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Modern embedded systems are being modeled as Reconfigurable High Speed Computing System (RHSCS) where Reconfigurable
Hardware, that is, Field ProgrammableGateArray (FPGA), and softcore processors configured onFPGAact as computing elements.
As system complexity increases, efficient task distribution methodologies are essential to obtain high performance. A dynamic
task distribution methodology based on Minimum Laxity First (MLF) policy (DTD-MLF) distributes the tasks of an application
dynamically onto RHSCS and utilizes available RHSCS resources effectively. The DTD-MLF methodology takes the advantage of
runtime design parameters of an application represented as DAG and considers the attributes of tasks in DAG and computing
resources to distribute the tasks of an application onto RHSCS. In this paper, we have described the DTD-MLF model and verified
its effectiveness by distributing some of real life benchmark applications onto RHSCS configured on Virtex-5 FPGA device. Some
benchmark applications are represented as DAG and are distributed to the resources of RHSCS based on DTD-MLF model. The
performance of theMLF based dynamic task distributionmethodology is compared with static task distributionmethodology.The
comparison shows that the dynamic task distribution model with MLF criteria outperforms the static task distribution techniques
in terms of schedule length and effective utilization of available RHSCS resources.

1. Introduction

Microprocessors are at the core of high performance com-
puting systems and they provide flexibility for wide range of
applications at the expense of performance [1]. Application
Specific Integrated Circuit (ASIC) supports fixed functional-
ity and superior performance for an application but it restricts
the architecture flexibility. Reconfigurable computing (RC)
[2] promises greater flexibilitywithout compromise in perfor-
mance.TheRCwith Field Programmable Gate Array (FPGA)
architecture brings the phenomenon of dynamic reconfigu-
ration of custom digital circuits without physically altering
the hardware to provide more flexible and low cost solution
for real time applications. However the microprocessor acts
as softcore processor that executes software tasks described
in High Level Language (HLL) whereas the RC architec-
ture FPGA acts as hardcore processor that reconfigures its
hardware for the behaviour of hardware tasks described

in Hardware Description Language (HDL). The partial
reconfiguration behaviour of FPGA supports parallel tasking
by partitioning its hardware into finite number of Recon-
figurable Logic Units (RLUs) and each independent RLU
reconfigures its hardware for the behaviour of hardware task.
The dynamic reconfigurable phenomenon of RC brought
higher performance for complex applications by reducing
instruction fetch and decoding and executing bottleneck [1–
3]. So, High Speed Computing System (HSCS) should have
one or more resources of such RC architectures as processing
element (PE) to enhance the speed of application execution.
There are hybrid systems such as reconfigurable system on
chip (RSoC) [4] andMOLEN architecture [3] in the literature
that have integrated both microprocessor and FPGA to
support software as well as hardware tasks in an application.
This paper also targeted a hybrid system described on a single
chip FPGA. The homogeneous computing systems having
array of similar PEs [5, 6] provide parallel processing to
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the distributed applications at the expense of number of
resources whereas heterogeneous computing systems having
array of dissimilar PEs [7–9] support distributed applications
at the expense of dissimilar communication protocols (i.e.,
buses and bridges) between heterogeneous resources. The
reconfigurable systems having FPGA as PE [10–13] bring
phenomenon of dynamic reconfiguration to the applications
at the lack of softcore processor or at the expense of off-
chip softcore processor interface and efficiency. A hybrid
computing platform called Reconfigurable High Speed Com-
puting System [3, 4] (RHSCS) having integrated softcore
PE (MicroBlaze) and hardcore PE (RLUs) configured on a
single chip FPGA minimizes communication cost and also
supports both software tasks and hardware tasks execution.
The RHSCS can provide optimal intermediate computing
platform for execution of software tasks and hardware tasks
exist in distributed applications. So, the resources of RHSCS
need to be shared among the tasks of an application and it is
achieved in this research by designing an efficient dynamic
task distribution methodology for RHSCS.

The remainder of the paper is organized as follows. The
literature review is presented in Section 2, task distribution
problem and strategies are in Section 3, proposed dynamic
task distribution methodology is in Section 4, and experi-
mental results and discussions are in Section 5, and the paper
is concluded in Section 6.

