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An FPGA has a finite routing capacity due to which a fair number of highly dense circuits fail to map on slightly underresourced
architecture. The high-interconnect demand in the congested regions is not met by the available resources as a result of which the
circuit becomes unroutable for that particular architecture. In this paper, we present a new placement approach which is based on a
natural process called diffusion. Our placer attempts to minimize the routing congestion by evenly disseminating the interconnect
demand across an FPGA chip. For the 20 MCNC benchmark circuits, our algorithm reduced the channel width for 15 circuits. The
results showed on average ∼33% reduction in standard deviation of interconnect usage at an expense of an average ∼13% penalty
on critical path delay. Maximum channel width gain of ∼33% was also observed.

1. Introduction

With every passing year, the logic density inside a chip
increases approximately following Moores Law [1], which
makes more and more complex problems solvable and
applications realizable. But with these advancements, the
efficiency of CAD tools to map and optimize these new
applications is decreasing. These highly dense circuits have
introduced new kind of challenge for CAD tool designers,
such as longer run-time of algorithms, higher power dissi-
pation, and inhomogeneous heat distribution.

The logic capacity and capability of FPGAs have increased
by leaps and bounds over the past two decades but the routing
resources have not increased in a commensuratemanner.The
work of [2] showed that nearly 80–90% area of an FPGA
chip is consumed by the programmable interconnect/routing
resources, while the remaining 10–20% area goes to the
configurable logic blocks (CLBs). CLBs are the principal logic
components in an FPGA device; they are formed by the
clustering of more simple logic blocks known as Basic Logic
Elements (BLEs). To execute computations, the CLBs need to
communicate with each other which is made possible by the
interconnect fabric/routing network, spread across an FPGA
chip. As the logic density inside a chip increases, more and

more CLBs will get crammed into a small chip area and they
will require more routing resources to communicate.

Therefore, the distribution of CLBs across an FPGA is
of pivotal importance as it hugely impacts the utilization
of routing resources along with other design metrics. For
Example, if several CLBs with high routing demand are
brought in close proximity to each other, they may exhaust
the routing resources in that particular region and as a
result the circuit would become unroutable for that particular
architecture.

In this paper, we present a new congestion driven
placement approach that attempts to reduce the variations
in interconnect usage by diffusion. The major contribution
of this work is a new placement cost function which pays
attention to both wirelength and congestion.

Diffusion is a natural transport mechanism under the
influence of which particles from a region of higher con-
centration move towards a region of lower concentration.
The diffusion of a dye in water, the distribution of heat in a
metal plate, and the spreading of gas molecules in a room
are all examples of diffusion. In our case, the regions with
high-interconnect demand correspond to high concentration
regions while the surrounding regions with relatively low-
interconnect usage act as low concentration regions. Hence,
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a concentration gradient exists between the two regions due
to which diffusion takes place. During the diffusion process,
logic blocks with high-interconnect demand are moved
towards regions of relatively low-interconnect demand. After
the completion of this diffusion based placement, logic blocks
with high-interconnect demand spread out uniformly across
an FPGA as a result of which the variations in interconnect
demand are reduced and a solution with better routability
is produced. The proposed placement approach is ideally
suited for circuits which fail to map on slightly underre-
sourced architecture, for which migration to resource-rich
architecture is not a viable option. This approach can be
extremely beneficial in situations where the size of an FPGA
cannot be increased due to high logic utilization ∼100%, or
in the case of dynamic partial reconfiguration [3, 4] which
involves reconfiguration of the specific regions of an FPGA
to implement different functions, while the rest of the device
continues to operate in the same manner as before. Imple-
menting a new function or modifying an existing function
may result in a designwhose routing requirements exceed the
resources available in the designated reconfigurable section of
an FPGA.

The remainder of this paper is organized as follows.
Section 2 provides a background to the problem of routability
in an FPGA along with some prior research work in the
domain of congestion driven placement algorithms and some
other techniques which have been used to reduce high-
interconnect demand. In Section 3, we propose our diffusion
based placement algorithm and introduce the cost function
used in this placer along with some techniques used to
improve the run-time of our placer and Section 4 presents
the experimental details and also some methods to improve
the selection procedure of CLBs which are considered for
diffusion. In Section 5, we present the experimental results,
while Section 6 covers the conclusion and future work.

2. Background and Previous Work

In the standard CAD flow for FPGA, synthesis and technol-
ogy mapping are followed by clustering. In clustering, LEs
are grouped together on the basis of timing and connectivity
of mapped netlist without much attention being given to the
routability metrics which can lead to congestion. The pack-
ing/clustering algorithm used by VPR called T-VPACK [5]
is an example where timing optimization and packing each
cluster to its capacity are the primary goals for the objective
function. The clustering stage is followed by placement in
which the clusters are placed onto the fixed array of CLBs.The
placement stage can further exacerbate the problem, if the
available architectural resources are not taken into account.

