthesis is concerned with hardware realization
of a desired functionality with minimum possible cost.
The cost of a circuit is a measure of its speed, resource
utilization, power consumption, or any combination of these.
A Boolean network is a directed acyclic graph (DAG) that
represents a combinational function. Logic gates, primary
inputs (PIs), and primary outputs (POs) within this network
are represented by nodes. A node may have zero or more
predecessor nodes known as fan-in nodes. Similarly a node
may drive zero or more successor nodes known as fan-out
nodes. A network is said to be k-bounded if the fan-in of
every node does not exceed 𝑘. Each node implements a local
function. A global function is implemented by connecting the
logic implemented by individual nodes. The level of the node
V is the length of the longest path from any PI node to V.
Network depth is defined as the largest level of a node in
the network. The critical path delay and area of a circuit are
measured by the depth and number of LUTs, respectively.
The transformation of a Boolean network into targeted logic

International Journal of Reconfigurable Computing 9

15
.7

3

16
.4

1

17
.3

21

18
.0

02

7.
77 8.
22 8.
82 9.
28

13
.1

9

13
.6

51

14
.1

2

14
.8

87

7.
21 7.
68 8.
00

2

8.
72

D
el

ay

D
el

ay

D
el

ay

D
el

ay

Critical path delay Critical path delay

Critical path delay Critical path delay

11
.3

4 12
.7

1

13
.0

4

13
.9

2

10
.8

7

11
.9

5

12
.7

8

13
.2

6

10
.8

9

11
.9

2

12
.5

6

13
.3

2

10
.3

3

11
.3

1

11
.9

5

12
.8

7

11
.3

4

11
.8

7

12
.3

6

12
.8

7

11
.3

5

11
.8

7

12
.2

9

12
.7

92

10
.6

65

11
.0

01

11
.5

32

12
.1

2

10
.2

3

10
.5

6

10
.8

8

11
.1

2

12
.3

4

12
.8

7

13
.4

9

14
.0

01

12
.3

2

12
.8

7

13
.3

1

13
.8

7

10
.1

7

10
.4

2

10
.8

9

11
.2

5

10
.2

3

10
.6

1

10
.9

5

11
.2

3

8 16 32 64
Filter order

8 16 32 64
Filter order

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

8 16 32 64
Filter order

8 16 32 64
Filter order

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 15: Critical path delay (in nS) for filters based on different GPCs on Kintex-7 FPGA.

elements gives the circuit-netlist. For FPGAs the targeted
element is a 𝑘-LUT.

Altera Stratix IV andVFPGAs haveAdaptive LogicMod-
ule (ALM) as the basic logic cell. The LUT resources within
each ALM are divided into two adaptive LUTs (ALUTs).
Normal operating mode uses a combination of these ALUTs
within an ALM to implement functions with up to eight
different inputs [17]. However, Altera supports specialized
arithmetic and shared-arithmetic modes for each Stratix
ALM for arithmetic extensive applications. In these modes
each individual LUT can implement two 4-input functions
with shared inputs. The arithmetic and shared-arithmetic
modes also enable the use of fast carry chains that result in
efficient implementation of different arithmetic functions. A
typical Stratix IV ALM in arithmetic mode driving the carry
chain is shown in the schematic of Figure 1.

Xilinx 5th-, 6th-, and 7th-generation FPGAs have 6-
input LUTs as basic logic elements. Each logic slice provides
combinatorial and synchronous resources, supporting 6-
input LUTs, storage elements, function generators, arithmetic
logic gates, and a fast carry chain in the form of CARRY4

primitive [18, 19]. The 6-input LUTs can be used in dual
mode to implement two 5-input Boolean functions that
share inputs as shown in Figure 2. The carry chain along
with the logic gates performs fast arithmetic addition based
operations in a slice. Each carry chain supports four-bit
operand. The absence of a special arithmetic mode in Xilinx
FPGAs sometimes results in inefficient arithmetic circuits in
these devices. Also the use of carry chain primitive requires
an additional XORgate to be included at eachCARRY4 input.