2. Literature Review

This section brings the literature review of various task
distributionmethodologies for reconfigurable heterogeneous
computing systems that have multiple dissimilar processing
elements. A computing platform called MOLEN polymor-
phic processor described in [3] modeled with both general
purpose and custom reconfigurable processing elements.The
MOLEN processor is designed with arbitrary number of
processing elements to support both hardware and software
tasks. An efficient multitask scheduler [14] proposed for
runtime reconfigurable system introduced a new parame-
ter called Time-Improvement as cost function for compiler
assisted scheduling models. The Time-Improvement param-
eter is the combination of reduction-in-task-execution time
and distance-to-next-call. The efficient multitask scheduler
[14] is demonstrated for the MOLEN polymorphic processor
[3] environment where the control of tasks assigned to Gen-
eral Purpose Processor (GPP) and tasks execution is assigned
to reconfigurable processing elements. The scheduler in [14]
outperforms its contemporary algorithms and accelerates
task execution by 4% to 20%. In [15], an online hybrid
scheduling model is demonstrated for CPU-FPGA platform
where tasks are represented in three categories such as soft-
ware tasks (ST) executed only on CPU, hardware tasks (HT)
executed only on FPGA, and hybrid tasks (HST) executed on
bothCPU and FPGA.Thehybrid schedulingmodel [15] is the
integration of task allocation, placement and task migration
modules, and schedule of the tasks of an application based
on their reserved time. An online HW/SW partitioning
and coscheduling algorithm [16] is proposed for GPP and
Reconfigurable ProcessingUnit (RPU) environment inwhich

Hardware Earliest Finish Time (HEFT) and Software Earliest
Finish Time (SEFT) are estimated for tasks of an application.
The difference between HEFT and SEFT used to partition the
tasks and then scheduled tasks list has been prepared based
on EFT for GPP and RPU as well. The reconfigurable com-
puting coscheduler (ReCoS) [17, 18] integrates the strengths
of Hardware Computing (HC) and Reconfigurable Hardware
(RH) scheduling policies in order to effectively handle the
RC system constraints such as number of FFs, LUTs, mul-
tiplexers, CLBs, communication overheads, reconfiguration
overheads, throughputs, and power constraints. Hardware
supported task scheduling is proposed in [4] for dynamically
Reconfigurable SoC that utilizes the resources effectively for
execution of applications. The RSoC architecture comprises
a general purpose embedded processor along with two L1
data and instruction caches and a few Reconfigurable Logic
Units (RLUs) on a single chip. In [4], task systems are
represented as Modified Directed Acyclic Graph (MDAG)
and the MDAG defined as tuple 𝐺 = (𝑉, 𝐸𝑑, 𝐸𝑐, 𝑃), where
𝑉 is set of nodes, 𝐸𝑑 and 𝐸𝑐 are the set of directed data
edges and control edges, respectively, and 𝑃 represents the
set of probabilities associated with 𝐸𝑐. The conclusion of
the research [4] states that dynamic scheduling (DS) does
not degrade as the complexity of the problem increases
whereas the performance of Static Scheduling (SS) declines.
The DS outperforms SS when both task system complexity
and degree of dynamism increase. Compiler assisted runtime
scheduler [19] is designed forMOLEN architecture where the
runtime application is described as Configuration Call Graph
(CCG). The CCG assigns two parameters called distance to
the next call and frequency of calls in future to the tasks
of an application and these parameters act as cost function
to distribute the tasks. HW/SW codesign techniques have
been demonstrated in [20] for dynamically reconfigurable
architectures with the aim of deciding execution order of the
tasks at runtime based on their EDF. In [20], the authors have
demonstrated a HW/SW partitioning algorithm, a codesign
methodology with dynamic scheduling for discrete event
systems, and a dynamic reconfigurable computing multicon-
text scheduling algorithm. These codesign techniques [20]
minimize application execution time by parallelizing tasks
execution and the model is controlled by host processor
for both shared memory and local memory based Dynamic
Reconfigurable Logic (DRL) architectures. The coscheduling
techniques in [20] brought better optimization for shared
memory architecture over local memory architectures when
the DRL cells are more than three. A HW/SW partitioning
algorithm in [21] is presented for task partition as software
tasks and hardware tasks based on their waiting time and
resources availability. A methodology is proposed in [22]
for building real time reconfigurable systems in order to
ensure that all constraints of an application are met. In
[22], Compulsory-Reuse (CR) and Loading-Back factor are
estimated for tasks of an application to support reuse of
resources. A deadline partitioning scheduler is proposed for
scheduling dynamic hard real time task sets onto fully and
partially reconfigurable systems [23] with the objective of
reducing tasks rejection ratio.The scheduler in [23] computes
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weight, defined as ratio of execution time to deadline of
the task, as cost function to distribute randomly generated
periodic task sets. An efficient task scheduler is proposed
in [24] for heterogeneous computing systems based on
EFT, level of the task, and MLF as cost functions. A case
study and design challenges of various task distribution
methodologies were presented in [25] for single and multiple
processing element computing systems. In summary, the task
distribution techniques developed for CPU-FPGA system
accelerate the application execution whereas CPU is engaged
for controlling tasks execution instead of executing tasks.
Since CPU is utilized for controlling tasks execution, the task
distribution models described in the literature may generate
significant overheads when a task or application demands for
software execution. The task distribution methodologies in
the literaturemay also degrade the efficiency of an application
execution due to communication overheads between off-chip
CPU and FPGA. These issues were addressed in [26] by
designing a task distribution model based on MLF distri-
bution policy for a computing platform having softcore and
hardcore processing elements on a single chip FPGA. In this
paper, themethodology in [26] is described and presented for
real life benchmark applications to evaluate the effectiveness
of the task distribution methodology.