The cost function used by the VPR’s placement algorithm
[6] is wirelength driven; that is, it attempts to optimize
the total wirelength of the current placement. The total
wirelength is estimated on the basis of a semiperimeter
bounding box metric using the following:

𝑊𝑖𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =

𝑁

∑

𝑖=1

𝑞 (𝑖) ⋅ (𝑏𝑏𝑥 (
𝑖) + 𝑏𝑏𝑦 (

𝑖)) , (1)

where 𝑁 is the total number of nets, 𝑏𝑏
𝑥
(𝑖) and 𝑏𝑏

𝑦
(𝑖) are

the horizontal and vertical span of the net 𝑖, and 𝑞(𝑖) is a
compensation factor for nets with more than three terminals
[7].

To reduce high-interconnect variation or congestion, a
placement algorithm must pay attention to the routability
of the final design. The semiperimeter bounding box metric
used by VPR’s placement algorithm does not address this
issue because a semiperimeter based cost function brings the
CLBs as close as possible unaware of the routing resources
available in the target architecture. Such a placement could
result in a large number of nets getting restricted to a
relatively small area of the chip generating regions with
high-interconnect demand which in some cases exceeds
the resources available in the architecture. To address these
issues, the authors of [8] have presented a congestion driven
placer which considers the effect of overlapping bounding
boxes. A congestion coefficient is generated from a conges-
tion map which indicates the number of bounding boxes
or nets which overlap each CLB. This coefficient is then
multiplied with the cost function in (1) which penalizes the
moves resulting in congestion. Another congestion driven
placement approach was presented in [9] which uses the
well-known Rent rule to estimate the routing requirements
of the design. A novel approach for the reduction of high-
interconnect demand [10] is to iteratively perform reclus-
tering until a target channel width constraint is met. If the
standard CAD flow fails to route the given netlist on the
available channel width, the iterative portion of un/do pack
is invoked. This portion consists of 4 stages: it identifies the
congested regions and fully unpacks CLBs in that region.
Secondly, it reclusters the unpacked LEs (belonging to con-
gested regions) with a smaller cluster size. To accommodate
the increased number of clusters, the size of FPGA is
incrementally increased.Then, placement is performed using
an incremental placer called RePlace [11]. Finally, routing is
performed to determine if the given circuit successfully maps
or not. If it fails to route, then the CAD flow starts all over
again until the given channel width constraint is met.

The approach used in this paper for reducing congestion,
that is, diffusion based placement, has been applied in
placement algorithms for ASICs. The authors of [12] used
diffusion to overcome a very critical postplacement design
closure issue called legalization. Generally, CAD for ASICs
uses analytic or force-directed algorithms for placement
solution but these methods produce an illegal solution due
to the overlapping of logic blocks. The work in [12] addresses
this issue by using diffusion to produce a legal solution. In
addition, this approach also improves other design metrics
like heat distribution, routing congestion, and signal integrity.

In our earlier implementation of this algorithm [13], we
used a fixed approach (discussed in Section 4.2.2), to select
the congested CLBs for diffusion. In this work, we have
implemented two new techniques for the better selection
of CLBs, which show much better results compared to our
previous fixed approach, while the results for metrics like
critical delay and run-time of algorithm which were not
reported in [13] are also included. Otherwise, there is no
published work in FPGA domain which utilizes diffusion
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except [14] which utilizes diffusion based placement solution
for reducing high temperature spots over an FPGA chip.

Jaffari and Anis [14] applied the concept of diffusion to
address the uneven heat distribution problem in an FPGA by
targeting thermal uniformity as the main objective function.
The proposed placer tool uses a simulated annealing engine
with a weighted common driver cost function to account for
the issues of wirelength and performance requirements. The
CLBs with high temperature aremoved away from each other
in such a way that the overall thermal profile of the FPGA
smooths out.The cost function used in this placer is similar to
the wirelength cost function of simulated annealing in which
a negative cost is desirable for the move to get accepted. This
work shows a significant improvement in standard deviation
(up to 51%) and average reduction (up to 73%) in temperature
with a 4% penalty in wirelength and delay.

3. Implementation

Our proposed idea focuses on improving (i.e., reducing) the
standard deviation of interconnect usage, which attempts to
reduce the peak channel occupancy of a congested region;
this may later reduce the overall channel width of the
architecture. Our congestion driven placer strives to reduce
the interconnect variations by evenly spreading the routing
demand across the entire chip. We have adopted the same
diffusion based placement technique as proposed in [14].
However, instead of using the technique for reducing high
temperature spots, as done in [14], we have used the technique
for reducing high-interconnect usage. Moreover, unlike the
work done in [10], size of FPGA is not increased.

Our placer uses a weighted common driver cost function
similar to the one used in [14] except for the fact that the
common driver weight in [14] corresponds to thermal cost
extracted from the temperature profile of an FPGA while
in our case it corresponds to the occupancy (defined in
Section 3.1) of each CLB which we call the congestion cost.