3. GPC Mapping Heuristic

This section describes the heuristic for efficientlymapping the
GPC logic onto LUTs. The primary goal of the heuristic is to
map the GPCs onto minimum possible LUTs. The heuristic
involves elimination of the carry logic; combination of the
redundant nodes; covering and restructuring of the Boolean
network; and finally reinsertion of the carry logic. We explain
the different steps involved in the heuristic by considering
the mapping of GPC (1, 4, 1, 5; 5) on Xilinx 6-input LUTs.
Conventional implementation has an efficiency of 1.5 and

10 International Journal of Reconfigurable Computing

32
1.

76

31
6.

54

31
0.

65

30
4.

32
1

34
2.

11
2

33
6.

32

33
0.

17

32
1.

87

25
4.

32
1

24
7.

78
5

24
1.

45

23
1.

65

37
6.

51

35
5.

65

34
7.

87

34
1.

31

Th
ro

ug
hp

ut
Th

ro
ug

hp
ut

Th
ro

ug
hp

ut
Th

ro
ug

hp
ut

Throughput (pipelined) Throughput (pipelined)

Throughput (pipelined) Throughput (pipelined)

32
4.

87

32
0.

32

31
5.

67

30
9.

78

32
7.

65

32
3.

34

31
8.

76

31
3.

87

34
3.

87

33
1.

76

32
7.

65

32
1.

98

35
7.

67

33
5.

4

33
0.

53
4

32
5.

13

35
2.

34

34
3.

96

33
5.

98

32
7.

83

35
4.

29

34
7.

62

34
0.

91

33
0.

81

36
5.

71

34
9.

87

34
0.

34

33
4.

41

37
2.

87

35
5.

21

34
7.

81

33
9.

56
7 35

4.
65

34
2.

22
3

33
6.

02
1

32
7.

55

35
5.

00
9

34
6.

71

33
9.

88
7

33
1.

23
1

36
6.

1

34
7.

76

34
0.

05

33
2.

81

37
0.

7

35
5.

2

34
7.

67

33
8.

41

8 16 32 64
Filter order

8 16 32 64
Filter order

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

8 16 32 64
Filter order

8 16 32 64
Filter order

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 16: Throughput (in MHz) for filters based on different GPCs on Kintex-7 FPGA.

requires four LUTs and a CARRY4 primitive. The same steps
can be used for Altera FPGAs; however, the availability of the
special arithmetic mode makes the mapping process highly
efficient and the combination step of the heuristic is only used
in some complex cases.

Figure 3 shows the Boolean network for (1, 4, 1, 5;
5) GPC. The carry logic is shown by the shaded portion.
All the primary inputs, primary outputs, and intermediate
signals have been labeled. Figure 4 shows the conventional
implementation using the fast carry chain [15].

3.1. Elimination. In the elimination step the logic imple-
mented by the carry chain is eliminated from the GPC. For
a (1, 4, 1, 5; 5) GPC the Boolean network after the elimination
of the carry chain is shown in Figure 5. The GPC consists of
four separate networks and each of these networks is mapped
onto a separate LUT. Note that for Altera FPGAs the XOR
gates in each LUT will be eliminated.

3.2. Combination. In this step the heuristic looks for redun-
dant nodes for possible combination. The feasibility for

combination is determined by the total number of outputs
of the networks whose nodes are being combined. If the
total number of outputs does not exceed two, then the nodes
can be combined to eliminate the redundancy. For example,
in the GPC network of Figure 5, network 1 and network 2
have a common full adder node with the same inputs. Each
network has only one output so that the total number of
outputs does not exceed 2. The redundant nodes from these
two networks are thus combined, such that the two networks
now share a common node. Similarly the full adder nodes in
network 3 and network 4 share common inputs and thus can
be combined into a single node.The Boolean network for a (1,
4, 1, 5; 5) GPC after node combination is shown in Figure 6.