3. Task Distribution Problem and Strategies

The main objective of task distribution is to map a given
application represented as Direct Acyclic Graph (DAG) to
the resources of computing platform RHSCS to minimize
total execution of the applicationwhile utilizing the resources
effectively. This section defines strategies like task graph rep-
resentation, targeted computing architecture, and overviewof
task distributionmodel and finally demonstrates the dynamic
and static task distribution with an example.

3.1. Application as Task Graph. Applications can be repre-
sented as a Directed Acyclic Graph (DAG) 𝐺 = (𝑉, 𝐸), where
𝑉 represents set of 𝑁 tasks 𝑉 = {V1, V2, V3 , . . . , V𝑁} and 𝐸
represents set of edges 𝐸 = {𝑒12, 𝑒13, . . . , 𝑒21, 𝑒23, . . . , 𝑒𝑖𝑗, . . .}
between the tasks. Each edge 𝑒𝑖𝑗 ∈ 𝐸 represents the
precedence constraint such that task V𝑖 should complete its
execution before V𝑗. In a DAG, a task without any predecessor
is an entry task and task without successor is an exit task.
The tasks in DAG are weighted with the attributes like 𝑎𝑖
task arrival time, 𝑑𝑖 task deadline, 𝑤𝑖 task area in terms of
number of bit slices required, 𝑟𝑐𝑖 task reconfiguration time,
ℎ𝑒𝑖 task execution time on RLU, and 𝑠𝑒𝑖 task execution time
on softcore processor, where 𝑖 = 1, 2, 3, . . . , 𝑁 and𝑁 is equal
to number of tasks inDAG.The tasks inDAG are executed on
the reconfigurable computing platform RHSCS modelled on
single chip Virtex-5 FPGA device having 69120 bit slices, 148
BRAM, and 64DSP cells for custom logic reconfiguration.
Each bit slice in the targeted Virtex-5 FPGA consists of four
function generators, four storage elements, arithmetic logic
gates, large multiplexers, and fast carry look-ahead chain.

3.2. Targeted RHSCS Architecture. The RHSCS consists of
a processor MicroBlaze (available as softcore IP in Xilinx
Embedded Development Kit) configured in part of FPGA
as softcore PE and multiple RLUs configured in remaining
part of FPGA as hardcore PEs. The hardcore PEs in RHSCS
act as reconfigurable computing area and support dynamic
reconfiguration for hardware tasks. The softcore PE and
hardcore PE in RHSCS are used to execute software tasks and
hardware tasks of an application, respectively. The RHSCS
is also equipped with shared memory and cache memory
to store task executable files and data. The cache memory
supports softcore PE to store instructions as well as data
whereas the shared memory stores the task executables and
input/output data for both softcore PE and hardcore PE.
The resources in targeted architecture are interconnected
through high speed communication protocols that support
data interchange between memory and PEs. The memory
and communication protocols are also configured on the
chip where PEs exist. In RHSCS, the RLU size is maintained
constant and tasks are assigned to the RLUs based on area
required for their execution. In this research, the resource
reconfiguration latency is assumed as constant and is not
accounted for in performance calculations.

3.3. Task Distribution Flow. The RHSCS offers cost effective
solution for computationally intensive applications through
hardware reuse. So, there is a need for mapping potentially
parallel tasks in an application to the resources of RHSCS.
An overview of different steps in distribution of tasks of
an application to the platform RHSCS is demonstrated in
Figure 1.

Initially, an application is represented as Directed Acyclic
Graph (DAG) and the tasks of DAG are sent to prioritization
module and then to HW/SW resource mapping module. The
prioritization module assigns priorities to the tasks of DAG
based on their attributes in such a way that ensures schedula-
bility. The HW/SW resource mapping module partitions the
tasks into three types called software tasks (ST), hardware
tasks (HT), and hybrid tasks (HST) based on their attributes
and preemption nature, as stated below.

Rule 1. Theset of taskswhich can be preempted and could not
find required area RLU on RHSCS can be treated as software
task set (ST): ST = {st1, st2, . . . , st𝑚}, st𝑖 ∈ ST (1 ≤ 𝑖 ≤
𝑚), having the parameters 𝑎𝑖, 𝑑𝑖 , and 𝑠𝑒𝑖, and they could
run only on softcore PE (i.e., microprocessor configured on
FPGA) of RHSCS.

Rule 2. Theset of tasks which cannot be preempted and could
find required area RLU on RHSCS can be treated as hardware
task set (HT): HT = {ht1, ht2, . . . , ht𝑛}, ht𝑖 ∈ HT (1 ≤ 𝑖 ≤
𝑛), having parameters 𝑎𝑖, 𝑑𝑖, 𝑤𝑖 , 𝑐𝑖 , and ℎ𝑒𝑖, and they could
run only on hardcore PE (i.e., RLU configured on FPGA) of
RHSCS.

