Hindawi Publishing Corporation

International Journal of Reconfigurable Computing
Volume 2015, Article ID 673596, 31 pages
http://dx.doi.org/10.1155/2015/673596

Research Article

Hindawi

Optimization of Lookup Schemes for Flow-Based Packet

Classification on FPGAs

Carlos A. Zerbini'? and Jorge M. Finochietto’

!Laboratorio de Comunicaciones Digitales, Universidad Nacional de Cérdoba and Consejo Nacional de Investigaciones Cientificas y

Técnicas (CONICET), 5000 Cordoba, Argentina

2Departamento de Ingenieria Electrénica, Universidad Tecnolégica Nacional, 5000 Cordoba, Argentina

Correspondence should be addressed to Carlos A. Zerbini; czerbini@electronica.frc.utn.edu.ar

Received 11 September 2014; Accepted 6 January 2015

Academic Editor: Michael Huibner

Copyright © 2015 C. A. Zerbini and J. M. Finochietto. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Packet classification has become a key processing function to enable future flow-based networking schemes. As network capacity
increases and new services are deployed, both high throughput and reconfigurability are required for packet classification
architectures. FPGA technology can provide the best trade-off among them. However, to date, lookup stages have been mostly
developed as independent schemes from the classification stage, which makes their efficient integration on FPGAs difficult. In
this context, we propose a new interpretation of the lookup problem in the general context of packet classification, which enables
comparing existing lookup schemes on a common basis. From this analysis, we recognize new opportunities for optimization of
lookup schemes and their associated classification schemes on FPGA. In particular, we focus on the most appropriate candidate for
future networking needs and propose optimizations for it. To validate our analysis, we provide estimation and implementation
results for typical lookup architectures on FPGA and observe their convenience for different lookup and classification cases,
demonstrating the benefits of our proposed optimization.

1. Introduction

Nowadays, the increasing network traffic and services claim
for much more efficient packet processing. Since most traffic
is packet-based, processing time for each packet decreases as
data rates do increase, thus, requiring better processing per-
formance. Besides, services which used to require just best
effort processing have evolved in terms of number, complex-
ity, and traffic volume. Initiatives such as Software Defined
Networking (SDN) allow to modify processing tasks through
OpenFlow [1], thus, enabling a much more flexible network-
ing infrastructure.

For these services to be successful, proper performance
must be guaranteed. Technology offers several options for
implementing packet processing, such as network processors
(NPs), custom application-specific integrated circuits (ASICs),
and field programmable gate arrays (FPGAs). Among them,
FPGAs have been widely adopted for mid-sized and flexible
solutions [2]. As resources on these platforms become richer

and more efficient as technology evolves, the performance
gap with respect to ASICs tends to narrow in time in practical
applications due to the higher costs associated to ASIC
development. In addition, today’s available development tools
make these platforms accessible to hardware designers, soft-
ware developers, and network specialists [3].

In order to enable service-oriented network architectures,
new processing functions have been added to traditional
longest-prefix routing. Among them, classification is one of
the most challenging. Packet classification enables a lot of
internet services such as policy-based routing, traffic account-
ing, load balancing, and access control, by assigning packets
to different flows and accordingly defining their processing
paths. A classifier analyzes a packet header or key against
a set of predefined filters or rules having associated actions.
According to matched rules, the corresponding actions are
applied to the packet.

A packet header can be divided into several fields of
interest, which are orthogonal to each other. That is, they

are defined independently and then combined into rules. On
each of these fields, a lookup process is performed; from the
combination of such lookups on multiple fields packet classifi-
cation is achieved. In the general case, rule fields are specified
as generic ranges (GR) of field values. In 1-dimensional
space (1ID) (i.e., one field) these ranges define line segments,
while they define hyper-rectangles in the k-dimensional (kD)
space. Four particular 1D range cases can be identified, that
is, prefixes (PX), exact values (EX), arbitrary ranges (AR), and
wildcards (WC). Prefixes are ranges bounded by powers of
two, so they can be expressed by using “don’t care” bits at least
significant positions. Exact values are ranges with equal lower
and upper bounds; arbitrary ranges have arbitrary bounds,
while wildcards cover the entire range of field values. Prefixes
are commonly used at network layer (L3 in TCP/IP stack)
for Classless-InterDomain Routing (CIDR). Exact values are
used for specifying hosts at L3, protocol-based filtering at L3,
and port-based filtering at transport layer (L4 in TCP/IP
stack). Arbitrary ranges are used for fields such as L4 ports
specitying sessions, while wildcards are used for indicating
fields whose value is irrelevant.

Keys used for classification are traditionally based on 5
tuples formed by 32-bit L3 source/destination IP addresses
(SrcIP/DstIP), 16-bit source/destination L4 ports (SrcPT/
DstPT), and 8-bit L4 protocol (Prot), summing altogether 104
bits. Next-generation networks, meanwhile, consider using
up to 12 tuples in order to support new specifications such as
OpenFlow. This implies taking into consideration fields such
as VLAN ID, source/destination Ethernet addresses, Type of
Service and Ethernet Type, summing up to 12 fields with 237-
bit length. Each of these fields involves different range cases
such as PX, AR, or EX.

Given its importance for CIDR in IP networks, the prob-
lem of prefix-based lookup has been extensively studied and
many effective solutions exist for it on diverse technologies
[4-7]. The problem of arbitrary range match, meanwhile, has
seen increasing importance for protocols requiring more than
best-effort I[Pv4 routing. Even if some effective solutions have
been achieved to date, they stick to specific implementation
and lack an objective comparison with other approaches.
Moreover, it is unclear how effectively they can fit typical
architectures for multifield classification.

Main drivers of current research on packet classifi-
cation are, namely, (i) line-speed processing, (ii) best-
match/multimatch support, and (iii) dynamic updating capa-
bility. Line speed means that packets must be dispatched from
the classification module at the same rate that new ones arrive
to it, even if some latency could be introduced in the
process. Since packet size is variable, line speed is commonly
associated to the worst case which is the smallest packet.
Widely deployed Ethernet networks set this worst case to 40
bytes, that is, 3.2 ns/packet for 100 Gbps Ethernet (i.e., 313 -
10° packets per second). In applications such as IP routing,
the result of interest is the best-match (BM) among the con-
sidered rules, which can be the most specific prefix as imple-
mented in IP routing or based on some predefined priority
scheme assigned to rules during updating. New applications,
however, require different actions to be taken according
to the particular combination of multiple matches (MM),

International Journal of Reconfigurable Computing

for example, for accounting or intrusion detection through
SNORT [8]. In general, MM poses quite different require-
ments than BM to packet lookup and classification schemes.
This is of utmost importance considering future flow-based
networking schemes, which require mixed BM/MM lookups.
Dynamic updating, meanwhile, was not an issue in the past
as routing tables were relatively static. In present applications,
however, classification rules tend to be highly dynamic [9],
so updating complexity should be considered in new
approaches.

In this work, we take into account the aforementioned
factors and our previous experience [10] and apply them to
the generic lookup case. On this basis, we make the following
main contributions.

(i) We provide upper bounds for lookup and updating
complexity which help recognize critical aspects of
lookup schemes. On this basis, we provide a through
comparative analysis of current approaches for the
three main lookup cases, that is, exact/prefix/arbitrary
range and BM/MM. We then focus on arbitrary range
lookup and provide a general taxonomy of the exist-
ing approaches which eases their qualitative compar-
ison. From this taxonomy, we finally extract typical
examples and compare them quantitatively.

(ii) We take into consideration not only the required
unifield lookup case but also the adopted multifield
classification architecture. Contrary to previous work
which focuses on one of both aspects, our method-
ology is in line with current flow-based networking
schemes, where MM/BM, PX/AR/EX schemes are
required on the one hand and multiple fields are
considered on the other hand.

(iii) We extend the geometrical interpretation of rules,
commonly applied in multifield classification, to the
case of stitched lookup architectures. In particular, we
recognize new geometric spaces for AR lookup which
are not present in multifield classification. This
methodology greatly eases the analysis of lookup and
classification architectures on a common base and
helps recognize new bounds for implementation.

(iv) We implement representative lookup cases on FPGA
technology and compare estimated results with those
from real implementation. In particular, we enhance
explicit range match and memory indexing architec-
tures for supporting arbitrary range match on FPGAs.

(v) From our analysis of existing lookup schemes, we
identify the most appropriate one for MM lookup
on FPGAs. Implementations of this scheme currently
suffer from very inefficient incremental updating, so
we propose an optimization in this aspect. Partic-
ularly, we approach incremental updating of RFC,
which was not considered to date.

(vi) On the basis of our theoretical and empirical results,
we provide selection criteria for lookup architectures
on FPGA and how to combine them effectively. To
the best of our knowledge, this is the first work which

International Journal of Reconfigurable Computing

aims to integrate and compare lookup schemes on a
common basis, which can help to recognize the most
appropriate ones for future networking applications
on FPGA.

The paper is organized as follows. In Section 2, we review
lookup cases and their recent solutions aiming for FPGA
implementation. In Section 3 we discuss the complexities
of such cases analytically. From this discussion, we reach a
general taxonomy of the lookup process and use it for com-
paring solutions. Section 4 focuses on trade-offs for imple-
mentation of such solutions on FPGA devices. We then com-
pare results of these implementations against estimations in
Section 5. Finally, we draw our conclusions in Section 6.

2. Related Work

We must first clearly distinguish packet lookup from packet
classification. Lookup processes selected bits of the packet
header according to a common matching criterion. These
selected groups, commonly consecutive and named packet
fields, can adopt a number of binary values; selected values of
that packet field are then grouped and said to match different
rules, entries, or filters in a ruleset. Grouping can be by
defining single exact values, hierarchical grouping in prefixes,
or arbitrary grouping in ranges of values. Fields are essentially
independent in that we can obtain independent match results
for each field; so we say that fields are orthogonal to each
other. Lookup process on a certain field returns BM or
MM results which could be directly used to take some
decision on the packet. When implementing classification on
multiple fields, however, decisions on different fields must be
considered altogether. Two main approaches exist for this,
that is, multifield decision trees which consider all fields at
once and incrementally reduces multidimensional classi-
fication space and decomposition-based approaches which
process field lookups independently and then consider their
interrelations to make a decision. In the former, the concepts
of lookup and classification are indistinguishable, while they
are clearly different in the latter. Multifield decision trees can
be more or less efficient depending on the ruleset pattern,
while decomposition-based classification adapts better to
different rulesets and is naturally suited to highly concurrent
hardware architectures. Extensive work exists on packet clas-
sification; we can mention [11] as example of tree-based clas-
sification and [12-16] as examples of decomposition-based
classification. Other schemes were also proposed [17, 18]
using hashing techniques and Bloom filters. However, they
require multiple memory accesses and high routing complex-
ity on FPGAs, while Bloom filters can return false matches; all
of these factors lead to limited performance. In this context,
we specifically focus our work on packet field lookup schemes
applicable to decomposition-based classification. In particu-
lar, we exclude hashing-based schemes in favor of simple and
deterministic lookup schemes. Some general concepts are
naturally common to both classification and lookup; however,
essential differences exist which we will note throughout the
paper. In the following paragraphs, we review previous work
specifically regarding packet lookup.

The naive approach to MM packet lookup is Linear
Searching (i.e., the packet field is sequentially matched
against rules until the last rule is reached). This scheme
requires no more storage than that required by the ruleset but
can take excessive time for rulesets containing many entries.
Content-addressable memory (CAM) technology and its
ternary version (TCAM), collectively known as associative
arrays, solve this problem by concurrently matching every
single bit of every rule against the packet header. They are
the natural choice when the requirements of line-speed and
MM lookup must be met at the same time [19, 20]. However,
TCAMs are expensive application-specific devices with high
energy demands. In addition, they do not natively support
arbitrary range match. Given M-bit key and N rules, TCAMs
can suffer from rule expansion when encoding a W-bit
range which can be upper bounded to M rules in the worst
case [21]. Multiple efforts have tried to mitigate both draw-
backs by adding power-controlling hardware in the chip or
preencoding of ranges for efficient TCAM mapping; we can
mention CoolCAMS [22], ETCAMS [23] and Split [24] as
representative examples.

TCAMs compare all M bits of a field at the same time
against the N rules; this extensive parallelism which makes
them so attractive for line-speed lookup is also the main
source of their drawbacks. As a result, algorithmic techniques
have emerged which incrementally reduce the lookup space
in multiple steps while keeping acceptable performance.
These techniques have been mapped to hardware by applying
pipelining and taking advantage of SRAM and DRAM tech-
nology, much cheaper than TCAM cells due to their pro-
duction scale. One of these algorithmic techniques is based
on tries. A trie is a special tree where the path from root to
leafs is defined by the state of successive bits of the key. Tries
can process key bits one at a time, resulting in simple unibit
tries or in fixed/variable strides resulting in multibit tries with
different throughput versus resource consumption trade-
offs. The processing in strides serves to compress tries from
different observations such as multiple single-branch nodes
(path compression), multiple complete-branch levels (level
compression), or multiple leaves having the same decision in
a multibit trie (Lulea scheme) [25, 26]; however, these tech-
niques make incremental updating very difficult and slow. A
combination of them, maintaining fast updates, is proposed
in tree bitmap scheme [25]. More recent proposals aim at
keeping high lookup rates while supporting IPv6 extended-
size keys. To this end, they adopt hash-based schemes
[5, 27]. Even if trie-based techniques can be effective for
IP addresses, they tend to exploit the prefix structure, which is
a particular case of arbitrary ranges. Finally, it is worth
mentioning that they are mostly subject to patents which
hinders its adoption in research work [26].

Binary search tree schemes are another option for IP
lookup which makes branching decisions on criteria other
than following key bits in descending order. The cost for this
abstraction is a M-bit magnitude comparator implemented in
hardware and memory storing M-bit range bounds for each
tree stage. One possible variant, which still takes advantage of
hierarchical nature of IP addresses, is grouping rules accord-
ing to IP prefix length and taking branching decisions

according to such lengths. In this way, lookup on each stage
is implemented through hashing on fixed-length prefixes
[28]. This architecture is attractive for tables containing many
wide-key entries sharing few prefix lengths; on the other
hand, the use of hashing makes it unpredictable for worst
cases. The other variant, binary search on ranges, is based
on defining new, nonoverlapping intervals from original,
overlapping IP prefixes. On this basis, lookup process com-
pares against endpoints of such ranges at each tree stage and
finds the enclosing interval which is associated with a best-
match prefix. Even if they are originally slower than multibit
tries, range trees have motivated abundant research [29, 30].
From the tree-based ones, this approach shows as the more
amenable to arbitrary ranges. No specific analysis exists, how-
ever, about its performance against competing techniques for
this match case; that is why we include it in our study.

Tree-based schemes are commonly pipelined on hard-
ware in order to achieve high throughput, where memory is
distributed in reduced size modules along tree stages. Since
stages require increasing memory as we move towards tree
leaves, strong memory imbalance can result. The difficulty in
this case resides in achieving the best memory efficiency and
throughput. Recent work, such as [30], strongly concentrates
on this aspect for the specific case of FPGA technology.
Complex combinations of double-port SRAM and DRAM
memory technologies, with their specific requirements, are
considered in order to achieve balanced memory consump-
tion and scalability for large and wide rulesets. In particular,
external DRAM with complex interfaces is exploited at lowest
stages of the tree to support rulesets of 256 K IPv6 prefixes at
speed as high as 400 mega-lookups per second (Mlps).

Two techniques commonly applied to trie- and tree-based
lookup are leaf pushing and node grouping. In a general tree, a
node staying at an intermediate level can hold both pointers to
next nodes and decisions on the packet. Leaf pushing pushes
down decision information to leaf nodes and make inter-
mediate nodes hold just branching information; in this way,
they reduce memory consumption by making a node hold
either pointers or next hop information but not both. Node
grouping aggregates multiple branching decisions in a single
node; performance is thus increased since less levels are
required, even if memory consumption at each node is higher.
Even if good results were obtained for tree-based prefix
lookup on large rulesets, they are still quite dependent on
ruleset features.