3.3. Covering and Restructuring. The Boolean network after
combination is traversed in a post-order depth-first fashion
and the individual nodes are covered with suitable LUTs.
Since we are targeting 6-input LUTs with dual output
capability, the aim is to completely utilize the LUTs. For
the combined network of Figure 6, the covering process is
straightforward. Each of the combined networks has five

International Journal of Reconfigurable Computing 11

0.
40

9

0.
65

8 1.
33

9

2.
61

1

0.
36

6

0.
60

5 1.
16

6

2.
34

8

0.
51

8 0.
84

1

1.
72

2

3.
43

8

0.
33

3

0.
57

3 1.
10

7

2.
27

5

En
er

gy
En

er
gy

En
er

gy
En

er
gy

EOP

0.
38

3 0.
64

3

1.
28

3

2.
53

1

0.
37

3 0.
60

7

1.
18

6

2.
38

9

0.
37

5 0.
61

5

1.
23

7

2.
44

3

0.
33

6 0.
59

9

1.
13

4

2.
35

8

EOP
0.

48
4

0.
58

8

1.
29

7

3.
15

0.
46

1

0.
57

1.
24

1

2.
90

9

0.
47

6

0.
61

4

1.
32

6

3.
17

6

0.
43

9

0.
57

2

1.
24

2

2.
90

8
EOP

0.
53

6

0.
7

1.
30

6

3.
11

5

0.
42 0.

57
9 1.

17
1

2.
71

1

0.
52

5

0.
7

1.
30

2

3.
11

1

0.
41

2

0.
55

6 1.
14

5

2.
69

4

EOP

8 16 32 64
Filter order

8 16 32 64
Filter order

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

8 16 32 64
Filter order

8 16 32 64
Filter order

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 17: Energy per operation (in nJ) for filters based on different GPCs on Kintex-7 FPGA.

inputs and two outputs and will map optimally onto 6-
input LUTs when operated in dual output mode as shown in
Figure 7. However, in some cases the number of outputs per
combined networkmay exceed two. In such case the heuristic
restructures the combined network by either moving the
nodes from one network to the adjacent one or duplicating
the nodes to create additional networks. For example, the
covering of (0, 6; 3) GPC is shown in Figure 8. The Boolean
network obtained after carry chain elimination has five inputs
and four outputs and would require two 6-input LUTs. This
is possible if the individual nodes are duplicated to form two
networkswhich are thenmapped onto two separate LUTs. For
Altera FPGAs the covering process is straightforward. Each
of the full adders can be mapped onto single LUT operating
in the arithmetic mode to obtain both sum (𝑆) and carry (𝐶)
outputs.

3.4. Reinsertion. After the covering and restructuring, the
carry logic is inserted back into the GPC structure by simply
including the fast carry chain in the GPC network. For (1, 4, 1,
5; 5) GPC this is shown in Figure 9.The LUT count is reduced
to two and there is a 100% increase in the efficiency.

Different GPCs from prior work were implemented
using the proposed heuristic. An increase in efficiency was
observed in most of the cases. The implemented circuits for
different GPCs are shown in Figures 10 and 11 for Xilinx
FPGAs and in Figures 12 and 13 for Altera FPGAs. A
theoretical evaluation of different GPCs is listed in Table 1.

4. Implementation and Results

The main aim of the proposed heuristic is to improve the
efficiency of the GPCs as defined in Section 2, since this is
the performance metric used in the prior literature. From an
implementation point of view this means that the mapped
GPCswill utilize the underlying FPGA fabricmore efficiently.
Since dynamic power dissipation in FPGAs is a function of
the amount of logic utilized, a reduction in the mapped logic
will result in reduced dynamic power dissipation. Another
useful side effect of area reduction is the reduction in the
critical path which leads to increased speed. However, this
occurs only in GPCs where the reduced logic is the part of
the critical path. In our implementation, therefore, area and
power are the primary metrics of concern.

12 International Journal of Reconfigurable Computing

Table 1: Comparison of different GPCs.