3.1. The Cost Function. The equation for calculating the
congestion cost is as follows:

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =

𝑛

∑

𝑖=0

(

𝑛

∑

𝑗=1

𝑐

𝑖
⋅ c
𝑗

𝑟

𝑖𝑗

) , (2)

where 𝑛 is the number of CLBs used in the FPGA, 𝑐
𝑖
and 𝑐
𝑗
are

the occupancy of the 𝑖th and 𝑗th CLB while 𝑟
𝑖𝑗
is the distance

between the 𝑖th and 𝑗th CLB, and 𝑐
𝑖
and 𝑐
𝑗
are obtained from

a preplaced and routed file which we call congestion file; this
file contains the occupancy of all the used CLBs. The term
occupancy refers to the number of connections aCLBhaswith
the adjacent routing channels.

The computational complexity of congestion cost func-
tion is 𝑂(𝑛2). For large circuits where the utilization of CLBs
is very high, this function can be expensive in terms of
run-time. To improve the run-time of our placer, several
techniques have been implemented which are discussed in
Section 3.3.

The cost function of our placer incorporates both the
wirelength cost obtained from (1) and the congestion cost:

Δ𝐶𝑜𝑠𝑡 = 𝛼(

Δ𝑊𝑖𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑊𝑖𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

) + 𝛼(

Δ𝑇𝑖𝑚𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑇𝑖𝑚𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

)

+ (𝛽) (

Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜s𝑡
) ,

(3)

where 𝛼 is the weight assigned to the wiring and timing costs
and

𝛽 = 1 − 2𝛼 (4)

is the common driver weight assigned to congestion cost.The
formula for calculating Δ𝑊𝑖𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 is the same as the one
implemented in VPR framework [6]. The calculation details
for Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 are discussed in Section 3.3.

3.2. Flow Overview. Our placement flow has three stages as
follows:

(1) First, a routine placement is performed using the con-
ventional wirelength-driven cost function (1). Rout-
ing is performed using PathFinder routing algorithm
[15].

(2) After the completion of placement and routing, a con-
gestion file is generatedwhich contains the occupancy
of all used CLBs.

(3) Now, the placement is performed again using the
weighted common driver cost function (3); the values
for 𝑐
𝑖
and 𝑐
𝑗
are obtained from the generated conges-

tion file. Routing is again performed.

3.3. Improvements in Run-Time. The complexity of the con-
gestion cost function is quadratic in nature which makes
the run-time of our placer unscalable for large designs.
To improve the run-time of our placer, we have made the
following attempts.

3.3.1. Calculating the Incremental Change in Congestion Cost.
Instead of calculating the overall (global) congestion cost, we
calculate the change in congestion cost. Change in congestion
cost which results when a block ismoved or swapped is added
to the global congestion cost which should produce the same
result as computing the overall congestion cost.

The equation for calculating Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 is as
follows:

Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =

𝑛

∑

𝑖=0

(𝑐

𝑖
⋅ 𝑐

𝑗
)(

1

𝑟

𝑖𝑗(𝑛𝑒𝑤)

−

1

𝑟

𝑖𝑗(𝑜𝑙𝑑)

) , (5)

where 𝑛 is the number of used CLBs in the FPGA, 𝑐
𝑖
is the

occupancy of the logic blockwhich ismoved, 𝑐
𝑗
represents the

occupancy of all the other logic blocks, and 𝑟
𝑖𝑗(𝑜𝑙𝑑)

and 𝑟
𝑖𝑗(𝑛𝑒𝑤)

represent the distance between the 𝑖th and 𝑗th CLBs before
and after the move. For Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 to be negative in
(3), the distance between the congested logic blocks should
increase.
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3.3.2. Creating a Priority Queue. The incremental Δ𝐶𝑜𝑛𝑔𝑒𝑠-
𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 improves the run-time considerably but still suffers
from long run-time penalty when the number of used logic
elements is very high. To counter this problem, we first
sorted the CLBs according to their occupancies and then a
certain percentage of CLBs was inserted in the priority queue
(discussed in Section 4.2.2). Now, instead of computing
Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 for all used CLBs at each move, only the
CLBs present in the priority queue are considered. In our
cost function (5), there is a greater probability of acceptance
for the moves which involve logic elements having high
values of occupancy. When such blocks are pulled away from
each other, high negative values of Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 are
achieved. Hence, the idea of considering only a percentage
of highly congested elements is justifiable.

4. Experimental Details and Results

4.1. Experimental Setup. Theproposed diffusion based place-
ment algorithm has been implemented in the state-of-the-art
Versatile Place and Route (VPR) framework. The functions
for𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 andΔ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 along with some
other modifications have been incorporated in the VPR
framework bymodifying the place.c file (available in the VPR
6.0 release), which contains most of the functions used to
execute the placement stage of the FPGA CAD flow, while
slight modifications have been performed in several other
files to make VPR capable of accepting some new command
line arguments, like common driver weight and percentage of
CLBs to be inserted in the priority queue.