In recent years, increasing interest has emerged on
emulation of CAM and its derivatives on FPGA technology.
FPGAs offer heterogeneous hardware resources such as com-
binational logic implemented on Look-Up Tables (LUTs),
registers, and SRAM blocks, which enable exploring highly
concurrent schemes for CAM optimization with reduced cost
and high performance. Since FPGAs do not presently include
native TCAM cells, its behavior is emulated with available
resources. Moreover, FPGAs allow implementing modified
versions of CAMs, such as extracting all individual matches
instead of the best match (ie., getting rid of the priority
encoder intrinsic to CAMs). The first work to explore a
combination of native TCAM (external to FPGA) and TCAM
emulation in FPGA for range support was [31]; however, the

International Journal of Reconfigurable Computing

adopted emulation scheme was an inefficient replacement
for TCAM and no further options were considered at that
time. PCIU [32], meanwhile, presented a more complete
implementation and evaluation of CAM emulation on both
software and FPGAs. StrideBV [33] is a very similar approach
which considers a more efficient implementation by taking
advantage of different memory form factors present in
FPGAs. Our previous work [10], meanwhile, fully explored
the potential of RAM-based TCAM emulation on FPGAs
and, even more important, identified interesting opportu-
nities for arbitrary range support through controlled RAM
addressing expansion. A comparison of StrideBV [33] (dis-
tRAM and BRAM versions) against SRLI6E-based TCAM is
also presented in [34]. Such implementations are not fully
portable, while their performance is limited and highly
dependant on specific distRAM and SRLI6E features. Later
work [35] builds on these concepts and optimizes resource
consumption for the case of narrow ranges by taking advan-
tage of distributed RAM (distRAM) present in some FPGA
devices. Despite the fact that not all FPGAs equally offer or
even support distRAM, this kind of memory heavily con-
sumes LUTs for storage of ruleset which could otherwise be
used for logic-intensive operations. In addition, [35] adopts
explicit range match (ERM) for wide ranges by emulating
ETCAM ideas [23] on FPGA. ERM stores bounds explicitly
on registers, accesses them concurrently, and compares them
against the incoming key for each rule. Strided and clustered
bit vector (SCBV) [36], finally, integrates these contributions
in a highly pipelined systolic architecture and focuses on effi-
cient updating schemes for it. It achieves high throughput on
1K 12-tuple OpenFlow rulesets by intensive use of distributed
RAM memory present in FPGA LUTs. Authors claim using
distRAM for both RAM-based exact/prefix support and
ERM-based arbitrary range support, reducing the extensive
register consumption of [35]; however, it is unclear how
this scheme implements ERM through distRAM. Even if
distRAM-based ETCAM emulation has already been pro-
posed and effectively implemented in [12], that architecture is
essentially different than that in [36] since match results for
each range bound are precomputed; that is, the M-bit com-
parator is eliminated and replaced by offline computation.
Even if ERM can be a very simple and effective resource
for definitively solving the AR match problem of TCAMs,
care must be taken since it presents some key trade-ofts. ERM
requires accessing 2 - M - N registers concurrently, so these
registers must be routed individually to their associated com-
parators; in addition, all of them are accessed for each lookup
requiring much power. In other words, ERM repeats trade-
offs intrinsic to TCAM architecture, even if highest through-
put with minimal storage is achieved for moderate rulesets;
both are power hungry schemes with limited scalability due
to their storage granularity and wiring requirements. Even if
these problems can be mitigated by fine-grained pipelining,
diminishing returns of such techniques still limit scalability.
Even worse, ERM relies on FPGA technology to be imple-
mentable, while ETCAMs can already perform the same func-
tion on top-performance ASICs. As we will see in our next
discussion, in many cases subtle facts about current packet

International Journal of Reconfigurable Computing

Rule [[SrcIP (32bits) DstIP (32bits) SrcPT (16bits) | DstPT (16 bits)
1 [204.152.184.34/32 | 204.152.186.10/21 1024:65535 1024:65535
2 95.105.143.10/32 |194.252.142.131/32|| 8000:8000 0:65535
3 175.77.88.0/23 |194.252.142.131/32 0:65535 8000:8100
4 95.105.142.0/23 95.102.0.0/16 1024:65535 50000:62000
5 175.77.89.0/23 36.165.103.1/15 0:65535 60000:64000

(a)
DstPT (16 bits)
(=1
= 5
@IS
s SI
S o
S 3
% 3 41
(=]
uwn
@
on |0
e
o |
S8
- |
S 34
fee]
6 x
(=1
2)
0 16384 327678 49152 65535 SrcPT (16 bits)
0:65535
1024:65535

8000

()

FIGURE 1: Real ruleset: (a) table of rule specifications and (b) geometric view of application-level fields (SrcPT/DstPT).

lookup applications can be smartly exploited to implement
AR match on FPGAs without recurring to ERM.

One important aspect, common to all mentioned TCAM
and ETCAM emulation architectures, is that they assume
lookup operations on individual rules (even if ETCAMs add
both effective range matching and reduction of power con-
sumption to original TCAMs, we will focus on their features
regarding range matching, namely ERM. For sake of general-
ity, we refer to CAMs, TCAMs and ETCAMs with the generic
term “CAMs” if not otherwise noted). As mentioned in [34],
this fact makes them agnostic of ruleset features; however, it
also forces them to scale linearly with N. Even if it is pos-
sible to compress N-wide vectors into reduced-width ones
[13, 14], CAM emulation schemes cannot internally produce
such vectors but need an additional mapping stage. In addi-
tion, as we will see, the only lookup scheme that can be easily
adapted for reduced-size output is memory indexing. ERM,
on the contrary, cannot produce those outputs without
additional stages. Considering these facts, we propose a
general analysis on FPGA, considering not only memory and
logic-based lookups but also rule- and so-called region-based
results.

3. Analysis

3.1. General Considerations. We introduce our analysis by
considering a simple example of a real ruleset. Rulesets
present in real scenarios are difficult to obtain due to security
and confidentiality issues. Reference [37] obtained 12 real

filter sets from internet service providers (ISPs), a network
equipment vendor, and other researchers and defined metrics
for characterization of them. On this basis, they developed a
set of tools for reproduction and control of such features; with
these tools the research community is able to generate new
rulesets which keep original structure without need of dis-
tributing the original ones. The considered rulesets have three
main formats, that is, Access Control Lists (ACLs), Firewalls
(FW), and IP Chains (IPCs), all of them considering 5 tuples
(i.e., 104 bits), while ruleset size is configurable from tens to
some thousands of rules. Two main components define struc-
ture of traditional rulesets: SrcIP/DstIP tuple, which defines
communicating nets and their sizes and SrcPT/DstPT/Prot
tuple which represents applications communicating through
such nets.

In Figure 1(a) a small ruleset is considered involving 5
tuples as mentioned in Section 1. Even if this example is inten-
tionally small for clarity, it represents the structure of real sets
as those generated with Classbench. In particular, Prot field is
excluded since it adopts either EX or WC values. As shown,
networking fields SrcIP/DstIP are defined on prefixes, while
application fields SrcPT/DstPT can also implement arbitrary
ranges. We will now consider the SrcPT/DstPT fields since
they are able to represent both PX and AR cases. It is worth
noting that even though two fields are considered for illus-
tration purposes these tuples can be eventually aggregated
with SrcIP/DstIP and Prot lookup results to obtain multifield
classification results. Figure 1(b) shows the so-called geomet-
rical representation of application-layer SrcPT/DstPT tuples.

[Rule(UV,p) [FA | Fg [UVA [UVg [UR, | URg |
1 9:11 | 4:6 1 2 1,2 3,4
2 39 | 15 2 1 |2,3,4,5| 1,2,3
3 9:11 | 46 3 2 5,6 3,4
4 8:12 | 37 4 3 14,56,7(2,3,4,5
5 39 [1L:12] 2 5 12,3,45 6
6 9:11 [11:15| 3 4 56 | 67

(a)

International Journal of Reconfigurable Computing

——--, Fp(4bits)|
A 7| Bl
I R e e
Lo EEEEE R
BF s ke RAE Rl p e
— -1 s
3H L3l AI:;_L;Z; :
I R A -
L el s i
I 0L . ——
UV, ur, 0,0 1 11| |1 15, Fy (4bits)
N |
!

; UR,4

BV 45
(“bit vector”)

FIGURE 2: Ruleset example: (a) list of entries and (b) geometric view.

In this simple example, we can observe the presence of
overlappings between 2D tuples. For example, tuple 2 involves
ranges 8000:8000 (i.e., EX case) and 0: 65535 (i.e., WC) on
fields SrcPT and DstPT, respectively. Tuple 4, meanwhile,
results in aggregating ranges 1024 : 65535 and 50000 : 62000
respectively.

In order to discuss general classification problems and
make our conclusions more intuitive, we now consider a
generic 2D ruleset. From our previous real example, however,
we note that our discussion effectively includes real cases.
Even more important, it also considers general cases which
makes it valid for future applications involving other rule
patterns. For the purposes of our discussion, in Figure 2(a) we
show a simple ruleset involving two fields A and B with four
bits each, while Figure 2(b) shows the geometrical represen-
tation of this ruleset where field values F, and Fj are rep-
resented on orthogonal axes. This representation is indeed a
generalization of the real case of Figure 1(b) considering any
match case (i.e., generic ranges).

In a general multidimensional classification scheme, rules
result from the combination of so-called unique values (UVs)
at each field. In Figure 2(b), UV, and UVy, for each field are
represented by line segments, and their aggregation results
in UV 45 as rectangles. UVs represent ranges of key values
and can involve 1,2,.. .,k fields of the key. They are unique
for the considered space; for example, 2-field rules 2 and 5 of
Figure 2(b) are unique in the 2D space even if they share a
single UV, = 2 in 1D field A. Conversely, a UV in a field
could be involved in more than one rule (in this work, since
we mostly focus on unifield lookup, we may use the terms UV
and rule interchangeably unless explicitly noted while mak-
ing reference to multifield aggregation); for example, UV 4 =
2 is involved in both UV 45 = 2 and UV 5 = 5 while UV, =
3 is involved in both UV, = 3 and UV ,; = 6. In other
words, UVs cannot repeat in their associated spaces, but they
can repeat during aggregation into a higher-order one; that is
why the number of UVs |[UV]| generally increases as we

consider higher-order spaces. That is also the reason why the
complexity of single-field lookup stages in decomposition-
based classification is generally much lower than the com-
plexity of multifield trees which consider kD space from the
beginning. In Figure 2, [UV,| = 4 UVs exist for field A,
[UVj| = 5 for field B, and [UV 45| = 6 = N for aggregation
results of both. In this case just 2 fields are considered, so
aggregation results [UV 4| are essentially the considered N
rules. Rule UV 45 = 1 results from the combination of UV , =
1 and UVy = 2 and rule UV, = 2 involves UV, = 2,
UVj = 1,and so on. As seen in Figure 2, UVs can overlap with
each other which causes the MM problem. For discrimination
of all overlapping cases, unique combinations of UVs define
so-called Unique Regions (URs) on the considered field or
aggregation stage. In Figure 2, for example, [UR,| = 8 URs
exist for field A, [URg| = 8 for field B, and |[UR,y| = 11
for aggregation results of both (this can be demonstrated by
taking all combinations of UR, and URy which are valid
for the ruleset). In general, the number of both UVs and
URs involved at each stage of a multiple-field decomposition-
based classifier increases as we aggregate lookup results; how-
ever, they actually increase much slower than their Cartesian
product. For every field value F, and Fg, we can build [UV ,|
and |UV|-sized bitmaps BV , and BV, respectively, repre-
senting the match results for the respective UVs. For aggre-
gation purposes, however, we expand them to |[UV ,g|-sized
bitmaps where bits represent match state of each UV 45 for
that field value; this expanded bitmap, which has the same
size N for every field, is simply called bit vector(BV) hereafter,
as illustrated in Figure 2(b). Similarly, for each field value
we can store a URID representing the UR matching that
particular value. Both BV and URID are illustrated in
Figure 2(b) for a sample field value F, = 9 on field A. URs can
be essentially seen as optimally compressed versions of their
respective BVs; as such, they are biunivocally related. URs
are important since they ultimately discriminate actions to be
taken on the packet without involving redundant information

International Journal of Reconfigurable Computing 7
TaBLE 1: [UV]| for real rulesets.
Set Rules Network (IP) Application (ports)
srclP dstIP SrcIP/DstIP srcPT dstPT SrcPT/DstPT
ACLI1 752 96 205 425 1 140 140
FW1 269 56 66 128 13 43 55
IPC1 1550 152 128 941 34 54 85
TABLE 2: |UR| for real rulesets.
Set SrcIP[15:0] SrcIP[31:16] DstIP[15:0] DstIP[31:16] Prot[7:0] SrcPT[15:0] DstPT([15:0]
ACL1 96 5 177 78 5 1 141
FW1 55 14 67 9 6 14 44
IPCl1 282 40 549 97 8 32 51

as in the case of BV. As we will see, either URs, UVs, or BV's
can be used for aggregation of lookup results at each field.

To get an impression of the values of [UV| and |UR|
for individual fields and aggregation results in real cases,
Tables 1 and 2 show results for ACL1, FW1, and IPCI rulesets
[37]. Similar trends are observed in other synthetic rulesets
generated from them. Table 1 also shows 2D UVs resulting
from aggregating SrcIP/DstIP and SrcPT/DstPT, respectively,
while Table 2 considers splitting SrcIP and DstIP in 16-bit
chunks as it will be discussed later.

We now wonder how costly the lookup process can be for
a particular field in terms of both UVs and URs; this analysis
will help to define our following contributions. To this end,
we consider upper bounds for the number of UVs and
URs for prefix, exact, and arbitrary range lookup cases. To
illustrate our analysis, in Figure 3 we consider a field of width
M and 2™ possible field values. The number of UV at a field
is mostly less than N as discussed before, so we will consider
a general case of [UV| UVs for the lookup case which will
eventually scale to N in a multifield decomposition-based
classification scheme. Each of these UVs implies a range of
key values defined by either start/end bounds [s,e]|,., or
respective offset/scope (O, S)|ps¢ ss0- Additionally, in the fol-
lowing discussion we consider URO as the region where just
the default rule (i.e., wildcard WQC) is involved. Given |UV|
UVs defined over a particular field, their theoretical possible
MM cases are given by 2/%V1 However, implementing such
theoretical case would require UV's with multiple [s, e] points
as shown in Figure 3(a), which is not possible in practice.
For continuous UVs involving a [s,e] pair, the worst case
would really involve |UV]| prefix-based UVs as shown in
the two cases of Figure 3(b), resulting in an upper bound
|UR| = |UV|. For AR-based rulesets, partial overlappings can
exist, so the worst case is [UR| = 2|UV| — 1 as shown in
Figure 3(c). Exact-match, meanwhile, is essentially a special
case of prefix-match with maximal prefix length; therefore, its
worst case is [UR| = [|UV| as shown in Figure 3(d).
Figures 3(e) and 3(f) illustrate mid-points between worst
cases 2|UV|—1 and |UV| when GR-based rules with different
overlappings are considered. In Figure 3(e) |[UR| = [UV| URs
are defined by GR-based rules, while Figure 3(f) shows a
general case |[UV| = 5,|UR| = 7(JUV| < |[UR| < 2|UV| - 1).