GPCs Previous mappings Mappings based on proposed
heuristic (Xilinx)

Mappings based on proposed
heuristic (Altera)

LUTs Delay Efficiency LUTs Delay Efficiency LUTs Delay Efficiency
GPCs from
[9]
(3; 2) 1 TL

1 1 1 TL 1 1 TL 1
(6; 3) 3 TL 1 2 TL + 2TCC 1.5 2 TL + 2TCC 1.5
(1, 5; 3) 3 TL 1 1 TL + 2TCC 3 1 TL + 2TCC 3
GPCs from
[8]
(6; 3) 4 2TL + TR

2 + 4TCC
3 0.75 2 TL + 2TCC 1.5 2 TL + 2TCC 1.5

(1, 5; 3) 3 TL + 3TCC 1 1 TL + 2TCC 3 1 TL + 2TCC 3
(2, 3; 3) 3 TL + 3TCC 0.67 1 TL + 2TCC 2 0 2TCC —
(7; 3) 4 2TL + TR + 4TCC 1 2 2TL + TR + 2TCC 2 2 TL + 2TCC 2
(1, 6; 4) 4 2TL + TR + 4TCC 0.75 3 2TL +TR +3TCC 1 3 2TL + TR + 3TCC 1
(3, 5; 4) 4 2TL + TR + 4TCC 1 2 2TL + TR + 3TCC 2 2 TL + 3TCC 2
(4, 4; 4) 4 2TL + TR + 4TCC 1 3 2TL + TR + 3TCC 1.33 3 2TL + TR + 3TCC 1.33
(5, 3; 4) 4 2TL + TR + 4TCC 1 3 TL + 3TCC 1.33 2 TL + 2TCC 2
(6, 2; 4) 4 2TL + TR + 4TCC 1 2 2TL + TR + 3TCC 2 2 TL + 2TCC 2
GPCs from
[15]
(6; 3) 3 2TL + TR + 3TCC 1 2 TL + 2TCC 1.5 2 TL + 2TCC 1.5
(1, 5; 3) 2 TL + 2TCC 1.5 1 TL + 2TCC 3 1 TL + 2TCC 3
(2, 3; 3) 2 TL + 2TCC 1 1 TL + 2TCC 2 0 2TCC —
(7; 3) 3 2TL + TR + 3TCC 1.33 2 2TL + TR + 2TCC 2 2 TL + 2TCC 2
(5, 3; 4) 3 2TL + TR + 3TCC 1.33 3 TL + 3TCC 1.33 2 TL + 2TCC 2
(6, 2; 4) 3 2TL + TR + 3TCC 1.33 2 2TL + TR + 3TCC 2 2 TL + 2TCC 2
(5, 0, 6; 5) 4 TL + 4TCC 1.5 4 TL + 4TCC 1.5 4 TL + 4TCC 1.5
(1, 4, 1, 5; 5) 4 TL + 4TCC 1.5 2 TL + 4TCC 3 2 TL + 4TCC 3
(1, 4, 0, 6; 5) 4 TL + 4TCC 1.5 3 TL + 4TCC 2 3 TL + 4TCC 2
(2, 0, 4, 5; 5) 4 2TL + TR + 4TCC 1.5 4 2TL + TR + 4TCC 1.5 4 2TL + TR + 4TCC 1.5
1Delay associated with LUT.
2Delay associated with routing.
3Delay associated with carry chain.

Synthesis and implementation are done using
XC5VLX30-2FF324 device from Virtex-5; XC6VLX75T-
2FF484 device from Virtex-6; and XC7K70T-2FBG676
device from Kintex-7 FPGAs. The parameters considered
are resources utilization (in terms of LUTs) and power
delay product (PDP). Constraints relating to synthesis and
implementation are duly provided and a complete timing
closure is ensured in each case. Design entry is done using
VHDL. However, instead of writing inferential codes, we
have adopted an instantiation based coding strategy. This
complicates the design entry but a better control over
mapping is achieved. Dynamic timing analysis is done for
each GPC to verify the functionality after Placement and
Routing (PAR).This is done by applying different test vectors
and checking for correct output vectors. Dynamic timing
analysis gives information about the switching activity of the
design, which is captured in the value charge dump (VCD)

file. Apart from post-PAR timing analysis the functionality
of the design is also verified by dumping the design on the
Virtex-5 platform. Synthesis and implementation are carried
out in Xilinx ISE 14.2 [20] with speed as the optimization
goal. Power analysis is done using the Xpower analyzer tool.
For power analysis switching activity is provided by the VCD
file obtained during dynamic timing analysis. Similar test
benches have been used to ensure a fair comparison.