4.2. Experimental Details. To fully check the functionality
and performance of our proposed placer, we have performed
rigorous testing on all the 20MCNCbenchmarks circuits [16]
by varying different key parameters which include

(1) common driver weight,
(2) percentage of CLBs inserted in the priority queue

(discussed in Section 3.3.1),
(3) varying the cluster size (for𝑁 = 1 and𝑁 = 4).

4.2.1. Common Driver Weight. As discussed in Section 3.1, a
percentage of the overall change in cost (Δ𝐶𝑜𝑠𝑡) is assigned to
Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 by a factor known as the common driver
weight 𝛽; see (3). From our experiments, we observed that
increasing the common driver weight toomuch penalizes the
key performance parameters such as area and speed. Since 𝛽
is the emphasis given to the Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡, the greater
the value of 𝛽, the lesser the influence of Δ𝑊𝑖𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 on
Δ𝐶𝑜𝑠𝑡 or the acceptance (or rejection) of a move. Hence,
values of 𝛽 should be chosen with great care because large
values of 𝛽 can have an adverse effect on the wiring and delay
of the circuit.

During experimentation, we empirically tested different
values of the common driver weight for the MCNC bench-
mark suite [16]. Our results revealed that setting a driver
weight between 0.1 and 0.25 (10%–25%) generates optimum
results.

4.2.2. Percentage of CLBs Inserted in the Priority Queue. As
mentioned earlier in Section 3.3, the run-time of our place-
ment algorithm is a strong function of the number of CLBs.
To counter this issue, the idea of a priority queue was pre-
sented in Section 3.3.2. So now the run-time of the algorithm
will depend upon the number of CLBs inserted in the priority
queue. To explore the effect of the number of CLBs (inserted
in the queue) on the run-time and the placement quality of
the solution, three different CLB insertion approaches were
used:

(i) Fixed: a fixed number of CLBs like top 5%, 10%, or
20%, and so forth (in terms of occupancy) are inserted
in the priority queue.

(ii) Average: we first calculate the average (𝜇) of all CLB
occupancies.TheCLBs with occupancies greater than
the average value (𝜇) are inserted in the queue.

(iii) One standard deviation (1𝜎): after the average
occupancy, we calculate the standard deviation (𝜎)
in occupancy values. CLBs with occupancy values
greater than 𝜇 + 𝜎 are inserted in the priority queue.

The rationale for introducing these three different approaches
for inserting CLBs in the priority queue will be discussed in
Section 5.2.6.

4.2.3. Varying the Cluster Size. To check the performance of
our algorithm, we carried out the set of experiments for two
cluster sizes: 𝑁 = 1 and 𝑁 = 4. As mentioned earlier in
Section 2, a direct consequence of clustering is the increase
in congestion because more BLEs inside a CLB means more
connections with the adjacent routing channels. For cluster
size 𝑁 = 1, we completely eliminate the effect of clustering
on the performance of our algorithm. Results reveal that our
algorithm manages to reduce the routing channel width not
only for cluster size𝑁 = 4, but also for the less favorable case
of netlists with no clustering (i.e.,𝑁 = 1).

5. Results

5.1. Architecture Details. The architecture file used for the
simulation of benchmark circuits (with cluster size𝑁 = 4) is
𝑘4 𝑁4, provided with the release of VPR 6.0. For the netlists
with cluster size 𝑁 = 1, we have used an older architecture
file from the VPR 4.30 release. The parameter values for the
𝑘4 𝑁4 architecture are as follows:

(i) The size of CLBs (number of BLEs) is 1, for netlists
with cluster size𝑁 = 1, while its value is 4, for netlists
with cluster size𝑁 = 4.

(ii) The LUT size is 𝑘 = 4, for both 𝑁 = 1 and 𝑁 = 4

netlists.
(iii) For all the benchmark circuits, the size of FPGA

is adjusted to such a value which results in logic
utilization close to 100%. Logic utilization refers to the
number of logic elements in architecture which are
utilized when a specific netlist is mapped on it. For
example, for a netlist with 896 CLBs (logic elements),
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to achieve logic utilization close to 100%, the FPGA
grid size should be 30 × 30 (900 CLBs).

(iv) The architecture is based on directional wires which
are prevalent in the modern commercial architecture
due to their better area and delay performance [17].

(v) The type of switch block used in the architecture is
Wilton [18] with 𝐹𝑠 = 3.

(vi) The values for (Fcin) and (Fcout) are 1.0 and 0.25,
respectively.

5.2. Simulation Results. We compare our results with the
VPRs placement algorithm; the results from VPR are
obtained by running it in the wirelength plus timing driven
mode (only for cluster size𝑁 = 4) for placement and routing.
Thekey parameters used for the comparison of results include

(i) wirelength,
(ii) critical path delay (only for cluster size𝑁 = 4),
(iii) channel width,
(iv) standard deviation (𝜎) in interconnect demand/occu-

pancy values.