Of particular interest is the minimum number of UVs
(IUV|,,;,) needed to achieve the aforementioned worst cases.
|UV|,,;, can be defined in terms of the offsets O between UVs
and UV scopes (S) present in the ruleset. To get the worst-
case overlapping, O,;, must be 1; that is, a new UR arises for
each key value. In addition, there exists a scope S, = 2/2
for which this worst case arises. In Figures 3(c) and 3(d) we
obtain |[UV|,, for cases where S and O are the same for all
of the considered UVs. For them, it can be demonstrated that
[UV|in = (2™=S5). Figure 3(c) considers the case (Op;> Spay)
(IUV]pin = 8—4 = 4). Note that, if we use S > S, ,,, the worst
case [UR| = 2|UV/| - 1 cannot be achieved without recurring
to UVs where s > e, that is, “circular” scopes which are not
present in real cases. Figure 3(d) considers the opposite case
(Opin> Smin) (.e., exact matches) (JUV|,;, = 8 -1 = 7).
Figures 3(e) and 3(f), meanwhile, consider cases where the
considered UVs span different Ss. In such cases, no general
rule was found to apply for [UV ;. |.

From the preceding analysis, we can reach some relevant
conclusions. The theoretical worst case [UR| = 2!"V! achiev-
able with a BV is not possible in practical rulesets; moreover,
real cases are typically far beyond the practical worst cases
presented here. Decomposition-based multi-field schemes
require lookup stages to deliver MM results, since a BM
in a certain field could not be the same BM at others. In
this context, URs represent optimally compressed MM results
as they gather just effective [UR| UV combinations from the
2/ space present in BV (Figure 3(a)); in this way, they
hold just the essential information to take an action on the
packet. For FPGA implementation, URs require less routing
complexity and memory bandwidth than UVs and associated
BVs and are more scalable for large number of rules. URs are
the result of performing compression of redundant infor-
mation present in BVs during rule updating; therefore,
they require precomputation. BVs, meanwhile, require logic
and/or memory to perform such compression at runtime and
determine the action to be taken on the packet. Precom-
putation can be effectively implemented on general-purpose
processors (GPPs) while keeping the hardware-software
interface as fast as possible to transfer resulting URs from the
GPP to FPGA-based lookup engines.

International Journal of Reconfigurable Computing

R e 1 (WCQC)
i UV1
Uuv2
Uv3
g = &
P2 L 2]
f f T T T T T 1
2M
()
(WQ) (WC)
e e e e | T |
UVl UVl
Uv2 Uv3 uv2 Uv3
Uv4, UVS UV6 UV7 uUva UVs UV6, V7,
[=} — [} (=} — [}
&, I~ [&, I~ &
PP P PP P
I T T T T T T T 1 I T T T T T T T 1
(b)
(WCQC) (WCQC)
e e e e e e o T e |
PR SN
, UVl , s
) —
o, v 5
Uuv2 <>
UV4 : UV1.UV2 UV3 UV4 uv7
(=) — S (=) — D~
&, &, & &, &, &,
T R S T T SO W TR Y NN S B g
I T 1 T T T T T 10 T T T T T T T 1
(c) (d)
NN) e WO _ . .
UV1 , UV1
Uv2 uv2 : Uv3
Uva Uv4 UV5
Uv4 o
uv7z
=] — S =) — Y
=4 =4 =4 ~, o 24
P 2| | | | |] N SN | | | | 2]
I T T T T T T T 1T T T T T T T T 1
(e) (f)
FIGURE 3: Worst overlappings: (a) theoretical worst-case number of overlappings (JUR| = 2N (b) practical worst-case number of

overlappings for PX-based rulesets (JUR| = [UV]), (c) practical worst-case for AR-based rulesets (|[UR|
worst-case for EX-based (i.e., maximum-length PX) rulesets (|[UR| =

(JUV| < |UR| £ 2|UV| - 1).

3.2. Comparison of Lookup Schemes. In order to effectively
compare lookup schemes, we first consider the actual require-
ments in the context of multifield decomposition-based clas-
sification, namely,

(1) fast and simple incremental update;

(2) support of matching on exact values, prefixes, or arbi-
trary ranges depending on packet processing needs;

2|UV| - 1), (d) practical
|UV]), and (e) and (f) practical worst-cases for GR-based rulesets

(3) appropriate interface between lookup stage and
adopted multifield decomposition scheme;

(4) good scalability with respect to the ruleset size, both
in length (# of rules) and in width (number of fields
and bits/field);

(5) moderate precomputation complexity;

International Journal of Reconfigurable Computing

Lookup process: Update process:
1 key value 10V

1 UR — 1 action (MM case)

Multiple UVs (matches) Multiple key values

Multiple URs — multiple actions (<2 new)

Worst-case update
[UV] [UR|
2-2UV|-1=3

Real-case update

[UV] |UR|

+lg 2—=2 D +1
3—-3

+lg >+O
4-3

+1g >+2
5—-5

256 — 256

>+2
>+2
>+2

256 — 2|UV| -1 = 511

+1<
3-2|UV]|-1=5
+1<
4-52[UV|-1=7
+1<

5-2UV[-1=9

FIGURE 4: Multimatch (MM) processing.

Lookup process:

1 key value

)

Update process:

Worst = real case update
[UV] |UR|

1 UV (prefix/exact)

t1 272 >+1

1 UR — 1 action (BM case) Multiple URs — multiple actions (1 new) s 373
\l/ g 4 -3 D
1 UV (narrowest-scope prefix) Multiple key values e
256 — 256

FIGURE 5: Best-match (BM) processing.

(6) moderate resource consumption;
(7) high throughput (i.e., line speed processing);
(8) moderate power and energy consumption.

Even if this work is about unifield lookup schemes,
considering actual trends to flow-based networking schemes,
we argue the need of discussing them in the real context of
generic, multifield classification applications. In this context,
requirements (1), (2), and (3) are naturally related. As context
for our following discussion about them, in Figures 4 and 5,
we summarize relevant aspects of the update and lookup
processes for the MM and BM cases, respectively.

When an incremental update is performed to the lookup
engine, we commonly want to add a rule which relates
to specific ranges of values at each considered key field
F(0---2Mc), If we consider a single field, a multifield rule
updating operation could involve a UV updating operation
(when the new rule uses a UV not already present at that field)
or no UV updating (when the new rule reuses a UV already
stored for that field). Let us now consider the case when a
new UV is added at a lookup stage. The new UV will in
general impact multiple URs, at most 2 for MM lookup and
1 for BM lookup (we further discuss this topic later in this
section). As a consequence, requirement (1) essentially means
that mapping from one UV to multiple URs should be
implemented efficiently.

During lookup, in contrast, we typically input one specific
key value at the considered field, and the lookup scheme
delivers one particular UR representing one particular action.
Depending on the type of matching (i.e., BM versus MM), the
complexity of determining the involved UR is substantially
different. This determines requirement (2). For the case of
BM, each UR maps to exactly one different UV, resulting in
|[UR| = |UV]. On the other hand, MM requires |UR| < 2|UV|
URs, which complicates the lookup process. PX matching
adapts naturally for BM since the prefix with the narrowest

scope is chosen and either complete or no overlap can occur
between prefixes. AR matching presents total, partial, and
no overlappings between UVs and BM/MM is possible. For
exact match, finally, [UR| = [UV| and no overlapping at all is
present, so in this case the lookup complexities for BM and
MM are the same and lowest ones.

In Figures 6(a), 6(b), and 6(c) we consider possible over-
lapping cases and how the addition of a new UV affects them.
Figures 6(a) and 6(b) focus on arbitrary ranges which can
overlap completely, partially, or not at all, while Figure 6(c)
considers prefix ranges which can show either complete or
no overlaps. Without loss of generality, we consider a simple
2-UV case and incremental updating with one new UV
(i.e., UV3) for offsets causing all possible overlapping cases.
Remaining overlapping cases are simply mirrored versions of
the considered ones and add no new URs. Updates involving
more initial UVs cause the same general overlapping cases,
simply involving more UVs as suggested in worst and real
updating cases of Figures 4 and 5. As anticipated in the previ-
ous paragraph, the addition of a new UV to AR rulesets can
add at most 2 URs, while the same addition in prefix-based
rulesets adds 1 new UR. As discussed later in this paper, we
can take effective advantage of this fact to reduce updating
overhead, which is one of the main impairments to the
adoption of UR-based schemes.

Requirement (3) is naturally associated with the needs in
decomposition-based classification which separates lookup
and aggregation as two independent stages (as discussed,
the other prevalent classification scheme, i.e., decision-tree
based, does not differentiate both stages and is not as well
suited for hardware implementation as aggregation-based
classification is). It has not been considered in previous
approaches to the best of our knowledge, even if each pro-
posed lookup scheme implicitly has an optimal output
interface. Lookup schemes, on the one side, have been
commonly treated as self-contained, mostly longest-prefix

10 International Journal of Reconfigurable Computing
(=3 — (=3 —
(=3 — (=3 —
(=3 — (=3 —
(=} — (=} —
O T T A T [T T [T A A T AR R |
L Y S S N B B S S | LI N S S NN B N B N |
Uv2 UVl = =
— —_— =] —
L uv2 s -
URO 1 2 1 0 o 1732 3 o o
I — | — I uva
l l uv1
Uv3 Uv3 (URL | 2 0 |
— — I T T 1
w (Bl 21y o g4 P2 s 0 ’
uv3 uvs3 Uvs
o By 2 1 o BBy 2 2y 0 g Bl 2 o |
I T T T 1
uvs3 uv3 V3
(3)|012|1= 0 I101.253I 0) L T 0 |
Uv3 Uv3 Uv3
@ o Bl2 Bl o 0o af2 Bl o ! 2 0
= . = .

L

(a)

(®)

(c)

FIGURE 6: Effect of adding a new UV: (a) and (b) arbitrary range cases and (c) prefix case.

matching (i.e., BM) engines, while classification schemes, on
the other side, are commonly proposed with a predefined
input format in mind (i.e, MM format), and the lookup
stage is somehow adapted to it or is not considered at all.
As we will discuss, there exist both UR-based and UV-based
aggregation schemes which ideally fit the counterpart format
at the lookup output. Lookup schemes, meanwhile, can be
more or less suited for each output format.

Requirement (4) is quite dependent on the adopted data
formats for both lookup and aggregation stages. Requirement
(5), meanwhile, relates to (1), (4), (6), and (7). In general
terms, the higher the precomputation complexity, the higher
the updating complexity, the lower the required memory
bandwidth of the lookup engine and the higher the lookup
throughput. These facts can be clearly appreciated in UR-
based schemes, which are logic consequences of the shift
of computation from run-time to update time. By storing
preprocessed results in memory, logic resources are saved,
memory bandwidth is reduced, and scalability with respect to
the ruleset size is enhanced; however, updates require pre-
computation which must comply with required updating
rates.

Power and energy consumption (8), meanwhile, have
become important metrics in the last years and should be
considered while designing lookup and classification schemes.
In general terms, for the considered pipelined schemes,
energy consumption involves both total latency and power
consumed per pipeline stage [38]; both are also strongly
related with (6) and (7); to this respect it can be reduced by
selective clock gating.

As starting point for our study on lookup schemes and
their suitability for aggregation-based classification, we sur-
vey references to lookup stage made in related work on clas-
sification; even if no implementation details of such lookup
schemes are given in most of them. Works containing such
references are Lucent BV [16], Distributed Crossproducting

of Field Labels (DCFL) [17], Extended DCFL (DCFLE) [12],
StrideBV [33], SCBV [36], and Recursive Flow Classification
(REC) [13]. In addition, [39] provides some interesting
insights even if the analysis focuses exclusively on lookup and
does not relate it to classification.

For exact match, the most convenient solution seems to
be hashing according to [17, 39]. For prefix matching, Binary
search on prefix lengths and tree bitmap are proposed in
[17], while TCAMs are mentioned in [12]. For arbitrary range
match, [17] proposes TCAMs, Balanced Interval Tree, and
Fat Inverted Segment Tree; [16] proposes Binary Search; [12]
implements ETCAM; and [33, 36] propose ETCAM emula-
tion on FPGAs. Reference [13], meanwhile, adopts memory
indexing for all match cases. Even if multiple options are
mentioned, there is no clear comparison of their resource
consumption versus performance trade-offs. Moreover, the
lookup-aggregation interface is not considered. Finally,
FPGA implementations are either not considered or com-
pletely local to each approach and, therefore, not directly
comparable. To fill this lack, in this section we introduce a
high-level analysis of main lookup options. We begin by
considering CAMs and their multiple emulation and opti-
mization options on FPGAs. We then compare with binary
decision trees which relax concurrency in favor of reducing
memory bandwidth. As it will be shown, all of the existing
options can be studied on a common base from which the
most convenient one can be identified depending on the
intended application. From this analysis, we propose a new,
general taxonomy of lookup schemes for FPGAs.

As mentioned in Section 1, CAMs and their ternary vari-
ant TCAMs are the concurrent counterpart of linear search.
Both approaches implement Exhaustive search with optimal
O(M-N) memory efficiency. However, they are not scalable to
large N, due to long search time in case of linear search and to
high power/area consumption in case of TCAMs. In addition,
TCAMs suffer from the range expansion problem: arbitrary

International Journal of Reconfigurable Computing

Km

K, K, ‘K3

2M

LTE

D

combinations

1
|K1 K ‘ K J Ky
ol | o Jofifufula] - Jofoj—
—_— Y Y

K, =1 K, =0 K =1 K, =0
K =1 K =0
2™ 1-bit memory words
(b)
Kim
M M
O End
e
GTE
M
Start

(d)

FIGURE 7: I-rule lookup: (a) register-based TCAM emulation (no address expansion), (b) memory-based interval (full address expansion),

(c) memory-based bounds, and (d) logic-based bounds.

ranges (see Section 1) must be mapped into multiple prefixes
which can expand to M entries for keys of width M [21].
Despite these drawbacks, TCAM:s are widely used in modern
networking equipment where performance guarantees are a
must.

The problem of arbitrary range implementation in
TCAMs, together with the increasing presence of this kind
of matching in rulesets, have led to intensive research on the
topic. In FPGA-based lookup, the arbitrary range matching
problem for one UV can be approached in two ways, namely,
by storing precomputed range match results or by storing
range bounds and matching against them by combinational
comparators. We call the former memory-based as it stores
match results in advance in FPGA memory and the latter
logic-based as it computes matches by combinational logic in
FPGA. Memory-based schemes are faster by requiring mod-
est O(1) memory bandwidth for one rule but may require
much more memory than that required by the original lookup
table; that is, the memory utilization factor is u < 1. Logic-
based matching, on the other hand, resembles native CAM
features, were minimal storage is required at cost of high
O(2M) memory bandwidth and O(2M) routing complexity
for one rule. Focusing on the memory-based case, two vari-
ants arise; that is, precomputed match results can be stored
considering both start and end bounds together (i.e., interval)
or in two independent memories for upper and lower bounds,
respectively. In the former, one 2"-deep memory is enough,
while the latter requires two of such memories.

From the technical perspective, three main resources are
available in FPGAs for CAM emulation, namely, synchronous
registers (flip-flops), Block RAM (BRAM) (even if distributed
RAM can also be used in combination with BRAMs, this
feature is not equally available on all FPGA providers, so
it is not included in our analysis), and combinational logic

implemented in flash memory-based LUTs. Figure 7 presents
emulation options for one rule. In Figure 7(a) a TCAM emu-
lation scheme using registers is shown which exactly mimics
a native TCAM. As such, it consumes minimal memory but
suffers range expansion (i.e., multiple rows would be needed
still achieving just one rule match). One way to alleviate range
expansion, at cost of addressing expansion, consists of TCAM
emulation through RAM memory as shown in Figure 7(b),
which is the memory-based interval case (i.e., it considers
the whole [s, e] interval of a rule in a single memory). This
approach was early suggested by FPGA providers [40, 41] and
extensively studied in our previous work [10] as well as more
recent proposals [35].

ETCAM [23] is another effective scheme to mitigate range
expansion of TCAMs in ASICs. It stores two M-bit words in
ASIC technology for each rule. Both words hold the start and
end bounds of each range, respectively, and two M-bit mag-
nitude comparators are needed for each rule. This technique,
called explicit range match (ERM) throughout this paper, was
ported to FPGAsin [12,36]. Reference [12] precomputes com-
parison results for each bound separately and stores them in
LUTs used as distributed RAM memory (DistRAM). This
approach is shown in Figure 7(c) and is called memory-based
bounds case (i.e., it considers both bounds [s,2™ — 1] and
[0, e] in independent memories). Reference [36], meanwhile,
stores bounds separately in registers and maps magnitude
comparators in general-purpose LUTs (i.e., implements the
logic-based case) requiring fully-parallel access to all stored
bounds as shown in Figure 7(d). We note that such a high
memory bandwidth can only be achieved by using general-
purpose registers with high routing complexity.