For initial comparisonwe have implemented all the GPCs
reported in prior work and compared their performance
against the implementation based on the proposed heuristic.
Table 2 provides a comparison of performance metrics for
different GPCs. From Table 2 it is observed that most of
the GPC mappings based on the proposed heuristic show an
increase in area efficiency ranging from 33% to 100%. Since
the underlying LUT fabric is utilized efficiently, there is a
reduction in resources utilized.This results in reduced power

International Journal of Reconfigurable Computing 13

Table 2: Performance comparison of different GPCs on XC5VLX30-2FF324.

GPCs
XC5VLX30-2FF324 XC6VLX75T-2FF484 XC7K70T-2FBG676

Previous Proposed Previous Proposed Previous Proposed
LUTs PDP LUTs PDP LUTs PDP LUTs PDP LUTs PDP LUTs PDP

GPCs from
[9]
(3; 2) 1 0.008 1 0.008 1 0.021 1 0.021 1 0.007 1 0.007

(6; 3) 3 0.021 2 0.019 3 0.054 2 0.05 3 0.018 2 0.017

(1, 5; 3) 3 0.021 1 0.015 3 0.054 1 0.039 3 0.018 1 0.013

GPCs from
[8]
(6; 3) 4 0.043 2 0.019 4 0.114 2 0.05 4 0.039 2 0.017

(1, 5; 3) 3 0.024 1 0.015 3 0.061 1 0.039 3 0.021 1 0.013

(2, 3; 3) 3 0.024 1 0.015 3 0.061 1 0.039 3 0.021 1 0.013

(7; 3) 4 0.041 2 0.03 4 0.118 2 0.085 4 0.039 2 0.028

(1, 6; 4) 4 0.041 3 0.035 4 0.118 3 0.098 4 0.039 3 0.032

(3, 5; 4) 4 0.041 2 0.032 4 0.118 2 0.091 4 0.039 2 0.03

(4, 4; 4) 4 0.041 3 0.035 4 0.118 3 0.098 4 0.039 3 0.032

(5, 3; 4) 4 0.041 3 0.022 4 0.118 3 0.057 4 0.039 3 0.019

(6, 2; 4) 4 0.041 2 0.032 4 0.118 2 0.091 4 0.039 2 0.03

GPCs from
[15]
(6; 3) 3 0.041 2 0.019 3 0.105 3 0.05 3 0.036 3 0.017

(1, 5; 3) 2 0.021 1 0.015 2 0.053 2 0.039 2 0.018 2 0.013

(2, 3; 3) 2 0.021 1 0.015 2 0.053 2 0.039 2 0.018 2 0.013

(7; 3) 3 0.036 2 0.03 3 0.102 3 0.085 3 0.034 3 0.028

(5, 3; 4) 3 0.036 3 0.022 3 0.102 3 0.057 3 0.034 3 0.019

(6, 2; 4) 3 0.036 2 0.032 3 0.102 3 0.091 3 0.034 3 0.03

(5, 0, 6; 5) 4 0.026 4 0.026 4 0.063 4 0.063 4 0.022 4 0.021

(1, 4, 1, 5; 5) 4 0.026 2 0.021 4 0.063 4 0.051 4 0.022 4 0.017

(1, 4, 0, 6; 5) 4 0.033 3 0.03 4 0.066 4 0.061 4 0.023 4 0.02

(2, 0, 4, 5; 5) 4 0.043 4 0.043 4 0.079 4 0.079 4 0.027 4 0.027

Table 3: Performance comparison for proposed GPC-based filters and DSP, IP based filters.