We measure the standard deviation in the occupancy val-
ues for all the CLBs. As mentioned earlier, the focus of
our proposed placement approach is to reduce the varia-
tions/standard deviation in interconnect demand, as a con-
sequence of which the overall channel width of an FPGA
decreases. Since, the standard deviation is a measure of the
spread of values for a particular group of numbers (in our
case, occupancy values for all CLBs) or how far away the
data values of a set are from mean 𝜇. For a high value of
standard deviation, there will be some CLBs with very high
occupancy values (much greater than 𝜇); on the other hand,
some CLBs will have extremely low occupancy values (much
smaller than 𝜇). The proposed diffusion based placement
algorithm attempts to reduce this gap in CLB occupancies by
evenly spreading the CLBs with high occupancies across the
entire FPGA chip.

5.2.1. Cluster Size 𝑁 = 1. We first consider the CLBs with
size 𝑁 = 1; that is, only one BLE is present inside a cluster.
As mentioned earlier, this completely eliminates the effect of
clustering on the final placement and routing results. Table 1
shows the results produced by VPR (in the wirelength-driven
mode) and our proposed diffusion based placement approach
for the 20 MCNC benchmark netlists. The first column of
Table 1 shows the MCNC benchmark netlists used for the
simulation. The second column contains the optimal FPGA
sizes which result in 100% logic utilization for each netlist.
Column 3 presents the wirelength cost for each netlist, which
is the sum of half-perimeter of all the bounding boxes, while
the standard deviation (𝜎), in column 4, shows the standard
deviation in interconnect demand, which has been computed
by calculating the value of 𝜎 for the occupancies of all the
CLBs in a particular netlist. Column 5 depicts the final
routed channel width achieved for each netlist. The results
produced by our placement approach for the 20 MCNC

benchmark netlists have been presented in columns 6, 7, and
8 of Table 1. All the key parameters (wirelength, standard
deviation, and channel width) for each netlist in Table 1 have
been normalized to the results obtained from VPR.

The results produced by our proposed placement
approach for cluster size 𝑁 = 1 show on average ∼11%
reduction in standard deviation of interconnect demand
at an expense of an average ∼5% penalty on wirelength.
For all the benchmark circuits, bounding box cost slightly
increased, which is due to the opposing (to the VPR cost
function) nature of our proposed algorithm which attempts
to pull the logic elements with high occupancy away from
each other.

For the two benchmarksmisex3 and apex4, channel width
was reduced by ∼17% and ∼14%, respectively. As mentioned
earlier, the objective of our placement approach is to reduce
the standard deviation in interconnect demand which in
turns reduces peak channel occupancy as a result of which
channel width decreases. The highest gain (reduction) in
standard deviation was observed for elliptic (∼32%) and
misex3 (∼24%). For misex3, a gain of (∼17%) was also
achieved in channel width, which further justifies the idea
that significant gains can be achieved in channel width by
reducing standard deviation. On the other hand, there was
no gain in channel width for elliptic, the primary reason for
which is the failure of reduction in peak channel occupancy.
As mentioned earlier, gains in channel width are possible
if reduction in standard deviation decreases the peak inter-
connect usage in congested regions. The peaks in elliptic
are all very uniformly distributed; hence, trying to reduce
congestion in one region produces congestion in another.

5.2.2. Cluster Size 𝑁 = 4. Now, the effect of clustering is
taken into account by simulating the circuits packed with
a cluster size 𝑁 = 4. We first present the results obtained
for the 20 MCNC benchmark netlists (cluster size 𝑁 = 4)
by running VPR in the weighted wirelength plus timing
driven mode, with equal emphasis given to the wirelength
and timing; that is, equal driver weight is assigned to the
two functions. The results shown in Table 2 will be used as
a reference for comparing results of our proposed algorithm
with VPR. The results of Table 2 show a significant increase
in the final routed channel width of the benchmark circuits;
this effect is a direct consequence of clustering. Since more
logic elements are now crammed inside a cluster (in this
case, 4), the CLBs would now require more routing tracks in
their adjacent channels to communicate with each other; this
will produce congestion in various regions of an FPGA chip.
Hence, our placement approach which attempts to minimize
the congestion by evenly spreading the routing demand is
more suited for the circuits with clustered logic elements.

5.2.3. Fixed. As mentioned earlier in Section 4.2.2, for the
cluster size 𝑁 = 4, three different approaches for inserting
CLBs in the priority queue have been proposed. This section
covers the fixed approach, in which a fixed predetermined
number of CLBs are inserted in the priority queue. For the
results presented in this section, the top 10% CLBs (in terms
of occupancy) are inserted in the priority queue.
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Table 1: Results produced by VPR for cluster size𝑁 = 1.