As already mentioned, lookup schemes can be UV-based
or UR-based. Both approaches are indistinguishable for one
rule since just one UV defining one UR exists in this case;

12

[UV-based lookup! 2.N x M-bit [UVI < [URI < 2]UVIx M-bit” "R pased lookup
UR-bounds | ——————
1 UV-bounds =2M-t0-\UR| URlookup_

:address_ing/\ M

reduction
| g 9

1 o
) I :
ey 1 ey (o[l S
£ =] s :

: = :—) b;;:[F 5 : E
12 = | \l log, |UR| 4
D & A E fpcias
'//? q
. 'l W)

(®)

International Journal of Reconfigurable Computing

2/URI o log,|UR|-bit UR-bounds, ~ (==—=-=-—-~— 2M x log,|UR|-bit UR-bounds,

(
I no addressing expansion | UR-based : full addressing expansion
at expense of log,|UR| cycles : lookup at bandwidth log, |UR|
| : for single-cycle lookup
\ log,|UR| i
! 1
| |
- 1 - -
: _%cl 1 T : %":
R[] ' . En
2 Key 13,5 5
1
| i: :_>| \ \ | ! z:% :_): \
: = : I_ 1 EN : : o~ : 1
22 : AN
i i
1
|

(c)

FIGURE 8: N-rule lookup: (a) UV-based by concurrent matching of rule bounds, (b) UR-based by reducing memory expansion through a

binary tree, and (c) UR-based by full memory expansion.

however, for multiple rules they differ depending on rule
overlapping. Multiple UVs can be typically matched by a
packet, so UV-based schemes must be highly concurrent
architectures. In Figure 8(a) we show a typical UV-based
scheme which is an extension of Figure 7(d). On the other
hand, just one UR can be matched by a packet, so UR-
based schemes can achieve high performance with modestly
pipelined architectures. Figures 8(b) and 8(c) show two UR-
based lookup schemes. In Figure 8(c) the scheme of Fig-
ure 7(b) is extended for |UV| UVs which combine into |UR|
URs. Figure 8(b), meanwhile, shows a generic binary search
scheme where the tree can be seen as multiple-stage address
space compressor between the key and the memory of
Figure 8(c); in this way memory address space is considerably
reduced. In fact, the address reduction stage of Figure 8(b)
arranges 2|UV|[s,e] UV bounds into |[UV| < |UR| <
2|UV|[s,e] UR bounds and then uses them as branching
functions in log,|UR| stages. After that, it implements the
scheme of Figure 8(c) with reduced |[UR| address space thanks
to the compression achieved by the decision tree. From the
previous analysis, we can consider the three schemes as solu-
tions to the same problem with different trade-ofts regarding
storage, time, and preprocessing costs. In addition, each
lookup scheme offers a natural associated interface to the
aggregation stage for multifield classification. The natural
lookup-aggregation interface is BV for Figure 8(a), while it is
a URID for Figures 8(b) and 8(c). If these lookup engines are
interfaced to the opposite aggregation case, additional UV-
UR and UR-UV mapping stages are required as also shown
in Figure 8.

Examples of UV-based lookup are [12, 36], while the
UR-based lookup is used in [16] (which in fact combines
UR-based lookup and UV-based aggregation) and [13]. Con-
current architectures such as native TCAMs and ETCAMs
are naturally suited to UV-based lookup of multiple rules,
while indexing (emulated TCAM) and decision tree-based
ones are by definition UR-based lookup schemes. UV-based
schemes scale linearly with the number of rules and do not
take advantage of rule overlapping patterns. On the contrary,
UR-based schemes are more scalable than UV-based ones for
large N and moderate overlapping. UV-based schemes,
meanwhile, require no precomputing of UR labels which

can be convenient for moderate N or complex overlapping
patterns.

4. Architecture

In order to validate and evaluate our analysis, we imple-
mented FPGA designs for the following cases:

(i) memory indexing (i.e., IND);
(ii) binary search tree (i.e., BS);
(iil) explicit range match (i.e., ERM).

For each case, we consider their performance from the
match (i.e., exact, prefix, and arbitrary range) and aggregation
(i.e., UR-based and UV-based) points of view.

4.1. Memory Indexing. Memory indexing is a convenient
choice when flexibility is required regarding the aggregation
stage to be used; that is, even if it is essentially a UR-based
lookup scheme as we will see, it can also output UV-based
results without significant architectural changes (i.e., achiev-
ing the UR-to-UV mapping stage of Figure 8(c)). Despite its
simplicity, it enables a number of mappings between keys
and match results. At each memory address we can store
either a N-bit bitmap representing UV (i.e., a bit vector or
BV) or a precomputed log,|UR|-bit label representing a UR
(i.e., a URID). In this way, it can be interfaced to either UR-
based or UV-based aggregation stages. Figures 9(a) and 9(b)
show both alternatives, respectively, for the example range
pattern of Figure 10(c). In addition, multiple layering schemes
have been explored to date [14, 15, 42] which essentially relax
minimum-width UR labels without reaching the width of
BVs. They reduce memory bandwidth required by BV by
adding precomputation of match results. At the same time,
they reduce precomputation requirements of URs by dividing
the matching space in layers. These layering schemes, how-
ever, require advanced algorithms for finding independent
sets of UVs which are out of scope of this work.

Finally, a combination of the UR-mapping scheme of Fig-
ure 9(a) and the UV-mapping schemes of Figure 9(b) can be
used in a two-stage architecture with two memory modules,
reg_mem mapping key values to URs followed by bv_mem

International Journal of Reconfigurable Computing 13
Key
g ;
% Lofo[o[is]o] [a[s]3]o] reg mem
et M
lKey 0 2
Key _ UR
= ~ LUR 0[{0]0j1|1)1|]0]0|0)0|N UVs (BV)
%1000112 4[3[3]o Z| |o[ojojo[o]o| [1]o[ojof— 0[1]1]0[0[0[0]0| Ny UV (BV)
g7, B oM ofofojt|1f1] |1[1|1]0 Z| |oJofojo|1]0]0j0 — (coznpressed)
0 oM olo[1]1]1]o[o]o v-merm
reg_mem bv_mem 0 2Meg2lURIT _ g — 7
() (b) (c)
FIGURE 9: Memory indexing: (a) UR output, (b) BV output, and (c) addressing space reduction.
ASuE)ﬁgld)
3bits) —= ——
e s SE A 7
- Field A (5bits) _ i j%%
(=3 —
S — —IT
8 : L K 4 i
T T T T T T I T T M T A B B B 7357 \l§
1 [t [Tt &t [& [t t T] T — T T —
UV1=0XXXX UV2 = 11XXX v
t 1 o E—
UV3 = 000XX —
UV4 = 011XX 000 48 |
_ _ [[| Subfield
A, =00 Ap=11 00 11 A (2bits)
() (b)
Subfield
A, (2bits)
Field A (4bits) 1
o —
(=) — TTTT7T
(=) —
(=) —
N T T T O) B B
| T T T | T T T | T T T | T T T | e
UV1 = [0011, 0110] UV2 = [1001, 1100] Q 2 UV3
UV3 = [0101, 1110] 00 /
= : !
Subfield
A, = _ 1 4
L =00 A =11 00 1 A, (2bits)

(c)

(d)

F1GURE 10: Effect of stitching: (a) prefix-based lookup example, (b) prefix stitching, (c) AR-based lookup, and (d) AR stitching.

mapping URs to UVs. This option, also sketched in Fig-
ure 9(c), allows interfacing to UV-based aggregation stages
while reducing storage from 2M.N to2M -log,|UR|+|UR|-N.
For FPGA implementation, however, this is not always true
since memory blocks limit smallest attainable form factors;
as a consequence memory and address widths cannot always
be optimized to O(log,|UR|).

Memory indexing can be viewed as the end case of a
single-stage binary search tree. As such, it is able to perform
lookup in a single cycle; however, as mentioned in [10],
this approach faces the problem of addressing expansion. In
general terms, for a key of width M, 2™ memory words are
required to hold match results for each of the 2" possible key
values. This scheme can match any general S = 2" (W <
M) range with one bit/rule of memory width. We can
alleviate addressing expansion by exploiting horizontal or
vertical slicing techniques proposed in [43]. In the first case,
memory address port is horizontally sliced in [M /m] stitched

“chunks” and associated with independent memory blocks,
each having 2™ addressing space. This approach can signif-
icantly reduce memory consumption and take advantage of
optimal memory form factors in FPGAs. However, splitting a
key field A into two chunks introduces two different, orthog-
onal subdimensions A, and A,. This problem is clearly
illustrated in Figures 10(a) and 10(b) for a 5-bit prefix ruleset
split into 2-bit and 3-bit subfields, and Figures 10(c) and 10(d)
for a 4-bit AR ruleset split into two 2-bit sub-fields. As shown,
each slice performs lookup independently and has no sen-
sibility of lookup results at other slices. For example, given
a key = 00110 for ruleset of Figure 10(a), chunk A; matches
00 but is unable to sense if either 0XXXX (UV1) or 000XX
(UV3) effectively matches the key; this will depend on result
from chunk A,. As a consequence, match results from these
subdimensions must be properly aggregated prior to leaving
the lookup stage. This aggregation is similar to that performed
in decomposition-based classification (i.e., interfield) but in

14

International Journal of Reconfigurable Computing

May = My =2 _ 5 Key
= - = 1 Maz =2 M may =2
[~ -4
SIEME SIEIEE
& 0 [2me o | 2ma w| [0]0]0 0100J0} N UVs (BV)
It 0000__1010:D—>
] PPN R] (BN | fofololt] [11[i[o
— 0 2M 0 2Mal 0 oMma2

(a) (b)

(c)

FIGURE 11: Stitching options: (a) UR-based horizontal stitching, (b) UV-based horizontal stitching, and (c) vertical stitching.

this case is internal to the lookup stage (i.e., intrafield).
For the latter case, we note an essential difference between
patterns for PX (Figure 10(b)) and AR (Figure 10(d)) cases.
In Figure 10(b), the range of subfield A, corresponding to
each value of subfield A, is the same; for example, F,
[000,111] for F, = [000,011] in UV]; this rectangle-shaped
pattern holds for all considered PX rules. In Figure 10(d),
meanwhile, we see that ranges on A, can be different along
the range for A,; for example,in UV3 F, = [10, 11]for F, =
01, F4, = [00,11] for F4 = 10,and F, = [00,10] forFA =
11. In multifield classification, patterns can only be rectangles
such as those of Figure 2(b); that is, the AR case poses new
geometrical patterns for intrafield aggregation. As we will
discuss shortly, this case represents an essential problem for
stitching.

In Figure 11 we show aggregation architectures for stitch-
ing and illustrate results for the ruleset case of Figures 10(c)
and 10(d). Two intrafield aggregation techniques can be
applied:

(1) obtaining URs at each chunk and applying an UR-
based aggregation approach similar to that of RFC
[13] to the lookup case (Figure 11(a)): a new UR is
obtained as output of the stitched lookup scheme;

(2) similar to aggregation scheme adopted in [16] for
classification, a BV can be returned at each chunk in
the lookup stage in order to aggregate them through
simple ANDing (Figure 11(b)). In this case, an
approach similar to that of Figure 9(c) can also be
applied at each subfield.

Both schemes can match general ranges (i.e., either exact,
prefix, or arbitrary ranges), even considering ranges spanning
more than one chunk (i.e., W > m). For the second case,
however, more than one bit per rule must be propagated
between chunks.

A second technique for reducing the address space, that
is, vertical slicing (Figure 11(c)), replaces some of the internal
multiplexing of BRAM with external logic blocks. For this,
control signals (i.e., rd/wr enable) are deMUXed and fed to
multiple memory blocks, while output data ports are MUXed
from such blocks; X bits from address port are used for MUX/
deMUX while remaining M — X bits are fed as a common
address bus to all involved memory blocks. In this way,
shallower and wider memory form factors can be used, which
mostly save memory by relaxing address expansion. Even
more important, since the lookup result will now reside

exclusively in one of the memory slices, significant power can
be saved by selectively enabling the involved slice. For the
same reason, aggregation of results is not required but just
MUXing of slice results. This architecture is mentioned for
completeness, even though it is not further explored in our
work.

Which of the considered memory indexing schemes is
best suited for FPGAs is ultimately dictated by resources
available in such devices, that is, number of BRAM modules
and possible form factors. Altera FPGA devices include
M4K/M9K/M20K general-purpose BRAMs depending on
family, which can be configured in different 2 x x modes.
M20K BRAMs included in Altera Stratix V FPGAs, for
example, can be configured in modes ranging from 20 Kx 1 to
512 % 40. In addition, selected Look-Up Tables (LUTs) can be
used as 640-bit simple dual-port MLAB memory in memory
modes 640 x 10 to 320 x 20, useful for implementing small,
shallow, and wide blocks. They provide enough flexibility to
implement our proposed variants. Let us consider horizon-
tally sliced memory indexing of Figures 11(a) and 11(b). The
respective architectures for FPGA are illustrated in Figure 12
for a case of key width M = 18, number of rules N = 80,
[UR| = N = 80 (for AR case, |[UR| < 2N = 160 as already
discussed) and BRAM mode 512 x 40. For this case, the key
is divided into two 9-bit chunks and fed to respective 9-bit
address ports. In Figure 12(a), the implementation of case in
Figure 11(a) is shown along with the used Processing Element
(PE). In Figures 12(b) and 12(c), meanwhile, the lookup stage
outputs a bit vector (BV) representing multiple matched UVs,
corresponding to the scheme of Figure 11(b). In this case,
BVs can be directly stored at bv_mem (Figure 12(c)) or an
additional UR mapping memory reg_mem can be included
at each PE (Figure 12(b)). For proper scalability with both
key width and ruleset size, these architectures are pipelined
both horizontally and vertically, resulting in systolic schemes.
For updating purposes in Figures 12(a) and 12(b), we need to
consider the effects of the incoming (single) UV on (multiple)
URs as discussed in Section 3, so precomputation is needed.
Such precomputation is commonly implemented externally
on a General Purpose Processor- (GPP-) based platform. The
selected BRAM form factor depends on the intended applica-
tion; in general terms, deep-and-narrow factors can be con-
venient for schemes providing URs such as reg_mem, while
shallow-and-wide ones are convenient for BV outputs which
are intrinsically wide with reduced addressing space such as
bv_mem.

International Journal of Reconfigurable Computing

15

[wkey[17:0]
Key[17:9]
[UR[6:0]

UR
aggr
________ UR[6:0]
rkey[17:0]]
rkey
rUR
Precomputation e
(@)
wkey[17:0 Y Key[17:9] Key(8:0]
wUV[6:0]
Match[79:0
rkey[15:0] |

whkey rkey

wUR

Precomputation

(®)

reg_mem WBV
wUR rUR
bv_mem BV

wkey rke

bv_mem rBV

(c)

FIGURE 12: Stitching architecture: (a) lookup for UR-based aggregation and (b) and (c) lookup for UV-based aggregation.