Rule 3. The set of tasks which can be preempted and could
find required area RLU on RHSCS can be treated as hybrid
task set (HST): HST = {hst1, hst2, . . . , hst𝑝}, hst𝑖 ∈ HST (1 ≤
𝑖 ≤ 𝑝), having parameters 𝑎𝑖, 𝑑𝑖, 𝑤𝑖 , 𝑐𝑖, 𝑠𝑒𝑖 , and ℎ𝑒𝑖 , and
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DAG and its 
parameters

HW/SW resource mapping

Dynamic task distribution

Task distribution 
onto MP

Task distribution 
onto RLU

Distributed tasks list 
for RHSCS 

Task prioritization

Figure 1: Overview of task distribution flow.

they could run either on softcore PE or on hardcore PE of
RHSCS.Thehybrid tasks inHST set can be treated as software
tasks or hardware tasks based on resources availability at the
instant of task distribution for execution.

The partitioned tasks are further sent to task distribution
stage. In the task distribution stage, distribution tasks list is
prepared for the resources of RHSCS based on task distri-
bution policy and resources availability.The task distribution
can be done statically or dynamically, stated as follows.

Static Task Distribution. The static task distribution considers
all task attributes needed for task distribution, such as the
structure of the application, execution time of individual
tasks, and communication cost between the tasks, in advance,
and makes task distribution decisions statically once at the
start of task distribution and cannot be changed throughout.

Dynamic Task Distribution. The dynamic task distribution
also considers task attributes needed in advance but it makes
task distribution decisions dynamically at runtime based on
the resources availability and task distribution policy. The
aim of dynamic task distribution is not only enhancing the
execution time but also optimizing resources utilizationwhile
minimizing communication overheads.

The static task distribution and dynamic task distribution
methodologies are demonstrated with an example in the next
subsection.

3.4. Motivational Example. Ahypothetical sample task graph
[8, 25] is shown in Figure 2 and targeted onto the RHSCS
having one softcore PE (microprocessor) and three hardcore
PEs (i.e., RLUs) as computing resources.

Generally, execution time of task graph depends on
computing resources on which the tasks are executed. The
various configurations of computing platform RHSCS for
execution of the hypothetical sample task graph (HTG),
shown in Figure 2, are demonstrated in Figure 3 with their
respective execution timings in nanosecond.

The HTG execution on single core microprocessor con-
figured in FPGA is shown in Figure 3(a) and its ideal execu-
tion time is 127 ns. Similarly, execution of the HTG on a RLU
configured in FPGA is shown in Figure 3(b) and its execution
time is 101 ns. So, execution time of the application can be
minimized when RLU alone acts as computing resource. As
the FPGA supports partial reconfiguration, FPGA is clustered
into multiple RLUs to support parallel task execution and it
further minimizes execution time of real time applications.
Static distribution of parallel tasks inHTG to a reconfigurable
computing system having three RLUs gives execution time of
65 ns as shown in Figure 3(c). Similarly, parallel tasks in HTG
are distributed dynamically to the reconfigurable computing
system having three RLUs as shown in Figure 3(d) and its
execution time is 63 ns. In real time, tasks called critical tasks
may demand higher size RLUs which are not made available
on FPGA so that the critical tasks remain forever in waiting
for resources and this leads to infinite execution time; that
is, task graph does not get executed completely to meet its
deadline. Such critical tasks can be represented as software
tasks to be executed on microprocessor. In this work, tasks
are preferred to be executed on RLUs but the tasks which do
not find required size RLU on FPGA are treated as critical
tasks, that is, software tasks are executed on microprocessor.
For example, if we assume that the size of RLUs made
available on FPGA is 200 bit slices, the tasks T1, T9, and T10
in HTG become critical tasks and the HTG does not get
executed completely on the RLUs made available in FPGA.
The scenario of HTG distribution to the platform having
three RLUs (where each RLU size is equal to 200 bit slices)
configured on FPGA is shown in Figure 3(e). In Figure 3(e),
the tasks T9 and T10 do not find required RLU area and the
taskswait forever for execution that leads to infinite execution
time. The infinite execution time indicates that the HTG
is not completely executed (i.e., tasks T9 and T10 are not
executed) due to lack of resources and it can be addressed
effectively by introducing a microprocessor in combination
with RLUs on a single chip FPGA.The static task distribution
for such on-chip RHSCS platform, having microprocessor
and three RLUs of each with size 200 bit slices on a single chip
FPGA, is shown in Figure 3(f) and its execution time is 74 ns.
Since T9 and T10 are executed on softcore PE, the execution
time of the HTG in Figure 3(f) is more than execution time
in Figure 3(d) but it ensured schedulability for the DAG.
Similarly, the dynamic task distribution of the task graph to
the platformRHSCS is shown in Figure 3(g) and its execution
time is 71 ns. From Figures 3(c), 3(d), 3(f), and 3(g), it is clear
that the dynamic task distribution (DTD) enhances execution
speed of an application compared to static task distribution
(STD). So, in this paper aDTDmethodology is presented and
demonstrated for real life benchmark applications.