Netlist FPGA size VPR Diffusion based placement
Wirelength 𝜎 Channel width Wirelength 𝜎 Channel width

alu4 40 × 40 21826 5.72 10 23269 5.44 10
apex2 44 × 44 33355 5.8 12 35428 5.75 12
apex4 36 × 36 24052 7.56 14 25166 6.78 12
bigkey 42 × 42 20502 3.55 8 20939 3.54 8
des 40 × 40 25365 3.78 10 26137 3.48 10
diffeq 39 × 39 18204 3.82 8 19830 3.61 8
dsip 38 × 38 16891 3.53 8 19830 3.61 8
ex5p 33 × 33 22717 8.9 14 24040 8.83 14
misex3 38 × 38 23585 6.67 12 24534 5.08 10
seq 42 × 42 31026 6.6 12 32226 5.71 12
tseng 33 × 33 12773 3.61 8 14093 3.46 8
s298 44 × 44 16728 3.49 8 17425 3.18 8
elliptic 61 × 61 47603 7 10 52001 4.71 10
frisc 60 × 60 59959 7.14 12 62569 5.78 12
spla 61 × 61 67065 7.72 14 72017 6.57 14
s38417 81 × 81 83355 4.3 8 86291 4.22 8
ex1010 68 × 68 78798 4.88 12 81029 4.62 12
Pdc 68 × 68 98470 9.86 16 104287 7.84 16
s38584.1 81 × 81 79180 4.5 8 87642 3.99 8
clma 92 × 92 140105 6.06 12 151582 5.01 12

Table 2: Results produced by VPR for cluster size𝑁 = 4.

Netlist FPGA size Critical path (ns) 𝜎 Channel width
alu4 20 × 20 7.3962 17.002 32
apex2 23 × 23 10.5786 17.1328 36
apex4 19 × 19 7.9168 20.638 38
bigkey 36 × 36 4.8433 8.082 20
clma 47 × 47 16.3227 29.769 50
des 42 × 42 7.7112 10.283 20
diffeq 20 × 20 7.39792 16.43 26
dsip 36 × 36 4.76876 7.735 22
elliptic 31 × 31 10.716 26.405 40
ex5p 17 × 17 8.00032 19.165 38
ex1010 35 × 35 12.4845 21.412 38
frisc 30 × 30 12.3652 26.615 44
misex3 19 × 19 9.45672 17.506 34
pdc 35 × 35 14.9399 25.374 54
s298 23 × 23 11.8196 18.741 32
s38417 40 × 40 9.15104 16.148 30
s38584.1 40 × 40 8.11126 20.906 32
seq 22 × 22 8.31452 17.723 34
spla 31 × 31 10.037 30.291 48
tseng 17 × 17 5.99362 13.987 20

The results produced by the fixed approach for the 20
MCNC benchmark netlists have been presented in Figures 1,
2, and 3. All the key parameters (channel width, critical path
delay, wirelength, and standard deviation) for each netlist

have been normalized to the results obtained from VPR
shown in Table 2.

The results for the fixed approach show on average ∼
14% reduction in standard deviation at an expense of ∼5%
penalty on the critical path delay. The channel width has
been reduced for 4 benchmark circuits, with the highest gain
achieved for diffeq ∼8% (see Figure 1), which also registered
the highest reduction in standard deviation with a value of ∼
35% (Figure 2), at an expense of (∼9%) penalty on the critical
path delay (Figure 3).

5.2.4. Average. The second approach for inserting CLBs in
the priority queue is based on the calculation of average
of (𝜇) CLB occupancies. After calculating the average (𝜇)
occupancy for all CLBs, logic blocks with occupancies greater
than 𝜇 are inserted in the priority queue. Table 3 shows the
percentages of CLBs inserted in the priority queue for the 20
MCNC benchmark circuits, having occupancies greater than
𝜇.

The results for the average approach show on average
∼21% reduction in standard deviation at an expense of ∼4%
penalty on the critical path delay. The channel width has
been reduced for 9 benchmark circuits, with the highest gains
achieved for dsip ∼9% (see Figure 4), which also showed a
reduction in standard deviation of interconnect demand by
∼39% (see Figure 5).On the other hand, the critical path delay
for dsip deteriorated by ∼28% (see Figure 6).

5.2.5. One Sigma (1-𝜎). Thethird approach for insertingCLBs
in the priority queue involves the calculation of standard
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Table 3: Percentage of CLBs inserted in the priority queue for
average approach.