BRAMs in FPGAs can be configured as either single-,
simple dual-, or true dual-ported. In true dual port mode,
particularly, any combination of independent read- (r-) and
write- (w-) operations can be performed at the same time on
both ports. This feature is extensively used in related work
for reading both BRAM ports with keys from two successive
packets, effectively doubling lookup rate with respect to clock
rate. However, two aspects must be considered in this case.
On the one hand, true dual-port mode limits form factors

so that memory utilization is worse than that of simple dual
port or single port modes [44]; this translates into more
BRAM used for the same ruleset. For example, BRAMs in
the architecture of Figure 12 would be limited to form factors
1K x 20-20K x 1 instead of 512 x 4-20K x 1, so [M/m] x
[N/n] = [18/10] x [80/20] = 2 x 4 = 8 instead of [18/9] x
[80/407 = 2 x 2 = 4 blocks would be needed. Of course
this is a particular case, but it serves as a clear example of the
problem. On the other hand, using both ports in read mode

16

to double lookup rate precludes in-line updating of the
architecture since both ports are already in use. In this case,
the lookup pipeline would get stuck during updating. In
addition, DistRAM is commonly used in related work to
improve memory utilization for small blocks; however, Dis-
tRAM does not commonly support true dual-port mode, so
doubled lookup rate cannot be effectively obtained in designs
using mixed block/distributed memory such as [30] or [35].
Considering these facts, and for sake of generality, we use
simple dual-port mode BRAM in this work, which enables
one read-only port and one write-only port at BRAMs.

For IND schemes such as those of Figure 12, matching is
carried out in a single cycle by loading RAM words addressed
by key chunks rkey on each column of PEs and aggregating
the so-defined chunk lookup results. Updating of rules (i.e.,
adding a new one or erasing an existing one) could require
multiple memory accesses. For example, storing the prefix
0x000X in Figure 12 would require to update 2* = 16 words
of memory. In the updating circuit of Figure 12, 18-bit data
(wkey) are split in two and fed to BRAM waddress ports for
every key value in the scope of a new UV, while this UV is
decoded in rows and fed into BRAM din ports. Columns of
BRAMs are updated concurrently, so updating of the whole
ruleset takes at most 2™ clock cycles.

4.2. Binary Search Tree. For the evaluation of decision tree
case on FPGA, we adapted the architecture presented in [45]
for the single-field case. The original architecture considers
multiple key fields at the same time which complicates the
design; we are instead interested in just one field for subse-
quent aggregation. We implemented a generic version of this
scheme for comparison with IND and ERM as well as valida-
tion of our performance estimates; for more specific imple-
mentation details as well as extensive optimizations for better
scalability refer to [30, 45]. In Figure 13(a) we show a general
decision tree implemented as a hardware pipeline, where
branching control at each tree stage is mapped by a memory
block ctrl_mem as illustrated in Figure 13(b). For stage
i, this memory block consists of 2 words. Each of two words
map both branches of a node at that tree stage. Port key;,
is the value of the incoming key and is propagated through
the tree pipeline. Port ctrl_in, meanwhile, holds (1) values
key_value to be compared against the key at each node, (2)
branching information next_or_urid, and (3) the flag fnd,
which tells if a match has been found for the incoming key.
In general, any node should be able to store both next_node
and URID values for the MM case, since multiple matches
can occur while traversing the tree. In our case, since we
store UR-bounds instead of UV-bounds, a node needs to store
either next_node or URID values. In this way, just one field
next_or_urid is stored at each node in the tree. It holds either
the offset at the next stage memory block corresponding to
the next decision node or the URID in the case that a leaf
node has been reached. For dynamic updating of the ruleset,
the second port of ctrl_mem is configured as write-only,
while signals wdata_in/wdata_out, waddr_in/waddr_out, and
wen_in/wen_out propagate through the pipeline to write
the proper value at the proper node. Data consistency is

International Journal of Reconfigurable Computing

key_in| ctrl_in | waddr_in | wdata_in wen_in
fStage 8 ’
key_out | ctrl_out Wad_c_lr'_but wdéta_out wen_out
Stage 2 ’
Stage (log,|UR|) ’
matching_URJ/
(a)
key_in ctrl_in
> :
ctrl_mem
o — o
L | rdata :
raddr :
stage _ < .
—__2____,1:! ud
| key_value |next,or,urid|fnd ' :
........ key_outctrl_out

(b)

FIGURE 13: Binary decision tree: (a) tree architecture and (b) node
architecture (1 node/stage).

guaranteed since the key arriving just after updating is
initiated is processed according to the updated ruleset as
it propagates through pipeline (i.e., tree) stages. It is worth
noting that signals key_in, waddr_in, wdata_in, and wen_in
must be registered at each stage to guarantee consistency
with signals ctrl_in/ctrl_out which have one cycle of delay
introduced by memory read.

One of the main problems of tree-based architectures is
that memory consumption can vary drastically for different
stages, specially for large rulesets. This fact leads to inefficient
use of BRAM at early stages and BRAM exhaustion at last
stages for very large rulesets. Several optimizations have been
proposed [30] to take advantage of various memory types
(i.e., DistRAM, Block RAM, and external DRAM) according
to requirements of the particular stage in the tree. Such opti-
mizations, even if effective, are highly dependant on the con-
sidered ruleset, which is beyond the scope of this work. For
our present purposes, we let the synthesis tool choose the
most convenient memory for a balanced area/speed trade-
oft, which results in BRAM in most of the cases. During our
experiments, we found the magnitude comparator to be the
main limitation of speed for wide keys; this problem can

International Journal of Reconfigurable Computing

be mitigated by implementing a combination of vertical and
horizontal pipelining to keep comparators narrow [36].

4.3. Explicit Range Matching (ERM). ERM naturally adopts
UV-based lookup by matching the key against each UV
specification individually. As such, it intrinsically scales with
N and requires an additional mapping stage if interfacing
with a UR-based aggregation stage is required. This tech-
nique, unlike previous ones, implements completely par-
allel, bit-level matching of key fields with optimal storage
requirements. As a drawback, it requires additional logic for
implementing magnitude comparison and concurrent access
to 2MN registers.

Our first implemented architecture was based on that
of [36]. In Figure 14(a) we show the general 2D pipeline
architecture, where match results are propagated horizontally
and key values vertically. The pipelined priority encoders
used in [36] are represented here as general BV-to-UR
mapping modules, even if the concrete implementation for
the MM case can be very difficult. In Figure 14(b) we show
the PE architecture used in [36], which was adopted at the
beginning of our tests; this architecture propagates just one
bit along each pipeline row. Reference [36] claims supporting
the AR case with this implementation; as we will demonstrate,
however, just the PX case can be supported with it.

In Figures 15(a) and 15(b) we consider two PX and AR
rulesets, respectively, which are sliced into 2 chunks. In
general, subfields A}, A,,..., A, group bits in decreasing
weight order (i.e., MSbits to LSbits). In Figures 15(a) and 15(b)
M =4andm = 2,s0 A, groups the two most significant bits
(MSbits), while A/, = A, groups the two least significant
bits (LSbits). PX presents no special issues and can be
implemented by propagating 1 bit/rule between chunks both
in IND and in ERM. ARs, however, require more than one bit
to be propagated. In Figure 15(b) we consider two ARs UV1
(s < e, s, < e)and UV2 (s, < e, s, > ¢). In
Figure 15(c), for example, we consider UV1 of Figure 15(b). In
Figure 15(d) we show that, if we consider subfield ranges
Fy = [1,3],FA2 = [2,2] and take their intersection (AND)
in the two-dimensional space, we get an area involving the
discontinuous field range F, = [6] U F, = [10] U F, = [14]
which is clearly not the original range F, = [6;14] defined
for UV1 on field A. To solve this problem, we observe that
since A, groups MSBits, the ranges in A involving s, <
A, < e, span whole multiples of the remaining chunks
0<A; <2"(@{ =2---[M/m)]) (ie., the shaded rectangle
in Figure 15(e)). On this basis, we can implement AR by
propagating match results for A; =s;, A; = ¢;,and s; < A; <
e; separately, that is, 3 bits per rule. In the case of ERM, the
results s; < A; and A; < e; must be also differentiated for
cascading magnitude comparators, so 4 bits are propagated
per rule in this case. In Figure 15(f) we show UV2 where
s, > e,; the (wrong) results of implementing (s; < A, <
e;) AND(s; < A, < e) are shown in Figure 15(g) and
the (right) results of the corrected architecture for this case
are shown in Figure 15(h). The architecture of the new PE
supporting ARs is shown in Figure 14(c).

In order to further validate our observations, in Figures
15(i) and 15(j) we add two different ranges A, = [00, 10] and

17

Key[M — 1:0]

Key[m — 1:0]
3

. S s
[bv[n — 1:0] :BV:
PE te—>: to :
" ‘UR:

\I{logleRl

2 Ve :
bv : :
IlogleRI

RS

4 4
m m

FIGURE 14: Explicit range match: (a) 2D pipeline of PEs, (b) previous
node architecture (PX support), and (c) proposed node architecture
(AR support).

A; =10, 11] of a third chunk to the pattern of Figure 15(h).
As shown, the shaded block now spans integer multiples of
both A, = [00,11] and A; = [00,11] fors, < A, < ¢ =
[01,10], while results for A; = s; = 00 and A; = ¢, =
11 must be propagated separately. The modified ERM archi-
tecture supporting one AR rule is shown in Figure 16(a),
where each column is essentially the PE of Figure 14(c). In
Figure 16(b), meanwhile, we show the equivalent IND scheme

18 International Journal of Reconfigurable Computing

3

5]

SeSete%ed

pOSesete

S
KL
8
0%6%%

TR

%

%S
%S
%
9%
oe%

XX
SIS

2

<&
5
o3
e RO tol
e?"%d&u?
SENN
% \
N

3
S
o300

<
5

<
3

S

[2,3]

PROTEX

SN

%

KSR
e

SIS

[0,3]
4,
s
19

=

AYIVIVD.N

:‘fo

IS)
COREIKAIK,
CRIRISEHKK]
CESERIEAES
OGS

[0,1]

R
(00205
KKK
00 %

00 11 h 00 1
A, A,
0,0 [L1] [33] 3]

[0,1] [0, 3]
e '

~ =
e~ ok
L I
S oh
~ WV
N ~
v N
> 3
=

" ["N

0

142

S1s2 83 el e e S1S2 53 el e e3

i) mOm)

Ay
A,

Ay Ay
(1) ®
FIGURE 15: Stitched ERM: (a) PX ruleset, (b) AR ruleset, (c), (d), and (e) AR where s, < e,, (f), (g), and (h) AR where s, > e,, and (i) and (j)
extension of (h) to 3 subfields.

International Journal of Reconfigurable Computing 19
s € | MSbits LSbits |
M{M|M
m
m
Al e Ayl e Antym |EM]
/F__-\7\\\,z41<el s N Az <e
T

IN

Ar=e

R NAM/m < €M/m
A, =¢e N AM/m =€eM/m
-/

d

I
I
1
i ;
I I
I I
i : m Match
i i
1]
Al s ! Ayl s, AMym|spy
r_) i :A1>51 Vs N Ay > s, \AM/m>5M/m
' -->)
PEfor | > ,hl =5 A, =5, ApMim = SM/m
onerule | ! RN
\\ /I
Aj<e=(A;<e)or(A; =¢)and (A;_; <e_y)
A;>e=(A;>¢)or(A;=¢)and (A;_| > e;_;)
Ai=e¢=(A;=¢)and (A = ¢)
(@)
A
M
m m m
Ar=e Ay=e AMjm = eM/m
% % -
I3 I <Ar<e S5 <Ay<e Svym < Artjm <I_S€M/m \Match
RAM [A =5 7 A 2,
Ay =5 Ay =5, AM/m = SM/m
% % -

FIGURE 16: Single-rule lookup: (a) stitched magnitude comparators for ERM and (b) equivalent implementation through stitched IND.

(UV output) supporting ARs where 3 bits are propagated at
each chunk. It is worth noting that, by using this scheme,
each memory block of IND does not depend on addressing
expansion to support ARs. At the end of each row, results of
the last chunk are combined through logic to get match result
for the considered rule. Both schemes represent a complete
lookup row for n = 1 when applied to a complete M x N AR
lookup scheme such as that of Figure 14. The net effect for
ERM is that 4[M/m] instead of [M /m] registers are needed
for each rule (plus additional logic in the new PE); as a
consequence a PE that supports n PX rules now requires more
resources to support the same #n AR rules. The same applies to
IND lookup with BV output, where wider memory is required
to support the same 7.

4.4. Ruleset Population and Incremental Update. The rule-
set in lookup and classification engines is affected at two
occasions, that is, during ruleset population with initial
rules and then during service when rules are incrementally
added or erased. We refer to the former of them as ruleset
population while the latter is called incremental (or dynamic)
updating. Ruleset population has less strict requirements as
long as the time required is not excessive. Incremental updat-
ing, meanwhile, has become an important factor in current
applications since it can be required frequently on a running

engine. The complexity of both of them essentially depends
on the adopted lookup process, namely, UR-based or UV-
based. As discussed in Section 3, updating normally consists
on the addition or removal of a particular UV; as a conse-
quence, UV-based schemes tend to allow simpler updating
than UR-based ones. This is essentially because UV-based
schemes do not have to compute new URs introduced by
the new UV. In this section, precomputing time and storage
requirements are considered, both for updating scheme
which is commonly implemented in software (GPP-based
platform) and lookup scheme which resides in FPGA logic. In
order to compare updating processes, we consider the cases of
ERM (UV-based lookup) and memory indexing (UR-based
lookup). In addition, two main updating operations can be
considered, namely, set and clear, for insertion and removal
of a UV, respectively. A third operation, namely, modification,
is essentially a special case of insertion where the associated
range of an already used UV is changed. In this work, we
concentrate on complexity of set operations; remaining ones
can be related to it.

In ERM, 2N M-bit words are reserved at synthesis time;
that is, one row with two M-bit bounds for each rule. In
addition, a valid bit is associated with each pair of [start, end]
words, indicating whether they store a valid rule or just
garbage. Valid bits are ANDed with comparison results before

20

leaving the lookup engine. For both population and updating
cases, a Rule ID (RID) must be first decoded to determine
the corresponding row to be updated in the architecture. A
set operation implies storing the involved [start, end] words
and setting the related valid bit. A clear operation, meanwhile,
implies clearing the valid bit of the involved rule. Modifica-
tion, finally, is a special case of set for the case where RID is
already used in the ruleset. In [36] the updating process is
analyzed in detail for a systolic hardware pipeline.

RID is a fundamental concept in UV-based lookup
schemes such as ERM. Every RID is related with a group
of field values and a specific priority. In the BM case, the
RID and its associated priority define actions on packets for
itself, since just one of the multiple matching RIDs can be
the lookup result. In other words, just N different results are
possible for BM lookup, and these results are represented
by RIDs. In UV-based lookup such as CAMs or ERM, RIDs
are updated independently and a priority encoder selects the
highest-priority RID during lookup. For the MM case, how-
ever, the specific combination of matching RIDs must be
output, so the use of URs arises as a direct way for deter-
mining decision on the packet. In other words, |UR| different
results are now possible for the same N RIDs. For this
purpose, the priority encoder commonly applied in BM is
useless; instead of it, RIDs must be mapped to URs. One
possible implementation is updating individual UVs as before
and replacing the priority encoder with N-to-|[UR| com-
pression hardware, which would have high cost. The second
implementation consists on compressing UVs during update
and storing the resulting URIDs in the lookup engine; this
option effectively shifts computation from lookup (FPGA) to
update (GPP) and is evaluated in this section.

As suggested in previous paragraph, both ruleset popu-
lation and incremental update in UR-based lookup schemes
are more complex than their UV-based counterparts; so their
precomputation requirements must be carefully considered.
UR-based schemes are specially suited to MM and flow-
based classification since they can fit both BM (i.e., RIDs) and
MM (i.e., URIDs) cases with very high speed; that is why we
consider them worth optimizing. Precomputation for ruleset
population in the original RFC scheme [13] could take hours
to execute for complex rule overlappings such as those of
ruleset ipcl [46]. Computation complexity was further opti-
mized in [14, 47], achieving improvements over the original
scheme. During ruleset population, URs are computed by
considering a fixed ruleset size. Incremental updating, how-
ever, has not been considered separately and can take as much
computation as populating the entire ruleset does. In this
work, we consider incremental updating as a separate case
and propose an optimization which significantly reduces the
time for adding/erasing individual UVs.