Filter design LUTs Registers (pipelined) DSP cores Critical path (nS) Throughput
(pipelined) (MHz)

EOP (nJ) ET (nJ/bit)

IP based 747 1883 0 14.701 303.366 0.765 0.003
DSP based 128 240 31 18.398 363.086 0.581 0.0022
Proposed (5, 3; 4) 732 1683 0 7.68 355.65 0.573 0.0022
Proposed (6, 2; 4) 716 1683 0 11.31 335.4 0.599 0.0023
Proposed (1, 4, 0, 6; 5) 693 1683 0 12.69 355.21 0.571 0.0022
Proposed (1, 4, 1, 5; 5) 672 1683 0 12.34 355.2 0.555 0.0021

14 International Journal of Reconfigurable Computing
En

er
gy

En
er

gy

En
er

gy
En

er
gy

0.
00

32

0.
00

26

0.
00

26

0.
00

250.
00

29

0.
00

24

0.
00

23

0.
00

23

0.
00

4

0.
00

33

0.
00

34

0.
00

34

0.
00

26

0.
00

22

0.
00

22

0.
00

22

ET

0.
00

3

0.
00

25

0.
00

25

0.
00

250.
00

29

0.
00

24

0.
00

23

0.
00

230.
00

29

0.
00

24

0.
00

24

0.
00

24

0.
00

26

0.
00

23

0.
00

22

0.
00

23

ET
0.

00
38

0.
00

23

0.
00

25 0.
00

310.
00

36

0.
00

22

0.
00

24 0.
00

28

0.
00

37

0.
00

24

0.
00

26 0.
00

310.
00

34

0.
00

22

0.
00

24 0.
00

28
ET

0.
00

42

0.
00

27

0.
00

26 0.
00

3

0.
00

33

0.
00

23

0.
00

23

0.
00

26

0.
00

41

0.
00

27

0.
00

25 0.
00

3

0.
00

32

0.
00

22

0.
00

22 0.
00

26

ET

8 16 32 64
Filter order

8 16 32 64
Filter order

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

8 16 32 64
Filter order

8 16 32 64
Filter order

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 18: Energy throughput (in nJ/bit) for filters based on different GPCs on Kintex-7 FPGA.

dissipation. The critical path delay is also reduced in GPCs
where the reduced logic is a part of the critical path. Our
implementation shows an average reduction in power delay
product by more than 20%.

We have also implemented FIR filters using different
GPCs.The implementation is carried for different filter orders
and for an operandword-length of 16 bits.Thefilter structures
are based on fixed-point array multipliers and multioperand
adders. Each of these units is constructed using the GPCs.
Since FPGAs provide a high potential for pipelining we
have used both combinational and pipelined versions of
these individual units. For pure combinational structures
critical path delay is used as a metric for speed and for
pipelined designs throughput gives an idea about the speed
of the structure. For high throughput DSP systems it is more
appropriate to quantify the power efficiency through energy
analysis. In our implementation we have used three energy
related parameters for FIR systems. These include energy
per operation (EOP), which is the average amount of energy
required to compute one operation; energy throughput (ET)
which is the energy dissipated for every output bit processed;
and energy density (ED) which is the energy dissipated per

LUT. We have used GPCs with maximum efficiencies from
[8, 9, 15] and compared their performance against those
based on the proposed heuristic. Figures 14, 15, 16, 17, 18,
and 19 provide the performance comparison of the filters
based on different GPCs implemented using the conventional
methods and using our proposed heuristic. Note that the
Xilinx synthesizer uses its own optimization strategies during
the mapping process. In our implementation we have done
separate analysis for area and speed.This is done by selecting
the desired optimization goal prior to synthesis and imple-
mentation. The optimization effort in each case is selected to
be high.