Netlist % CLBs inserted in the priority queue
alu4 58.418
apex2 58.436
apex4 62.31
bigkey 66.823
diffeq 64.986
dsip 63.929
elliptic 61.878
ex5p 60
s298 54.141
ex1010 58.652
frisc 62.597
s38417 60.45
s38584.1 56.065
pdc 62.794
spla 57.471264
seq 61.160714
clma 57.787076
tseng 60.076046
des 62.043796
misex3 59.833795

Channel width (normalized)

al
u4

ap
ex
2

ap
ex
4

bi
gk

ey
clm

a
de

s
di

ffe
q

ds
ip

el
lip

tic
ex
5

p
ex

10
10

fr
isc

m
ise

x3 pd
c

s2
9
8

s3
8
4
1
7

s3
8
5
8
4
.1 se
q

sp
la

ts
en

g

0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

Figure 1: Comparative results of channel width for diffusion
based placement algorithm using fixed approach normalized to the
respective results from VPRs placement algorithm for cluster size
𝑁 = 4.

deviation (𝜎) in CLB occupancies. After calculating the aver-
age (𝜇) occupancy for all CLBs, logic blocks with occupancies
greater than 𝜇 + 𝜎 are inserted in the priority queue. Table 4
shows the percentages of CLBs inserted in the priority queue
for the 20 MCNC benchmark circuits, having occupancies
greater than 𝜇 + 𝜎.

The results for the 1-sigma approach show on average
∼33% reduction in standard deviation at an expense of ∼13%
penalty on the critical path delay.The channel width has been
reduced for 15 benchmark circuits, with the highest gains
achieved for dsip∼33% and bigkey∼30% (see Figure 7), which
also showed a reduction in standard deviation of interconnect
demand by ∼22% and ∼40% (see Figure 8), respectively. On
the other hand, the critical path delay for bigkey suffered
heavily ∼44% (see Figure 9) due to the extra ordinary gain
achieved in the channel width.This huge plenty in the critical

Table 4: Percentage of CLBs inserted in the priority queue for 1-
sigma approach.

Netlist % CLBs inserted in the priority queue
alu4 13.520408
apex2 14.403292
apex4 14.285714
bigkey 13.882353
diffeq 10.079576
dsip 14.662757
elliptic 12.486188
ex5p 12.857143
s298 18.787879
ex1010 14.725458
frisc 13.325868
s38417 13.579474
pdc 7.912458
seq 13.616071
spla 16.9279
s38584.1 18.416091
misex 16.620499
clma 16.643422
tseng 13.987093
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Figure 2: Comparative results of standard deviation in interconnect
demand for diffusion based placement algorithm fixed approach
normalized to the respective results fromVPRs placement algorithm
for cluster size𝑁 = 4.

path delay of bigkey results from the pulling away of highly
congested logic blocks from each other, which in the case
of bigkey lie on the critical path. Hence, the logic blocks on
the critical path which should be very close to each other,
(to minimize the time required for the signals to traverse
the critical path) encountering minimum wirelength and the
smallest possible number of switch blocks, are now far away
from each other, as a result of which the overall critical delay
of the final solution has increased.

5.2.6. Comparison of the Three Approaches. Out of the three
proposed approaches for inserting CLBs in the priority
queue, the 1-sigma approach produced the best results. The
reason for the better performance of 1-sigma approach is
due to the number of CLBs inserted in the priority queue.
As mentioned earlier in Section 3.3.2, logic blocks with high
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Critical path (normalized)
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Figure 3: Comparative results of critical path for diffusion based
placement algorithm fixed approach normalized to the respective
results from VPRs placement algorithm for cluster size𝑁 = 4.

Channel width (normalized)
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Figure 4: Comparative results of channel width for diffusion based
placement algorithm using average approach normalized to the
respective results from VPRs placement algorithm for cluster size
𝑁 = 4.

Standard deviation (normalized)
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Figure 5: Comparative results of standard deviation in interconnect
demand for diffusion based placement algorithm using average
approach normalized to the respective results fromVPRs placement
algorithm for cluster size𝑁 = 4.

occupancy are mainly responsible for congestion; hence,
inserting them in the priority queue seems to be a feasible
idea. But, what should be the criterion for a CLB to be
considered for a priority queue? In some netlists, there are
a large number of congested logic blocks; should we insert all
of them in the priority queue or probably some percentage

Critical path (normalized)
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Figure 6: Comparative results of critical path for diffusion based
placement algorithm using average approach normalized to the
respective results from VPRs placement algorithm for cluster size
𝑁 = 4.

Channel width (normalized)
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Figure 7: Comparative results of channel width for diffusion based
placement algorithm using 1-sigma approach normalized to the
respective results from VPRs placement algorithm for cluster size
𝑁 = 4.

of them? The results obtained from the three mentioned
approaches answer these questions.

The fixed approach which considers only a specific
percentage of CLBs from a group of highly congested logic
blocks manages to reduce channel width for only 4 circuits,
with the highest gain in channel width achieved for diffeq (∼
8%). Although this approachmanages to achieve the eventual
goal of our proposed placement algorithm, which targets
rectifying the interconnect imbalance by evenly spreading
the highly congested logic elements across an FPGA chip
(as a result of which there is a reduction in the routed
channel width of an FPGA), the results produced by the
fixed approach lack the glare to be considered as an efficient
way of determining the percentage of CLBs to be inserted in
the priority queue. Since different benchmark circuits have
a different number of congested logic blocks, inserting the
same fixed percentage of CLBs for all the circuit will not
produce the desired results for every circuit.