In Algorithm 1 we show the RFC algorithm for populating
an IND scheme with horizontal stitching. If needed, the key
is split in chunks (line (1)), defining different ranges at each
chunk, and fed to respective lookup tables at each PE. In
lines (3)-(8), the 2 addresses at each chunk are scanned and
corresponding BVs are constructed for each of them. After
building each BV, it is compared against those already built
in lines (9)-(12) in order to determine if the particular

International Journal of Reconfigurable Computing

combination of UVs is already present in the BV table. Let
us remember that each particular BV is related to a UR; thus,
if the just built BV is already present in the BV array, its UR
is simply repeated; if not, a new UR is counted as shown
in lines (13)-(15). In lines (16)-(17), finally, the computed
UV and UR are stored in their respective arrays. It is worth
mentioning that these arrays are held in the memory of the
updating system, which is normally GPP-based and has high-
volume storage. For lookup purposes, just ur_mem will be
later transferred to FPGA memory. Another subtle aspect,
mentioned in Section 1, is illustrated by the simple ruleset
of Figure 2(a). This ruleset consists of |[UV 45| = 6 rules;
however, just 4 UVs and 5 UV are present in fields A and B
respectively, i.e., [UV4| = 4 and [UVy| = 5. This fact, very
common in real rulesets, is because field ranges are reused
for different rules. As a consequence, UV’ really considered
while defining URs and the related precomputation at each
field can scale much better than N. For ERM; in contrast, N
rules must be matched at each field, no matter how they share
UVs at such fields.

We now consider incremental update. In this case, |[UV/|
can increase in 1 unit depending on whether the new UV
exists or not in the ruleset. Since the new BV patterns
generated by this UV are not known in advance, we should
run the algorithm of Algorithm 2 for each new UV and
determine whether it defines a new UR or not. If not, it
means that the new UV already exists in the ruleset. In this
algorithm, unlike the population one, just one UV is consid-
ered. As a consequence, we span just the scope of the new UV
instead of the whole address space; thus the number of cycles
required for updating is Sy = (UV.end — UV.start) < 2™,
This is illustrated in Figure 17(a) for a ruleset initially formed
by UVs 1,2, 3, and 4 and an incoming UV5. For a medium-
scope UV where Sy = (2™)/2, the time complexity of the
updating algorithm is half that of ruleset population one,
while they can be the same for the worst case. This is very
inefficient for frequent incremental updates.

In Algorithm 3 and Figure 17(b), we show a modification
based on our analysis of UR patterns in Section 3; as we will
demonstrate, this modification can effectively speedup the
updating process of IND-based lookup. As shown in Figures
4, 5, and 6, no more than 2 new UR labels (URIDs) are added
to ur_mem for each added UV. The new URs can either
begin at the start of the new UV or end at the end of the
new UV. For example, in cases (1) and (4) of Figure 6(a) and
case (1) of Figure 6(b) one new UR is introduced, while 2
URs are introduced in cases (2) and (3) of Figure 6(a) and
cases (2)-(4) of Figure 6(b). In addition, the two opposite
ends of the new URs are determined by the opposite ends of
the already existing URs. We can exploit this fact to radically
reduce updating complexity of IND-based schemes. Initially,
we make two independent lookups with key values
UV.start (UV.s) and UV.end (UV.e), respectively, which
according to Figure 4 results in at most two different URIDs;
let us denote them as UR, and URg. Both URIDs are to be
replaced by new URIDs just along [UV.s,UR,.e] and
[URg.s,UV.e] intervals. In addition, there can be totally
overlapped URs such that UR.s > UV.s or UR.e < UV.e, but
their respective URIDs are unaffected by the new UV. In

International Journal of Reconfigurable Computing

21

(1) for chunk = 0to [M/m] do
(2 p<o0

(3) fori=0to2"do
(4) for j=0to N do

(12) end while
// if BV not found, increment UR counter
(13) if j > p then
(14) p—p+1
(15) end if

(16) bv_mem|[p] — BV
17) ur_memli] — p
(18) end for

(19) chunk.|JUR| « p
(20) end for

Require: Range bounds UV.s, UV.e for all UVs at each chunk, number of rules N

/] simulate lookups for each rule and build BV

(5) if i > UV[jl.s and i < UV[j].e then
(6) BV « BV or 2/
(7) end if
(8) end for
/I check if BV already exists for other key value
© jeo
(10) while j < p and BV # bv_mem([j] do
(1) jej+l

/I store UR and BV for current key value. Just ur_mem will be transferred to lookup engine (FPGA)

ALGORITHM I: Ruleset population algorithm for IND.

(1) for chunk = 0to [M/m] do
(2) p « chunk.|UR|
(3) v « chunk.|UV|

(15) end for
(16) chunk.|UR| « p
(17) end for

Require: UV.s, UV.e, chunk.|UR|, chunk.|UV]|, and next available URID nxt_urid for all chunks

// add new UV range to BV

(4) for i = UV.start to UV.end do
(5) BV « bv_meml[i] or 2"

/I check if new BV already exists for other key value
(6) j « uv.start
7) while j <i and BV # bv_mem|j] do
(8) je—j+1
9) end while

// if BV not found, increment UR counter
(10) if j > i then
(11) pe—p+1
(12) ur_mem|p] — nxt_urid
(13) end if
(14) bv_mem|[p] — BV

ALGORITHM 2: Incremental update algorithm for IND.

general, both intervals [UV.s, UR4.e] and [URg.s, UV.e] are
much smaller than [UV.s, UV.e], so a gain is achieved.

We note that a subtle issue must be solved for our
enhancement to work. In cases (1), (2), and (3) of Figures 6(a)
and 6(b), UR, and URy and their respective [UR.s, UR.e]
ranges are well defined. However, in case (4) of Figure 6(a)

a problem arises; namely, URIDs resulting from lookup at
UV.s and UV.e are equal (ie, URID, = URIDg = 3).
This is because a UR can imply multiple [start, end] bounds,
as long as it is biunivocally defined by UV overlapping. In
ur_mem of Figure 17(b), for example, we consider the same
case in a different context of 4 UVs. We perform lookup of

22 International Journal of Reconfigurable Computing
equire: Range bounds UV.s, UV.e, chunk. , chunk. , next available an or all chunks
Require: Range bounds UV.s, UV.e, chunk.|UR|, chunk.|UV]| ilable URID p and ERID ¢ for all chunk
(1) for chunk =0to [M/m] do
(2) ER, « er_mem[UV.s]
(3) ERp « er_mem[UV.e]
// update region and bound memories
(4) for i=UV.stoER,.e do
(5) ur_meml[i] — p
(6) er_-memli] « q
(7) bnd_mem|i] — UV.s,ER.e
(8) end for
(9) for i = ERg.sto UV.e do
(10) ur_meml[i] — p
(11) er_memli] « q
(12) bnd_mem|i] — UV.s, ER.e
(13) end for
(14) end for
ALGORITHM 3: Proposed optimization for incremental update in IND.
= =
0o ... 6 10 15 3 =
]]
, UvVL UV1
uv2 : Uv3 : Uv4 Existing ruleset uv2 Uv3 UV4 Lookup(UV.s)
I I -
I I UV5 = [6,10] Lookup(UV.e)
V5| New UV ([UV.s = 6, UV.e = 10]) UV.s=6 UV.e = 1ol
ST T T T T T T T T T T T Tttt AN "— _______________________________________ \
: IUROI 1 :2: 3 :2 :4 IOI : : ERO 1 ::3 N RN e E
I I I - I
| ur-mem i | er-mem [oJo1]1]1]2]2[3]3[3]2]2]4]4]o]o] |
1
: LoJo[1]1]1[2]2]3]3]3[2[2]4]4]0]0] i + [ofo] 1] 1]1]2[2]3]5 34 4[5[5]6]s] |
X M _1=15) 0 » J
——————————————— [. . ettt bbb b it Y03 1051 7 E
Read (UV.s:UV.e) Read (UV.si - 1) e -ReadfERg)- - -~ ==--------=--~
(line 4) line 7) ! M
jmm e Tl B —— ~ | ER0 1 Da [45 6 !
| I . i
tolof1f1]1]1 X i of2(5]7 [tofi2(14| 0 0] Start '
" lolilololo X I bnd_mem ——I I
CRLaI0198 X! wriji ! 14691113150 ~_|0]End :
1 |ofofofo|1 X ' 0 2]UV| - |
| ofojofojo]| N7 [X| |0]0[0|0|0] N/ 7 N !
_ bv_mem ER,.s = ERp.s = 10
B et kbt Inf il ER, e =6 ERg.e = 11
erte (UV.s, ER4.e) Write (ERp.s, ER 4.¢)
:' URO 1 2[5735]2 4, o i f ER0 1 2[7] 3 [8]4 5 6, |
: = 4 } | : : ; T LI T T 1 urmem :
1
| ur-mem ! 1 er_mem [oJol1]1]1]2]5]3] %I%[[2]4]4]o]o] !
: |0I0|1|1|1I2|5|3|3|3|5I2|4I4|0|0| : : |0|0|1|1|1|2|7|3|3|3|8|_| [5[6 :
! Mo1=15) " 15 J
__________________________ 1:0_};13_(;; ;n_e;n_o;): T To FPGA memory
() (b)

FIGURE 17: Incremental updating: (a) original architecture for updating of DIR lookup schemes and (b) proposed updating architecture.

keys UV.s = 6 and UV.e = 10 to get URIDs. With such
URIDs, we index a second memory bnd_mem which maps
URIDs to respective [start, end] bounds. Such bounds serve
to narrow the number of read/write iterations in line (4)
of Algorithm 2. If we performed lookup on ur_mem, we
would get the same [UR.s, UR.e] tuple for both UR, and
URg. To solve this problem, we could either store multiple
[UR.s, UR.e] tuples at each ur_mem word, which would

increase logic complexity, or implement a second array
(er_mem) storing what we call expanded regions (ERs).
Expanded regions consider the worst case of [UR|, namely,
2|UV], so each ER is biunivocally related to one [ER.s, ER.e]
tuple. In the example of Figure 17(b), er_mem yields the ERIDs
ER1 = 2 and ER2 = 4 which biunivocally represent intervals
[5,6] and [10,11], respectively. Since UV5 = [6,10], we
can determine that intervals [UV.s,ERl.e] = [6,6] and

International Journal of Reconfigurable Computing 23
TaBLE 3: Comparison of considered lookup schemes.
Lookup scheme Memory Logic Mem BW
Logic-based ERM (BV) [36] O2-N-M) O(G-N-M) O2-N-M)
(Optional) postencoding BV — UR — — —
IND, no stitching (UR) oM. log,|UR|) 0(0) O(log,|UR|)
(Optional) postencoding UR — BV O(JUR| - N) 0(0) O(N)
IND, no stitching (BV) o@2M . N) 0(0) O(N)
IND, BV-based horizontal stitching (BV) [10] O([M/m] - (2" -1og,|UR| + |UR| - N)) O([M/m]-N) O(N)
IND, UR-based horizontal stitching (UR) [13] O(2 - 2™ - log,(|UR|/2) + 22"°&(R/2 .]og |UR]) 0(0) O(log,|UR|)
IND, vertical stitching (UR) [43] 2% 2M X Jog |UR| 0% - (1 +log,|UR])) O(log,|UR|)
Binary search (UR) [16] OM - |UR| + |UR| - log,|UR]) O(M -log,|UR|) O(log,|UR])
(Optional) postencoding UR — BV O(JUR| - N) 0(0) O(N)
Binary search (BV) O(M - |UR| + [UR| - N) O(M -log,|UR|) O(N)
[ER2.5,UV.e] = [10,10] must be updated without going 5. Results

through the entire [0, 2" - 1] = [0, 15] range as RFC requires.

Both er_mem and bnd_mem are used for updating
purposes, but just ur_mem is downloaded to the lookup
engine. Thus, our modification does not affect the high
lookup performance of the original RFC approach. Moreover,
memory consumption at the updating platform can be even
reduced since bv_mem is now replaced by the combination of
er_-mem and bnd_mem. er_mem and bnd_mem scale as O(2™ -
log,(2|UV])) and O(m), respectively, while bv_mem scales as
O(N); thus gain can be obtained in memory consumption.
Our proposal can be combined with those of [47] to get an
optimized IND-based lookup. Contributions of [47] are,
namely, the following: (1) it reduces the number of AND
operations for checking BV # bv_mem|[j] (line (7) of
Algorithm 2) by adopting aggregated bit vectors (ABVs),
(2) it reduces the number of iterations in lines (4)-(15) of
Algorithm 2 by accessing multiple words of bv_mem through
a hash, and (3) it compresses ur_mem through grouping of
words containing the same URID. Our proposal removes the
need of both (1) and (2) since bv_mem is eliminated from
the beginning; moreover, our solution is convenient since the
involved processing is simple and deterministic. (3), mean-
while, is an effective technique which we adopt to reduce the
size of the resulting ur_mem. We discuss our results in the
next section, while extensive evaluation of (3) can be found
in [47].

From the technological perspective, meanwhile, we can
improve updating performance by observing two facts; on the
one hand, a reg_mem block would normally use deep-and-
narrow modes, since its width scales with log,|UR| instead of
N. On the other hand, we can exploit selected mixed-width
configurations available for BRAMs so we can write multiple
read-side words at a time. In this way, for example, the
architecture of Figure 12 with read form factor 4 Kx4 can take
advantage of write form factor 512x40; that is, 10 words can be
written at a time, while 2* = 16 URs are supported by a single
BRAM row. By considering both facts and checking UV
scopes present in real rulesets [47], we can set trade-offs for
selection of read and write BRAM form factors.

In this section, we consider relevant performance metrics for
the main considered architectures (i.e., IND, BS, and ERM)
and we compare them for typical use cases in packet lookup.
We finally compare our performance estimates with results of
FPGA synthesis for each of them. To summarize our previous
analysis of lookup schemes, in Table 3 we provide complexity
estimations for each of them; considered metrics are memory
footprint, logic consumption, and memory bandwidth (Mem
BW) on FPGA. Interfaces to classification stage are noted in
parenthesis, that is, (BV) or (UR). Postencoding BV — UR
is the counterpart of priority encoding for the MM case;
estimations are not provided for it since its implementation
would not be practical.

For the particular case of IND, a critical issue is to use
BRAM blocks as efficiently as possible due to the address
versus range expansion trade-off. In FPGAs, BRAM can
be configured in selected modes which ultimately bound
possible use cases.

Without loss of generality, let us consider a 32-rule case
which is a typical upper bound for x in modern FPGAs (i.e.,
upper bound for width of M20K BRAM:s) and key width
M = 128. In Figure 18(a) we illustrate memory footprint for
different modes of M20K BRAMs available on Altera Stratix
V FPGAs. For this analysis, we consider ranges supported by a
single chunk when propagating 1 bit/rule (ie., W < m).
M20K BRAMs can be configured in modes from 20K x 1 to
512 x 40. For our evaluation, we consider power-of-two
range cases, that is, from 16 K x 1 (i.e., form factor 14/1) to
512x32 (i.e., form factor 9/32). For a form factor m/x, address
space 2™ defines possible ranges while memory width x
defines number of stored URs or UVs (i.e., log,|[UR| or n
resp.). BRAM stitching allows implementing wider keys
and/or wider words. For narrow ranges, shallow-and-wide
modes are suitable; as seen in Figure 18(a), 512 x 32 mode
is the best option for ranges of W < 9 or prefix/exact matches
which do not require special range support. When support of
ranges 9 < W < 15 is strictly required, deeper modes should
be selected at cost of reduced x and poor memory efficiency.

24

Memory (K

102 L L L L L L L L i | i
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Range support (bits)

—— 16K x 1 mode
-X- 8K X 2 modes
¥+ 4K X 4 modes

~E- 2K x 8 modes
--0- 1K x 16 modes
A= 512 x 32 modes

()

International Journal of Reconfigurable Computing

Utilization factor

T S S S S S S
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Range support (bits)

—— 16K x 1 mode
-X- 8K x 2 modes
=¥+ 4K x 4 modes

~B- 2K x 8 modes
--0- 1K x 16 modes
A= 512 x 32 modes

()

FIGURE 18: Range support through BRAM modes: (a) memory footprint and (b) utilization factor.