4. Dynamic Task Distribution Methodology

The task distribution methodology dynamically decides task
execution on the resources of RHSCS. The proposed DTD
methodology decides optimal task execution sequence and
speedup application execution.
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Task (node) Area (number of bit 
slices on FPGA) 

Execution time (ns)
Softcore processor FPGA

T1 200 14 12
T2 180 13 10
T3 120 11 9
T4 180 13 10
T5 150 12 9
T6 170 13 11
T7 90 7 5
T8 70 5 3
T9 250 18 15
T10 300 21 17

T9T8T7

T10

T1

T6T5T4T3T2

Figure 2: Hypothetical sample task graph [8, 25] and its attributes.

4.1. Dynamic Task Distribution Model. In order to achieve
high efficiency in hardware utilization and speed up the
application execution, the DTD model is described in three
levels as shown in Figure 4. Level 1 provides interface to
load the tasks of an application represented as DAG and
the tasks are arranged as per their level in DAG. The level
annotated tasks are stored intoDAGQueue according to their
level increasing order. In level 2, the tasks in DAG Queue
are mapped to hardware and software resources of RHSCS
and then partitioned into software tasks (ST), hardware tasks
(HT), and hybrid tasks (HST) depending on their design
parameters as stated in Section 3.3. The partitioned ST, HT,
and HST are stored in Hardware Task Queue (HT Queue),
Software Task Queue (ST Queue), and Hybrid Task Queue
(referred to as HST Queue), respectively. In level 3, the tasks
in HT Queue, ST Queue, and HST Queue are prioritized
dynamically based on their predefined parameter Minimum
Laxity First (MLF). The MLF based prioritized tasks are
then sent to either CPU Implementation Queue or RLU
Implementation Queue based on tasks execution nature and
computing resources availability. The resource mapped tasks
in CPU Implementation Queue and RLU Implementation
Queue are then distributed to the resources of RHSCS for
execution. The DTD based on MLF distribution policy is
shown in Figure 4 having seven modules to describe its
behaviour.

The Application DecodeModule (ADM) loads and stores
the tasks of DAGs into DAG Queue. The Task Annotation
Module arranges the tasks inDAGQueue based on their level
in DAG. The HW/SW Task Partitioning Module maps the
tasks in DAG Queue to the resources of computing platform
RHSCS and stores them into ST Queue, HT Queue, and
HST Queue. Dynamic Task Prioritization Module assigns
priorities dynamically based on MLF distribution policy to
the tasks in ST Queue, HT Queue, and HST Queue.The Task
Load Module loads the task executable files for execution
onto softcore PE of RHSCS. Similarly, the Task Configuration
Module configures the task bit-streamfiles for execution onto
hardcore PEs, that is, RLUs of RHSCS. The pseudo codes
for reading the tasks of DAG and tasks level annotation in
level 1, HW/SW resource mapping in level 2, and dynamic

task distribution in level 3 are discussed in the coming
subsections.

4.2. Task Level Annotation. In level 1, the ApplicationDecode
Module loads the applications described as DAG and com-
putes the adjacency matrix for the DAG that describes
dependency of the tasks in a DAG. The adjacency matrix
also holds the level [11] of individual tasks in DAG and Task
Level Annotation Module finds the level of individual tasks
and arranges them in the level increasing order. In any DAG,
source task gets first level and sink task gets last level in order
to maintain dependency between tasks while executing. The
pseudo code to read DAG and to annotate the levels of the
tasks of DAG is described in Algorithm 1.

Time complexity of the task level annotation algorithm
depends on number of DAGs andmaximum number of tasks
in a DAG. The time complexity for task level annotation
would be 𝑂(𝑀 × 𝑁2) when there are 𝑀 number of DAGs
andmaximum of𝑁 tasks in a DAG.The level annotated tasks
of DAG are sorted according to their level increasing order
and then moved to HW/SW resource mapping stage using
Task Resource Mapping function that maps the task to the
resources of RHSCS.

4.3. HW/SW Resource Mapping. In this stage, the level
annotated tasks in DAG are mapped to the resources of
RHSCS and partitioned [15] into software tasks (ST) and
hardware tasks (HT). The hybrid tasks (HST) category is
not considered in this paper because all tasks of DAGs are
assumed as nonpreemption tasks. The Software Task Queue
(ST Queue) and Hardware Task Queue (HT Queue) in task
distribution model are reserved to store software tasks and
hardware tasks, respectively. Initially these queues would be
empty and then the partitioned ST andHT are stored into the
respective queue as their level increasing order. The pseudo
code of the function Task Resource Mapping for mapping
tasks of DAG to the resources of RHSCS is described in
Algorithm 2.