Finally, we have compared our filter implementation
against that based on integrated DSP blocks and IP cores.
DSP based filters have adders and multipliers constructed
using DSP macros. For IP based filters the adder unit is
the LogiCORE IP adder/Subtractor v 11.0 and the multiplier
unit is the LogiCORE IP Multiplier v 11.2. Although these
specialized inbuilt resources are highly optimized they do
suffer from some disadvantages like fixed bit-width, limited
number, and so forth [9, 21]. However, their biggest drawback
is that they remain fixed in the FPGA fabric. This limits

International Journal of Reconfigurable Computing 15

En
er

gy
En

er
gy

En
er

gy
En

er
gy

0.
00

10
1

0.
00

09
4

0.
00

10
3

0.
00

11

0.
00

09

0.
00

08
7

0.
00

09

0.
00

09
9

0.
00

11
7

0.
00

11
5

0.
00

12
5

0.
00

13
8

0.
00

07
5

0.
00

07
8

0.
00

08

0.
00

09
1

ED

0.
00

07
2

0.
00

08

0.
00

08
4

0.
00

09
4

0.
00

09
8

0.
00

09
1

0.
00

09
1

0.
00

10
1

0.
00

06
6

0.
00

07
5

0.
00

07
8

0.
00

08
8

0.
00

08
4

0.
00

08
4

0.
00

08
5

0.
00

09
8

ED

0.
00

09
6

0.
00

07
5

0.
00

08
7 0.

00
11

8

0.
00

12
8

0.
00

08
9

0.
00

09
6 0.
00

12
5

0.
00

08
8

0.
00

07
7

0.
00

08
6 0.

00
11

7

0.
00

11
6

0.
00

08
2

0.
00

09
6 0.
00

12
4

ED

0.
00

10
3

0.
00

06
8

0.
00

07
5

0.
00

09
5

0.
00

14

0.
00

09
2 0.

00
12

2

0.
00

15

0.
00

08
7

0.
00

06
5

0.
00

06
8

0.
00

12
3

0.
00

08
3 0.

00
11

2 0.
00

14
2

ED

8 16 32 64
Filter order

8 16 32 64
Filter order

(5, 3; 4)∗

(5, 3; 4)∗ [proposed]
(5, 3; 4)∗∗
(5, 3; 4)∗∗ [proposed]

(6, 2; 4)∗

(6, 2; 4)∗ [proposed]
(6, 2; 4)∗∗

(6, 2; 4)∗∗ [proposed]

8 16 32 64
Filter order

8 16 32 64
Filter order

(1, 4, 0, 6; 5)∗

(1, 4, 0, 6; 5)∗ [proposed]
(1, 4, 0, 6; 5)∗∗
(1, 4, 0, 6; 5)∗∗ [proposed]

(1, 4, 1, 5; 5)∗

(1, 4, 1, 5; 5)∗ [proposed]
(1, 4, 1, 5; 5)∗∗

(1, 4, 1, 5; 5)∗∗ [proposed]

Figure 19: Energy density (in nJ/LUT) for filters based on different GPCs on Kintex-7 FPGA.

the ability of the synthesizer to alter their position during
the PAR phase of the design cycle and sometimes the post-
PAR performance may be highly degraded. In our analysis
we have synthesized 16-tap direct form filters with input bit-
width of 16 bits. The target platform is from Kintex-7 and the
optimization goal is speed. The results provided in Table 3
show that the performance of our design is comparable to
filters based on these specialized resources.

5. Conclusions

GPCs form an inherent part of high speed compressors. In
this work we proposed a heuristic that mapped GPCs onto
minimum possible LUTs by exploiting the improved logic
handling capability of modern day FPGAs. A comparative
analysis of our implementation against prior work showed
a reduction in LUT count and the average power dissipated.
This resulted in an increased compressing efficiency in most
of the GPCs. Filter structures based on our modified GPCs
show enhanced performance when compared to the con-
ventional GPC-based filters. We also compared our results
against filters based on specialized resources like DSPmacros

and IP cores. The results indicated that the performance of
our design is comparable with these specialized resources.
Our future work aims at efficiently pipelining the GPCs by
eliminating the carry chain and using only a combination of
LUTs and registers to implement the GPCs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Mirzaei, A. Hosangadi, and R. Kastner, “High speed FIR filter
implementation using add and shift method,” in Proceedings of
the International Conference on Computer Design, pp. 1–4, San
Jose, Calif, USA, October 2006.