With the deepest mode available, 14-bit ranges can be cov-
ered.

Given a required range support, the selection of BRAM
mode mostly aims at minimizing wasted memory. To better
appreciate how much of the implemented memory blocks
is really used for a particular range case, we consider the
utilization factor u in Figure 18(b). As already suggested by
Figure 18(a), the required range is most efficiently imple-
mented by the BRAM mode with nearest range support. For
example, range = 5 is more efficiently supported by 512 x 32
mode than by other modes with worse address expansion. We
note that since [M /m] columns are required where M = 128,
9 < W < 14u < 1 in these cases.

In Figure 19(a), meanwhile, we explore the opposite point
of view, that is, how key widths affect memory footprint while
supporting fixed W-bit range for a single rule. We include
two hypothetical cases W = 1,5 as well as the two real end
cases W = 9,14 for thorough comparison. As expected,
memory footprint increases in steps when key width requires
new BRAM columns. Due to address expansion, BRAM
supporting wide ranges is intrinsically bigger for the same key
width. For the end case of 14-bit range and 128-bit key, about
4 Mbits of BRAM are needed to implement a single rule, while
a realistic case of 9-bit AR and 32-bit key (also supporting
32-bit prefixes such as IPv4) requires about 40 Kbits. Since
each BRAM result is registered and aggregated with results
from remaining BRAMs in a row, the introduced latency is
also of interest. In Figure 19(b) we observe this parameter for
varying range support and key width. As opposed to memory
footprint, latency is reduced when supporting wider ranges;
this is because each BRAM spans more key bits at a time. For
example, we see that lookup supporting 1-bit range can take
as high as 128 cycles for 128-bit key, while the case of 9-bit
range support implemented in 512 x 32 mode reduces latency
to moderate [128/9] = 15-cycle latency for 128-bit key. It is

worth noting that despite this latency single-cycle throughput
is maintained in all cases by proper pipelining.

As shown, 512 x 32 seems to be the best option regarding
memory utilization with acceptable latency. In order to
support AR in IND (BV output) with this memory mode, we
can also propagate 3 bits/rule as in Figure 16(b); in this way
we can use the most efficient mode 512 x 32 at cost of more
memory width per rule (i.e., [32/3] = 10 rules supported
per BRAM). For IND (UR output), UR-based intrafield
aggregation of Figure 11(a) can be used which also enables
supporting AR without recurring to address expansion.

We now aim at comparing relevant factors affecting
performance of the considered lookup schemes. To this end,
we first consider the complexities in Table 3. It is worth noting
that all of the considered schemes support line speed lookup,
even if different latencies can be introduced. From these
schemes, we further concentrate on four generic approaches
shown in bold font in Table 3, namely,

(1) logic-based ERM (BV output);

(2) stitched IND with BV-based horizontal stitching (BV
output);

(3) stitched IND with UR-based horizontal stitching (UR
output);

(4) binary search tree (UR output).

In addition, we include and compare postfitting synthesis
results for cases (1), (2), and (4). In general terms, (1) and
(2) are more predictable than (3) and (4) since the first ones
depend on N; the last ones are sensitive to rule patterns so our
general evaluation considers a midpoint case |[UR| = |UV]|,
|UV| = N. The advantage of (3) and (4) resides in their better
scalability with N and the fact that they are specially suited
for MM, flow-based classification. The FPGA architecture for
(3) has no major complexities since it is entirely based on

International Journal of Reconfigurable Computing

107

W05 b

1056 . e SO

Memory (bits)

20 40 60 80 100 120

Key width (bits)
— I-bitrange e 9-bit range
--- 5-bitrange 14-bit range

25

10°

20 40 60 80 100 120
Key width [bits]

— I-bitrange o 9-bit range
--- 5-bitrange =~ 14-bit range

FIGURE 19: Key width impact: (a) memory footprint and (b) latency.

successive memory indexing, so we discuss its scalability
just from estimation results; its implementation is ultimately
limited by the maximal addressing expansion supported by
memory modes on FPGAs. (4) can be the solution to this
limit since it reduces memory expansion to 2" = |[UR|,,, =
2|UV|; however, it introduces trade-offs regarding required
clock cycles, dependency on rule overlappings, and memory
imbalance between tree stages. Since (4) introduces more
design trade-ofts than (3), we do include a generic implemen-
tation for this case.

In Figure 20(a), memory consumption of considered
schemes is compared for M = 32, m = 9, |[UR| = |UV| =
N,and 64 < N < 1024. For approach (3), which is essentially
RFC applied to field chunks, we consider pairwise aggrega-
tion of chunk results by multiple iterations of the scheme of
Figure 11(a). This is intrafield aggregation (see Figure 10) and
must not be confused with posterior interfield aggregation
of decomposition-based classification (not considered in this
work). For M = 32 and m = 9, that is, [32/9 = 4] memory
blocks are required at first aggregation stage, 2 blocks at
second one and one block at the last one (which i.e., delivers
lookup result). Based on observations on real rulesets [13],
we consider the number of URs to double at each (intrafield)
aggregation stage. For example, if 256 regions are defined for
32-bit field and this field is sliced in [32/9] = 4 chunks, then
256/4 = 64 URs are defined on each chunk of the first stage,
256/2 URs are defined at the intermediate aggregation stage,
and 256 URs are defined at the final aggregation stage. As
shown in Figure 20(a), BS requires least storage followed by
ERM, this is because we consider a midcase [UR| = N. As
we will see in Figure 20(b), the BS versus ERM ratio can vary
for N < |[UR| < 2N. We note that ERM storage exclusively
consists of registers. Memory indexing with BV output, on
the opposite end, requires most storage due to the contri-
butions of addressing expansion and memory word width
N. If the required output are URIDs, meanwhile, storage is

significantly reduced at cost of precomputation. It is worth
noting that because M20K can actually achieve 9/40 form
factor BRAM requirements of IND (BV) (filled squares) are
slightly higher than estimations which suppose 9/32 form
factors for the sake of generality. Register consumption of
ERM (filled circles), meanwhile, matches quite well our esti-
mations. As discussed before, BRAM consumption of BS is
quite ineflicient in our generic architecture (filled triangles),
showing the memory imbalance problem of trees; through
optimizations proposed, for example, in [30], one can get
closer to estimation results. Figure 20(b), meanwhile, shows
memory consumption as function of the ratio |[UR|/|UV]|
where |[UV| = N = 512 and 1 < |UR|/|UV| < 2. We observe
results which confirm our discussion of Section 3. Both
stitched IND (BV) and stitched IND (UR) have high memory
requirements due to addressing expansion. Decision trees,
meanwhile, can achieve equal or even lower requirements
than ERM at cost of multiple stages.

In Figure 21(a), we compare estimated and real combina-
tional logic complexity for varying N = |UV| = |UR|. For
implementation purposes, LUT count is the relevant metric.
ERM shows extensive logic consumption, while memory
indexing shifts most computation to the update phase requir-
ing much less logic. BS shows least logic consumption, mainly
used for magnitude comparison. Figure 21(b), meanwhile,
shows logic complexity with [UR|/[UV|. IND schemes show
very small logic consumption (stitched IND (UR) consumes
in fact O(0) logic), while ERM has maximum logic consump-
tion which keeps constant for varying |[UR|/|UV|. Decision
trees reach logic consumption between those of stitched IND
(UR) and stitched IND (BV) by consuming just enough logic
to compare against |UR| M-bit bounds.

In Figures 22(a) and 22(b), finally, we show that ERM
requires most memory bandwidth for both varying |[UV| = N
and |[UR|/|UV], since it essentially depends on concurrent
access to 2 - N - M independent registers. Schemes delivering

26
107 — : . 107
10° | : a 10° _
= u e 5
&] A 2
= ‘ ! g
g . i 2
g 10° i 0’ §
o L - o
£ et @ T :
ﬁ _.; /.,4" §
10°F @7l 10!
103 L L L 103
64128 256 512 1024

Number of rules

—— Stitched IND (BV) --- Logic ERM (BV)
== Stitched IND (UR) Binary search (UR)

(a)

Memory complexity

International Journal of Reconfigurable Computing

107 . . . :
10°} NI IR IR | B R S i I .
10%F : : - : : : :
Eg [SEEEE 5 IEEEE) [RRREE O] -‘----::'.‘.'.'.@“.'.‘.'.'.’ '_',',‘_','Ea
10* e
10° : : : :
1 1.2 1.4 1.6 1.8 2
#URs/#UVs
—— Stitched IND (BV) -1 ERM (BV)

-X- Stitched IND (UR)
(b)

(O Binary search (UR)

FIGURE 20: Memory complexity: (a) [UR| = [UV| = N, 64 < N < 1024 and (b) |[UV| = N =512, |UV| < |[UR| < 2- [UV].

10° . s ‘105
/””’ .

//// . | a
210*E . {10 &
I 4 =
(9] o
o g
g 2
S g
o v
S 10°3

A
2- L L L 102
64128 256 512 1024

Number of rules

—— Stitched IND (BV) --- ERM (BV)
== Stitched IND (UR) Binary search (UR)

()

Logic complexity

10°

12 [REEY REEE xS e P R PO 5|
10* |
103 I T T T T T T T T

o O,.....‘ O @.“,...@ Q. O D
10 * * * *

1 1.2 1.4 1.6 1.8 2

#URs/#UVs
—}— Stitched IND (BV) gme ERM (BV)

(O Binary search (UR)
(b)

FIGURE 21: Logic complexity: (a) [UR| = [UV| = N, 64 < N <1024 and (b) |[UV| = N =512, |UV| < |[UR| < 2- [UV].

URIDs require minimal memory bandwidth, while stitched
IND (BV) stays in the middle since it scales with N but does
not require M-bit comparison for each of the rules as ERM
does.

From preceding analysis, we note that ERM does not
suffer from address expansion; however, its required memory
bandwidth and routing complexity are high. Both factors can
also increase energy consumption dramatically. ERM mem-
ory consumption is optimal as predicted no matter the ratio
|[UR|/|UV], while its logic consumption is significant com-
pared with memory indexing. Performance of ERM degrades
for large N; this is because it is based on TCAM scheme and
inherits its drawbacks. Even if not considered here, additional

resources are needed for pipelined priority encoding (BV-to-
RID mapping) or BV-to-UR mapping at the output of this
scheme; this stage is also inherited from TCAMs and critical
for large N's. Memory indexing, meanwhile, has the flexibility
to exploit rule patterns through precomputation and storage
of URIDs with better adaptability to large rulesets or favorable
rule patterns; this is a very useful feature for current appli-
cations. However, address expansion limits key width M for
arbitrary range support, requiring to mitigate this problem
through some of the described stitching schemes or address
space compression through binary search trees.

We now aim at evaluating performance metrics for our
proposed optimization of incremental updating for UR-based

International Journal of Reconfigurable Computing

10°

10 Lo

b
103+

Memory bandwidth

256 512
Number of rules

64 128 1024

—— Stitched IND (BV)
-X- Stitched IND (UR)

()

‘I ErRM BV)
(O Binary search (UR)

27
10° : . . :
I:] B E BD E E’ E]
10"}
=
<!
2 10°}
g f f f f f f f f
0
o
% 10%
=
101 == =R = =38R = 4RI~ = 4R =R = = W -~ AR - - -~ &
10°
1 1.2 1.4 1.6 1.8 2

#URs/#UVs

—— Stitched IND (BV)
-X- Stitched IND (UR)

(b)

‘I ErRM BV)
(O Binary search (UR)

FIGURE 22: Memory bandwith: (a) [UR| = [UV| = N, 64 < N < 1024 and (b) [UV| = N =512, |[UV| < |UR| < 2- |UV]|.

(UR output) schemes, discussed in Section 4. Based on
the algorithms of Algorithms 1, 2, and 3, the scheme of
Figure 17, and previous results in [13, 47], we evaluate space
and time requirements of previous and proposed schemes. In
Figure 23(a) we consider how costly er_mem is with respect
to ur_mem for varying [UV| < |[UR| < 2|UV|, [UV| = N,
and N = 64,128,256. As already discussed, we consider
[UV| = N since the original population/update algorithm
simply adds a new bit to BV for each incremental update, no
matter if that UV’s range was already present in bv_mem (lines
(4)-(8) of Algorithm 1). As shown, since er_mem considers
the worst case [UR| = 2N; it has a tolerable higher space
cost than that of ur_mem. er_mem, however, enables storing
|[ER| m-bit bounds in bnd_mem instead of keeping [UR| N-
bit words in bv_mem; thus, all involved memories ur_mem,
er_mem, and bnd_mem now grow as 2"'log,|UV], 2""log,(2N)
and 2- N -m, respectively. In Figure 23(b) we show that storing
UR + ER + BND memories can be cheaper than storing UR +
BV ones. Moreover, since the original scheme does not take
advantage of the fact that [UV| « N in real lookup cases, we
show that space cost is even larger for a case where N = 4|UV]|
while our proposal keeps its cost. In Figure 23(c), finally,
we show that updating reduced scopes [UV.s, UR,.e] and
[URg.s, UV.e] of Algorithm 3 instead of the new UV’s scope
[UV.s,UV.e] of Algorithm 2 can lead to significant gains. As
shown, the population algorithm has the highest time cost
even if it is just performed when lookup is put in service. UR
and ER update times are shown for two general UV scopes
(UV.e — UV.s) = 2™/2 and (UV.e — UV.s) = 2™/4 (ie,
half and quarter of the key values resp.). In addition, we
consider variable ratio between the new [UV.s, UV.e] and
existing [ER 4.e, ER.s] scopes to show that ER can take effec-
tive advantage of it to reduce UR update times. Offsets are
not relevant provided that UV.s < ER,.s and UV.e > ER.e,
so they are not considered for our evaluation.

In Tables 4, 5, and 6 we report our space/speed balanced
postfitting implementation results for stitched IND (BV
output), ERM (BV output), and BS (UR output) schemes,
respectively. The considered architectures were described in
Verilog HDL and simulated on Mentor ModelSim; then they
were synthesized and evaluated on Altera Quartus II and
related analysis tools targeting an Altera Stratix V FPGA.
We consider 16 < M < 128 and 256 < N < 1024.
IND stores rules in BRAM, with minimal LUT and Reg
consumption for AND-based aggregation and pipelining
purposes, respectively. ERM, meanwhile, has intensive use of
registers for storage of rules and pipelining, while it uses LUTs
for implementing magnitude comparators and AND-based
aggregation. BS, finally, uses BRAM for implementation of
ctrl_mem in Figure 13(b), LUTs for magnitude comparison,
and registers for pipelining purposes. To guarantee best
performance of BS, we tested multiple comparator designs
and finally used the [pm_compare megafunction provided by
Altera, which showed best scalability. BRAM consumption
is quite higher that estimation results since (a) BRAM has
coarse granularity leading to memory waste at stages near
to root and (b) BRAM width is not just M but that of
key_value + next_or_urid + fnd (see Figure 13(b)). Based on
observations in [36], we used m = 4,n = 8 for optimal
implementation of ERM (BV); while we used m = 9,n = 40
for implementation of IND (BV) based on observations in
Figure 18. As confirmation of our analysis, we observe that
throughput (Mlps) of IND scales better than that of ERM for
increasing N and M. Based on these results and on previous
work [47], we predict that performance of IND (UR) should
be even better than that of IND (BV) since the memory
bandwidth is greatly reduced from O(N) to O(log,|UR]). BS,
meanwhile, shows moderate BRAM consumption despite its
storage inefliciency; for small trees, registers can also be
used for storage at early stages for optimal storage efficiency.