Time complexity of the task resource mapping algorithm
depends on maximum number of tasks in a DAG. The time
complexity for resourcemappingwould be𝑂(𝑁2)when there
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(c) Static task distribution of HTG tasks onto three partial RLUs in FPGA

(e) HTG critical tasks distribution onto three partial RLUs in FPGA

(f) Static task distribution of HTG tasks onto RHSCS 

T7MP T1 T2 T3 T4 T5 T6 T8 T9 T10

(b) HTG tasks distribution onto single RLU configured in FPGA

(a) HTG tasks distribution onto microprocessor (MP)

RLU T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T3
T6 T7 T10T1

T8

MP

RLU3
RLU2
RLU1 T2

T4
T5

T9

T3
T6

T8
T10T1

T9

T7
MP

RLU3
RLU2
RLU1 T2

T4
T5

(d) Dynamic task distribution of HTG tasks onto three partial RLUs in FPGA
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(g) Dynamic task distribution of HTG tasks onto RHSCS

Task execution on MP
Task execution on RLU
No task execution on MP

No task execution on RLU
HTG execution time difference between STD and DTD

Nonexecutable tasks and they generate infinite execution time

T2
T3

T6
T8T5

MP

RLU3
RLU2
RLU1

T1

T4

T10T9

T7

HTG execution time difference between RLU and RHSCS

T3
T1 T6

T8
T10

T7

MP

RLU3
RLU2
RLU1 T2

T4
T5

T9

20 40 60 80 100 1200
Execution time in nanosecond

Figure 3: RHSCS configurations for static and dynamic task distribution.

are 𝑁 tasks in a DAG. The resource mapped tasks in HT
Queue and ST Queue are further moved to task distribution
stage using Task Distribution function that configures the
tasks onto the resources of RHSCS for their execution.

4.4. Task Distribution. Task distribution is demonstrated in
two phases as combination of dynamic task prioritization

and resource management. The partitioned tasks in
Algorithm 2 are further prioritized based on task distri-
bution policy called Minimum Laxity First (MLF) and
distributed them onto available resources of RHSCS. There
are RLU Implementation Queue and CPU Implementa-
tion Queue, in task distribution model, reserved to store the
tasks which could be executed on hardcore PE (RLUs) and
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/∗ Input: DAGs of application and number of DAG
Output: Level annotated tasks of DAGs ∗/

(1) Read number of DAGs
(2) for 𝑖 = 1 to number of DAG do
(3) Read number of tasks in DAG𝑖
(4) for 𝑗 = 1 to number of tasks in DAG𝑖 do
(5) Read the number of tasks which depend on task 𝑇𝑗
(6) end for
(7) Compute Level of the tasks in DAG𝑖
(8) for 𝑗 = 1 to number of tasks in DAG𝑖 do
(9) while (Level of task 𝑇𝑗 > 0) do
(10) Assign Level to the task 𝑇𝑗
(11) end while
(12) end for
(13) Sort the tasks in DAG𝑖 according to the Level assigned
(14) Task Resource Mapping (Level annotated tasks of DAG𝑖, number of tasks in the DAG𝑖)

/∗ Function of Task Resource Mapping is described in Algorithm 2 ∗/
(15) end for

Algorithm 1: Pseudo code for task level annotation.

/∗ Input: Level annotated tasks of a DAG and number of tasks in the DAG
Output: ST and HT Partitioned tasks of DAG ∗/

(1) Read the Level annotated tasks of DAG and number of tasks in DAG from algorithm
(2) Initialize HT Queue and ST Queue
(3) while (number of Level annotated tasks in DAG > 0) do
(4) for 𝑗 = 1 to number of Level annotated tasks in DAG do
(5) if area of task 𝑇𝑗 < size of available RLU then
(6) assign 𝑇𝑗 to HT Queue
(7) else
(8) assign 𝑇𝑗 to ST Queue
(9) end if
(10) end for
(11) end while
(12) Task Distribution (partitioned tasks of DAG, number of tasks in the DAG)

/∗ Function Task Distribution is described in Algorithm 3 ∗/

Algorithm 2: Pseudo code for Task Resource Mapping function.

softcore PE (microprocessor) of RHSCS. The pseudo code
for Task Distribution function that distributes the tasks of
DAG onto the resources of RHSCS is described below as
Algorithm 3.