[2] C.-Y. Chen, S.-Y. Chien, Y.-W. Huang, T.-C. Chen, T.-C. Wang,
and L.-G. Chen, “Analysis and architecture design of variable
block-size motion estimation for H.264/AVC,” IEEE Transac-
tions on Circuits and Systems I, vol. 53, no. 3, pp. 578–593, 2006.

[3] L. Dadda, “Some schemes for parallel multipliers,” Alta Fre-
quenza, vol. 34, pp. 349–356, 1965.

16 International Journal of Reconfigurable Computing

[4] O. Kwon, K. Nowka, and E. E. Swartzlander Jr., “A 16-bit by
16-bit MAC design using fast 5:3 compressor cells,” Journal of
VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 31, no. 2, pp. 77–89, 2002.

[5] H. Mora Mora, J. Mora Pascual, J. L. Sánchez Romero, and F.
Pujol López, “Partial production reduction based on lookup
tables,” in Proceedings of the International Conference on VLSI
Design, pp. 399–404, Hyderabad, India, January 2006.

[6] J. Põldre and K. Tammemäe, “Reconfigurable multiplier for
Virtex FPGA family,” in Field Programmable Logic and Appli-
cations: International Workshop on Field-Programmable Logic
and Applications, Glasgow, UK, vol. 1673 of Lecture Notes in
Computer Science, pp. 359–364, Springer, Berlin, Germany,
1999.

[7] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transac-
tions on Electronic Computers, vol. 13, no. 1, pp. 14–17, 1964.

[8] H. Parandeh-Afshar, A.Neogy, P. Brisk, andP. Ienne, “Compres-
sor tree synthesis on commercial high-performance FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems,
vol. 4, no. 4, article 39, 2011.

[9] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient synthesis
of compressor trees on FPGAs,” in Proceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC ’08), pp.
138–143, IEEE, Seoul, Republic of Korea, March 2008.

[10] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Exploiting fast
carry-chains of FPGAs for designing compressor trees,” in
Proceedings of the 19th International Conference on Field Pro-
grammable Logic and Applications, pp. 242–249, Prague, Czech
Republic, August 2009.

[11] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Improving syn-
thesis of compressor trees on FPGAs via integer linear pro-
gramming,” in Proceedings of the Design, Automation and Test
in Europe (DATE ’08), pp. 1256–1261, IEEE, Munich, Germany,
March 2008.

[12] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Power and delay
aware synthesis of multi-operand adders targeting LUT-based
FPGAs,” in Proceedings of the 17th IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED ’11),
pp. 217–222, Fukuoka, Japan, August 2011.

[13] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Multi-operand
adder synthesis targeting FPGAs,” IEICE Transactions on Fun-
damentals of Electronics, Communications and Computer Sci-
ences, vol. 94, no. 12, pp. 2579–2586, 2011.

[14] T.Matsunaga, S. Kimura, andY.Matsunaga, “An exact approach
for gpc-based compressor tree synthesis,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E96-A, no. 12, pp. 2553–2560, 2013.

[15] M. Kumm and P. Zipf, “Efficient high speed compression trees
on xilinx FPGAs,” in Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen
(MBMV ’14), Böblingen, Germany, March 2014.

[16] M. Kumm and P. Zipf, “Pipelined compressor tree optimization
using integer linear programming,” in Proceedings of the 24th
International Conference on Field Programmable Logic and
Applications, pp. 1–8, IEEE, Munich, Germany, September 2014.

[17] Altera Corporation, Stratix-IV Device Handbook, vol. 1, Altera
Corporation, 2015.

[18] Xilinx Corporation, Virtex-5 Family Overview LX, LXT, and
SXT Platforms, Xilinx Inc, San Jose, Calif, USA, 2010.

[19] Xilinx Corporation, Virtex-6 FPGA Data Sheet, Xilinx Inc, San
Jose, Calif, USA, 2010.

[20] http://www.xilinx.com/.
[21] I. Kuon and J. Rose, “Measuring the gap between FPGAs

and ASICs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 26, no. 2, pp. 203–215, 2007.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