The second approach for determining the percentage
of CLBs was based on average approach in which CLBs
with occupancies greater than 𝜇 are inserted in the priority
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Standard deviation (normalized)
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Figure 8: Comparative results of standard deviation in interconnect
demand for diffusion based placement algorithm using 1-sigma
approach normalized to the respective results fromVPRs placement
algorithm for cluster size𝑁 = 4.

Critical path (normalized)
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Figure 9: Comparative results of critical path for diffusion based
placement algorithm using 1-sigma approach normalized to the
respective results from VPRs placement algorithm for cluster size
𝑁 = 4.

queue. Table 4 shows the percentage of CLBs inserted in
the queue for the average approach. The percentages for
all the benchmark circuits are on the higher side (greater
than 50% for all the netlists); inserting a high percentage of
CLBs for netlists with a relatively small number of congested
blocks can have an adverse effect on the performance of the
algorithm, because a large number of CLBs will start com-
peting for diffusing into low-interconnect demand regions
which may result in CLBs with high occupancy (which are
mainly responsible for congestion) failing to diffuse into
low-interconnect demand regions. This is the reason for
the modest quality of the results obtained for the average
approach, which managed to reduce channel width for 9
benchmark circuits, with the highest gain in channel width
achieved for dsip (∼9%).

From the three proposed approaches, the 1-sigma (1-𝜎)
approach produced the best results, reducing the channel
width for 15 benchmark circuits, with the highest gain in
channel width achieved for dsip (∼33%). The reason for this
performance is the better selection process for CLBs which
are inserted in the priority queue. For the 1-𝜎 approach,
CLBs with occupancies greater than 𝜇 + 𝜎 are inserted in the
queue; as a result, only CLBs with really high occupancies

(which are primarily responsible for routing congestion) find
themselves in the priority queue. Also, the 1-𝜎 approach is
highly adaptive as it can vary the percentage of logic blocks
considered for the queue, in accordance with the number
of congested blocks in a netlist. The percentages shown in
Table 4 depict this adaptive behaviour of the 1-𝜎 approach,
where the percentage of inserted CLBs varies between ∼19%
for s298 and ∼10% for bigkey.

In terms of run-time, the average approach is the slowest
with a ∼3x penalty in placement time compared to the VPR’s
placement algorithm, while the fixed and 1-sigma approaches
are, respectively, ∼1.05x and ∼1.4x slower than VPR. As
mentioned earlier, the run-time of our algorithm is directly
related to the number of CLBs inserted in the priority queue;
hence, the heavy run-time penalty for the average approach is
due to the high percentages of CLBs inserted in the queue. On
the other hand, the fixed and 1-sigma approaches experience
modest penalties in the run-time due to a nominal number
of CLBs inserted in the queue.

6. Conclusion and Future Work

Despite the availability of modern resource-rich architec-
ture, there will always be some circuits whose intercon-
nect demand can exceed the available routing resources in
particular architecture. In this work, we have proposed a
new diffusion based placement algorithm which attempts
to minimize the variations in interconnect demand by uni-
formly spreading the routing congestion across an FPGAchip
to decrease the peak channel occupancy which as a result
reduces the overall routing channel width. Our proposed
algorithm targets the circuits which have a routing demand
slightly above the resources available in the architecture, for
which migration to resource-rich architecture is not a viable
option, and unlike reclustering [10] which can achieve sub-
stantial reduction in channel width by increasing the FPGA
size, this placement approach does not require an increase
in the FPGA size and, hence, is the ideal option to reduce
the channel width in situations when the logic utilization in
an FPGA is close to 100% or the size of FPGA cannot be
increased; however, the gain in channel width achieved for
this approach is fairly modest as compared to reclustering.
Furthermore, the routing channel width required by our
placement approach never exceeds VPR which proves its
stability.

The benchmarks that we used for experimentation lacked
the inherent local congestion which resulted in smaller or no
gains in standard deviation of interconnect usage and channel
width for somenetlists.Hence, testing the functionality of our
placer on much larger set of synthetic benchmarks as used in
[10] will make the picture much clearer. We would also like to
test the performance of our algorithm on some commercially
available FPGAdevices from vendors like Altera. To do so, we
intend tomake use ofQUIP [19] toolkit which allows students
and researchers to access theQuartus ll CAD suite at different
stages of the CAD flow. We intend to pass the technology
mapped netlist file from Quartus ll to our placer which will
perform the placement of the design; the placement infor-
mation will then be passed back to the Quartus ll CAD flow
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for routing.The routing results generated using this modified
flow will then be compared with the results produced by
the complete Altera flow. Another approach for calculating
Δ𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 is under consideration. Instead of placing
all the clusters in a single placement iteration, each cluster
can be individually placed on different iterations. Hence, the
placer will iteratively run several times where the number of
placer iterations will be equal to the number of clusters. We
expect much better results for both run-time and standard
deviation after the successful completion of this future work.
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