28

100000
£ —tttt—t—t—
B 10000 b
: D Gt i Sl Gy Gt Gl
= ke PRI TN SN SRR SR
.......... ; E| e
‘ § R i::Q:::Q: R
1000 ; ; ,
1 1.2 14 16

#URs/#UVs

—+ n=256,ER
-X- n=128,ER

[} n=256,UR
-© n=128UR

International Journal of Reconfigurable Computing

le + 06
Z 100000 |
Z
: ‘ ‘ | X
: e A AR AR
= k ‘ | | ‘
10000 5: - 0. {2 O [P O Y o SRR = A S 1
1000 . : . |
1 12 14 1.6 1.8)

#URs/#UVs

—— N =4|UV| =512,UR + BV
-X- N =|UV| =128 UR + BV

X n=64,ER D~ =64, UR [} [UV] = 128, UR + ER + BND
@ ®)
100000 ; ; ; ;
..... xxxxxxxx;{
10000 pespe ey
= K- = == D= o T Hm = X A= K- K-
L1000k
e |
e P -6--0-. 5.
é 1004 = A= _A,__,X_:jg‘i‘@-—u § : .
= "*A-‘.E:j%\g
10 | N
n
1 1 1 1
0 0.2 0.6 0.8 1

#(UV.e — UV.s)/(ERg.s — ER4.€)

3 Population

—— URupd (UV.e - UV.s = 27/2)
-X- URupd (UV.e - UV.s = 2"/4)
€~ ERupd (UV.e - UV.s = 2/2)
A~ ERupd (UV.e - UV.s = 2"/4)

FIGURE 23: Updating of IND schemes: (a) memory consumption of ur_mem versus er_mem, (b) total memory consumption, and (c) required

clock cycles.

Throughput of BS is the lowest of the three schemes due to
limited scalability of the magnitude comparator. A possible
remedy to this problem, which we do not explore further in
this work, could be using pipelined comparators.

We observe that recent proposals [36, 48] use ERM
in order to tackle the AR match problem; however, from
the beginning they assume BV-based output which suffers
scalability problems and lacks flexibility to exploit the ratio
|[UR]|/|UV]. Moreover, they are unable to exploit the [UV|/N
ratio, while |[UV| « N for most fields of real rulesets [12].
For example, for ipcl ruleset [46], N = 1550, [UV|g.qp = 152,
and [UV|gpore = 34. We argue that this feature will remain
valid for actual and future networking applications. Memory

indexing, meanwhile, can be used for both UV- and UR-
based outputs; in particular, by using it in combination with
UR-based aggregation we can fully exploit its benefits at cost
of offline precomputation. Since URs scale as O(log,|UV]),
the resulting architecture can be more scalable than UV-
based ones. We also note that, in order to take actions on
packets, BV results cannot be used directly but require an
additional stage which maps them to BM or MM labels (i.e.,
actions to be taken on the packet). For the case of BM, this
stage consists of a pipelined priority encoder which delivers
log, N-width labels; this is basically the same approach
adopted in TCAMs. For the more general case of MM lookup,
however, a memory-based stage is required which maps BVs

International Journal of Reconfigurable Computing 29
TABLE 4: Performance of IND, horizontal BV-stitching, and 2D-pipelined architecture on FPGA (m = 9, n = 40).
Rules (N)
M 256 512 1024
M20K LUTs Regs Mlps M20K LUTs Regs Mlps M20K LUTs Regs Mlps
16 14 260 108 589 26 533 216 592 52 1078 450 555
32 28 388 216 588 52 775 432 588 104 1543 900 514
128 105 1149 810 509 195 2280 1620 450 390 4627 3375 377
TABLE 5: Performance of ERM and 2D-pipelined architecture on FPGA (m = 4, n = 8).
Rules (N)
M 256 512 1024
M20K LUTs Regs Mlps M20K LUTs Regs Mlps M20K LUTs Regs Mlps
16 0 7721 9984 437 0 15433 19968 467 0 31235 39899 392
32 0 15145 19712 453 0 30464 39351 384 0 60902 78775 352
128 0 34845 77791 321 0 69815 155871 336 0 139676 312031 320
TABLE 6: Performance of BS and pipelined architecture on FPGA (N < |UR| < 2N).
Rules (N)
M 256 512 1024
M20K LUTs Regs Mlps M20K LUTs Regs Mlps M20K LUTs Regs Mlps
16 8 179 1254 328 10 206 1463 320 13 235 1684 293
32 16 316 2038 246 19 361 2343 229 24 407 2660 245
128 32 1054 6742 191 39 1193 7623 172 53 1332 8516 174

to URs. Such a stage can add much complexity to the ERM
scheme. UR-based engines involve such URs as part of the
lookup process, so they are naturally suited to MM lookups
without extra stages.

6. Conclusion

In this work, we review lookup techniques for packet clas-
sification on FPGAs. In particular, we approach the lookup
problem both from the lookup case (i.e, BM/MM and
EX/PX/AR) and from the lookup-aggregation interface (i.e.,
BV/URID) points of view. From our analysis, we arrive to a
general taxonomy which helps in recognizing most appropri-
ate schemes for current packet lookup needs. Moreover, we
provide estimations and implementation results for FPGA-
based platforms.

UR-based schemes such as RFC are very fast due to
the use of simple memory indexing. They are applicable
to both intrafield aggregation (i.e., stitching) and interfield
aggregation. From our current study, we find them specially
suited for current packet lookup and classification needs. At
this point, the main limitations of such schemes are (1) pre-
computation required for incremental updating and (2) their
scalability with respect to key width M due to address expan-
sion. Previous work explored efficient techniques for miti-
gating them. In this work, we recognize new upper bounds
for UR update complexity and smartly exploit them to
turther optimize those techniques.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially funded by the FONCyT-National
Technological University IP-PRH 2007 Postgraduate Grant
Program, CONICET Postgraduate Grant Program, and
FONCyT PICT 2011-2527 Research Grant. Authors would
also like to thank Altera Corporation for resources and
support provided.

References

[1] Open Networking Foundation, “Software-Defined Networking:
The NewNorm for Networks,” ONF White Paper, April 2012.

[2] D. Unnikrishnan, R. Vadlamani, Y. Liao, J. Crenne, L. Gao,
and R. Tessier, “Reconfigurable data planes for scalable network
virtualization,” IEEE Transactions on Computers, vol. 62, no. 12,
pp. 2476-2488, 2013.

[3] D. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for
the masses,” Queue—Mobile Web Development, vol. 11, no. 2, pp.
40-53, 2013.

[4] S.K.Mauryaand L. T. Clark, “A dynamic longest prefix match-
ing content addressable memory for IP routing,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 19, no.
6, pp. 963-972, 2011.

30

(5]

(10]

(17]

(18]

M. Bando, Y.-L. Lin, and H. J. Chao, “Flash trie: beyond 100-
Gb/s IP route lookup using hash-based prefix-compressed trie,”
IEEE/ACM Transactions on Networking, vol. 20, no. 4, pp. 1262—
1275, 2012.

Y.-H. E. Yang, Y. Qu, S. Haria, and V. K. Prasanna, “Architecture
and performance models for scalable IP lookup engines on
FPGA,” in Proceedings of the IEEE 14th International Conference
on High Performance Switching and Routing (HPSR ’13), pp. 156—
163, Taipei, Taiwan, July 2013.

A. Rasmussen, A. Kragelund, M. Berger, H. Wessing, and S.
Ruepp, “TCAM-based high speed Longest prefix matching with
fast incremental table updates,” in Proceedings of the IEEE 14th
International Conference on High Performance Switching and
Routing (HPSR ’13), pp. 43-48, July 2013.

F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch
packet classification and lookup with TCAM,” IEEE Micro, vol.
25, no. 1, pp. 50-59, 2005.

M. P. Fernandez, “Comparing OpenFlow controller paradigms
scalability: reactive and proactive,” in Proceedings of the 27th
IEEE International Conference on Advanced Information Net-
working and Applications (AINA ’13), pp.1009-1016, March 2013.
C. A. Zerbini and J. M. Finochietto, “Performance evaluation of
packet classification on FPGA-based TCAM emulation archi-
tectures,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM ’12), pp. 2766-2771, December 2012.
W. Jiang and V. K. Prasanna, “Scalable packet classification
on FPGA, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 9, pp. 1668-1680, 2012.

G. S. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable
high throughput firewall in FPGA,” in Proceedings of thel6th
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM "08), pp. 43-52, April 2008.

P. Gupta and N. McKeown, “Packet classification on multiple
fields,” in Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM °99), pp. 147-160, 1999.

J. van Lunteren and T. Engbersen, “Fast and scalable packet clas-
sification,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 4, pp. 560-571, 2003.

X. Sun, S. K. Sahni, and Y. Q. Zhao, “Packet classification con-
suming small amount of memory,” IEEE/ACM Transactions on
Networking, vol. 13, no. 5, pp. 1135-1145, 2005.

T. V. Lakshman and D. Stiliadis, “High-speed policy-based
packet forwardingusing efficient multi-dimensional range
matching,” in Proceedings of the ACM Conference on Appli-
cations, Technologies, Architectures, and Protocolsfor Computer
Communication (SIGCOMM *98), pp. 203-214, 1998.

D. E. Taylor and]J. S. Turner, “Scalable packet classification using
distributed crossproducting of field labels,” in Proceedings of the
IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM °05), vol. 1, pp. 269-280,
2005.

A. Nikitakis and I. Papaefstathiou, “A multi Gigabit FPGA-
based 5-tuple classification system,” in Proceedings of the IEEE
International Conference on Communications (ICC 08), pp.
2081-2085, May 2008.

M. Faezipour and M. Nourani, “Wire-speed TCAM-based
architectures for multimatch packet classification,” IEEE Trans-
actions on Computers, vol. 58, no. 1, pp- 5-17, 2009.

A. Bremlerr-Barr and D. Hendler, “Space-efficient TCAM-
based classification using gray coding,” IEEE Transactions on
Computers, vol. 61, no. 1, pp. 18-30, 2012.

(21]

[22]

(30

(31]

(32

(33]

(34]

International Journal of Reconfigurable Computing

O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst
case TCAM rule expansion,” IEEE Transactions on Computers,
vol. 62, no. 6, pp. 1127-1140, 2013.

F Zane, G. Narlikar, and A. Basu, “CoolCAMs: power-efficient
TCAMs for forwarding engines,” in Proceedings of the 22nd
Annual Joint Conference on the IEEE Computer and Communi-
cations (INFOCOM °03), vol. 1, pp. 42-52, April 2003.

E. Spitznagel, D. Taylor, and J. Turner, “Packet classification
using extended TCAMs,” in Proceedings of the 11th IEEE Interna-
tional Conference on Network Protocols, pp. 120-131, November
2003.

C. R. Meiners, A. X. Liu, E. Torng, and J. Patel, “SPliT: opti-
mizing space, power, and throughput for TCAM-based clas-
sification,” in Proceedings of the 7th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS ’11), pp. 200-210, October 2011.

H. J. Chao and B. Liu, High Performance Switches and Routers,
Wiley-IEEE Press, 2007.

G. Varghese, Network Algorithmics, Morgan Kaufmann, San
Francisco, Calif, USA, 2005.

E Pong and N.-E. Tzeng, “Concise lookup tables for IPv4 and
IPv6 longest prefix matching in scalable routers,” IEEE/ACM
Transactions on Networking, vol. 20, no. 3, pp. 729-741, 2012.
M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
high-speed prefix matching,” ACM Transactions on Computer
Systems, vol. 19, no. 4, pp. 440-482, 2001.

P. Warkhede, S. Suri, and G. Varghese, “Multiway range trees:
scalable IP lookup with fast updates,” Computer Networks, vol.
44, no. 3, pp. 289-303, 2004.

Y. Quand V. K. Prasanna, “High-Performance pipelined archi-
tecture for tree-based IP lookup engine on FPGA, in Pro-
ceedings of the IEEE 27th International Parallel and Distributed
Processing Symposium, pp. 114-123, May 2013.

W. Jiang and V. K. Prasanna, “Field-split parallel architecture
for high performance multi-match packet classification using
FPGAs,” in Proceedings of the 2Ist Annual Symposium on
Parallelism in Algorithms and Architectures (SPAA °09), pp. 188-
196, August 2009.

O. Ahmed, S. Areibi, K. Chattha, and B. Kelly, “PCIU: hardware
implementations of an efficient packet classification algorithm
with an incremental update capability,” International Journal
of Reconfigurable Computing, vol. 2011, Article ID 648483, 21
pages, 2011.

T. Ganegedara and V. K. Prasanna, “StrideBV: single chip
400G+ packet classification,” in Proceedings of the IEEE 13th
International Conference on High Performance Switching and
Routing (HPSR ’12), pp. 1-6, June 2012.

A. Sanny, T. Ganegedara, and V. K. Prasanna, “A comparison
of ruleset feature independent packet classification engines on
FPGA, in Proceedings of the IEEE 27th International Parallel
and Distributed Processing Symposium Workshops and PhD
Forum (IPDPSW °I3), pp. 124-133, IEEE, Cambridge, Mass,
USA, May 2013.

W. Jiang, “Scalable ternary content addressable memory imple-
mentation using FPGAs,” in Proceedings of the ACM/IEEE Sym-
posium on Architectures for Networking and Communications
Systems (ANCS ’I3), pp. 71-82, October 2013.

Y. R. Qu, S. Zhou, and V. K. Prasanna, “High-performance
architecture for dynamically updatable packet classification
on FPGA, in Proceedings of the 9th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems
(ANCS ’13), pp. 125-136, October 2013.

International Journal of Reconfigurable Computing

(37]

(38]

(39]

[46]

(47]

(48]

D. E. Taylor and J. S. Turner, “ClassBench: a packet classification
benchmark,” IEEE/ACM Transactions on Networking, vol. 15, no.
3, pp. 499-511, 2007,

S. Choi, R. Scrofano, V. K. Prasanna, and J. Jang, “Energy-
efficient signal processing using FPGAs,” in Proceedings of
the ACM/SIGDA I1ith International Symposium on Field Pro-
grammable Gate Arrays (FPGA '03), pp. 225-234, 2003.

T. Ganegedara, V. Prasanna, and G. Brebner, “Optimizing
packet lookup in time and space on FPGA,” in Proceedings of
the 22nd International Conference on Field Programmable Logic

and Applications (FPL ’12), pp. 270-276, August 2012.

“Advanced Synthesis Cookbook,” July 2011, http://www.altera
.com/literature/manual/stx_cookbook.pdf.

J. Brelet, An Overview of Multiple TCAM Designs Invirtex Family
Devices, Xilinx Corporation, 1999, http://www.xilinx.com/
support/documentation/applicationnotes/xapp201.pdf.

H. Rong and H. Chen, “An independent set packet classification
algorithm using priority sorting,” Journal of Networks, vol. 6, no.
11, pp. 1565-1571, 2011.

R. Tessier, V. Betz, D. Neto, and T. Gopalsamy, “Power-
awareRAM mapping for FPGA embedded memory blocks,” in
Proceedings of the 14th ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA "06), pp. 189-198,
February 2006.

Altera Corporation, Embedded Memory Blocks in Stratix V
Devices, Altera Corporation, 2013, http://www.altera.com/
literature/hb/stratix-v/stx5_51003.pdf.

Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna, “Multi-
dimensional packet classification on FPGA: 100 Gbps and
beyond,” in Proceedings of the International Conference on Field-
Programmable Technology (FPT ’10), pp. 241-248, December
2010.

H. Song and J. S. Turner, “Toward advocacy-free evaluation of
packet classification algorithms,” IEEE Transactions on Comput-
ers, vol. 60, no. 5, pp. 723-733, 2011.

X.-Y. Gong, W.-D. Wang, and S.-D. Cheng, “ERFC: an enhanced
recursive flow classification algorithm,” Journal of Computer
Science and Technology, vol. 25, no. 5, pp. 958-969, 2010.

T. Ganegedara, W. Jiang, and V. K. Prasanna, “A scalable and
modular architecture for high-performance packet classifica-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol.
25, no. 5, pp. 1135-1144, 2014.

31

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

e

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