The Task Distribution function in Algorithm 3 accepts
the partitioned tasks of a DAG as input and computes
Minimum Laxity First (MLF) parameter for the tasks which
are in HT Queue and ST Queue. The expression for MLF is
𝑡MLF = 𝑑𝑗 −𝑒𝑗 −𝑎𝑗 for task 𝑇𝑗 and it represents time flexibility
of the task for execution. The MLF acts as task distribution
policy to prioritize the partitioned parallel tasks before
distributing them onto RHSCS. The RLU Implementation
Queue holds the tasks which could be executed on hardcore
PE (RLUs) whereas the CPU Implementation Queue holds
the tasks which could be executed on softcore PE (MP). The
tasks in HT Queue are sent to RLU Implementation Queue
and the tasks in ST Queue are sent to CPU Implementation

Queue. Finally, the tasks in RLU Implementation Queue and
CPU Implementation Queue are distributed and executed on
hardcore PE and softcore PE, respectively. Time complexity
of the task distribution presented in Algorithm 3 depends on
maximum number of tasks in a DAG and also on number of
PEs in RHSCS. So, the time complexity of task distribution
would be 𝑂(𝑁2 × (𝑃 + 𝑄)) when there are𝑁 tasks in a DAG,
𝑃 hardware PEs, and 𝑄 software PEs in RHSCS. In real time,
number of tasks in an application is always verymuch greater
thannumber of PEs inRHSCS. So, the time complexity of task
distribution is 𝑂(𝑁2), where𝑁 ≫ (𝑃 + 𝑄).

Time complexity of the proposed DTD methodology
depends on time complexity of task level annotation,
HW/SW resources mapping, and task distribution algo-
rithms. The time complexity of DTD model is 𝑂(𝑀 × 𝑁2)
for 𝑀 number of DAGs with maximum of 𝑁 tasks in each
DAG.
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/∗ Input: partitioned tasks of a DAG and number of tasks in the DAG
Output: Resources assignment and dynamic task execution order for the tasks in a DAG ∗/

(1) Read the partitioned tasks of a DAG and number of tasks in the DAG from the Algorithm 2
(2) Initialize RLU Impementation Queue and CPU Impementation Queue
(3) while (number of tasks in DAG > 0) do
(4) for 𝑗 = 0 to number of tasks in DAG do
(5) Compute the cost function MLF for the task 𝑇𝑗 in their respective queues
(6) end for
(7) Assign Priority to the partitioned tasks in queues according to their MLF
(8) Sort tasks of DAG according to their assigned priority increasing order
(9) for 𝑗 = 0 to number of tasks in DAG do
(10) if (𝑇𝑗 ∈HT Queue) then
(11) assign 𝑇𝑗 to RLU Implementation Queue
(12) else
(13) assign 𝑇𝑗 to CPU Implementation Queue
(14) end if
(15) end for
(16) while ((RLU Implementation Queue! = empty) &&

(CPU Implementation Queue! = empty)) do
(17) for each RLU in RHSCS do
(18) if (RLU available == True) then
(19) Assign next task from RLU Implementation Queue to available RLU
(20) end if
(21) end for
(22) for each MP in RHSCS do
(23) if (MP available == True) then
(24) Assign next task from CPU Implementation Queue to available MP
(25) end if
(26) end for
(27) end while
(28) end while

Algorithm 3: Pseudo code for Task Distribution function.
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Figure 4: Dynamic task distribution model.

5. Result and Discussion

This section presents implementation scheme, experimental
results obtained, performance evaluation of the DTD-MLF
methodology, and RHSCS resources utilization.

5.1. Implementation Scheme. Modelling of RHSCS environ-
ment and methods followed for application execution on
RHSCS is discussed in this subsection.

5.1.1. Modelling of RHSCS Architecture. In this research,
RHSCS platform is realized on Virtex-5 FPGA (Virtex-
5 XC5VLX110T), as shown in Figure 5, using Xilinx EDK
where a MicroBlaze softcore PE is configured in part of the
reconfigurable area of FPGA and the rest of reconfigurable
area is used for configuration of multiple RLUs, memory,
and communication protocols. In the realized RHSCS, the
MicroBlaze is a 32-bit RISC architecture equipped with
instruction and data cache memory of size 4KB each, for
storing instructions as well as data while executing tasks.

The RLU configures its custom hardware for hardware
tasks and also it supports hardware tasks interface with off-
chip peripherals. The on-chip BRAM of size 64KB acts as
shared memory for MicroBlaze and RLUs to store executable
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Figure 5: On-chip Reconfigurable High Speed Computing System.

files, input, and output data. BRAM memory controller is
configured along with BRAM to load task executables, input,
and output data from external environment and also it con-
trols data interchange between BRAM and MicroBlaze. The
data interchange between BRAM and custom hardware can
be done throughMicroBlaze with the help of communication
protocols.These functional blocksMicroBlaze, RLUs, BRAM,
instruction, and data cache memory are interconnected
through communication protocols like Processor Local Bus
(PLB), Local Memory Bus (LMB), and Fast Simplex Link
(FSL). The PLB provides interface between MicroBlaze and
BRAM through BRAM controllers that load instructions,
input data, and store back output data after computation.The
LMB supports interfacing of cache memory with MicroBlaze
to minimize memory access overheads. The FSL is used to
interface custom hardware configured in RLU with MicroB-
laze and it has 32-bit FIFO implemented on BRAM to support
data streaming between MicroBlaze and custom hardware.
Since the Virtex-5 FPGA (Virtex-5 XC5VLX110T) device
contains total 69120 bit slices, 148 BRAM, and 64DSP cells for
custom logic reconfiguration, the on-chip RHSCS configured
on Virtex-5 FPGA utilized 3825 bit slices, 4 BRAM cells, and
3DSP cells for various functional blocks and communication
protocols. The configured MicroBlaze runs at 125MZ speed.

5.1.2. Evaluated Applications and HW/SWDevelopment Flow.
The behavior of DTD methodology has been demonstrated
in Figure 3 with the help of hypothetical sample task graph.
In order to evaluate the effectiveness of the DTD-MLF, a few
benchmark applications are represented asDAGand the tasks
of DAG are distributed onto RHSCS for their execution. The
Xilinx standard embedded SW development flow supports
task execution on softcore PE whereas the standard FPGA
HW development flow supports task execution on RLU.

Embedded SW Development Flow. The behaviour of the tasks
in DAG is described in C++ to load and execute them
on softcore PE of RHSCS. The tasks C++ code is cross

compiled to the softcore PE and executable files are generated.
The tasks executable files are executed on MicroBlaze and
software design attribute; that is, software execution time
(𝑠𝑒) is acquired. The task executable files and software task
attributes are stored in memory for future execution.

Embedded HW Development Flow. The behaviour of the
tasks in DAG is described in HDL to configure and execute
them on RLU of RHSCS. The HDL code is synthesized to
targeted device Xilinx Virtex-5 (XC5VLX110T) to generate
gate level netlist and that produces configuration file required
for task execution on RLU of RHSCS. The task configuration
files are configured on reconfigurable area of FPGA and
executed to acquire hardware design attributes, that is, area
(𝑤) and execution time (ℎ𝑒). The EDK does not support
task switching while executing because hardware tasks are
nonpreemptible in nature. The task configuration files and
obtained hardware task attributes are stored in memory for
their future configuration.

5.2. Performance Metrics. In the literature many researchers
have developed methods to enhance execution speed,
schedulable bound, and resource utilization. This paper
is aimed at improving upon the schedule length, that is,
execution speed of an application and effective utilization of
RHSCS resources.

5.2.1. Schedule Length. In a DAG, task without any predeces-
sor is an entry task and task without successor is an exit task.
Time taken to execute the tasks from entry task to exit tasks
in a DAG is called schedule length of the DAG.The schedule
length of a DAG depends on computing resources on which
the tasks run. The schedule length has to be minimized to
achieve optimum execution time for an application.

5.2.2. Resource Utilization. The resource utilization of com-
puting platform is estimated based on the tasks allocated to
individual resources of computing platform and time spent
in execution of the tasks. An expression to calculate resources
utilization is as follows:

Resource utlization =
∑

ET
𝑡=0
𝑛 × 𝑡

𝑁 × ET
, (1)

where 𝑛 is the number of parallel resources utilized in a
time slot 𝑡, 𝑁 is the total number of resources in computing
platform, and ET is the total execution time of an application.

5.3. Performance Evaluation of Dynamic Task Distribution
Model. The dynamic task distribution model based on MLF
criteria (DTD-MLF) distributes the tasks of an application
to the resources of computing platform RHSCS dynamically
based on the cost functionMLF of the tasks in DAG. Initially,
theDTD-MLFmethodology is applied to aHTG [8] shown in
Figure 2 and then to the application JPEG shown in Figure 6.
The functional behaviour of JPEG application is represented
as task graph shown in Figure 6, where T1 is grey conversion,
T2 matrix transpose, T3 DCT wrapper 1, T4 DCT wrapper 2,
T5 quantization, T6 encoder, and T7 memory read/write.



10 International Journal of Reconfigurable Computing

Table 1: Schedule length and resource utilization of HTG and JPEG based on STD-MLF and DTD-MLF distribution polices.

Task graph Number of tasks Schedule length (ns) % of resource utilization
STD-MLF DTD-MLF STD-MLF DTD-MLF

HTG 10 72.0 63.0 35.10 40.00
JPEG 7 40.8 39.1 27.60 28.90
HTG + JPEG 17 96.0 73.0 38.60 50.10

Table 2: Benchmark applications and their tasks distribution to RHSCS.

Task graph Number of tasks Schedule length (ns) % of resource utilization
STD-MLF DTD-MLF STD-MLF DTD-MLF

DCT 43 96.25 80.53 58.86 70.93
Diffeq. 15 40.75 28.15 45.50 65.00
Ellip. 38 93.43 80.47 49.27 57.23
FIR 15 52.85 34.37 37.28 57.32
IIR 16 45.4 31.54 45.27 65.17
Lattice 23 59.59 51.61 48.33 55.80
Nc. 61 129.02 115.16 64.63 72.40
Voltera 29 72.36 61.26 54.20 64.02
Wavelet 43 88.04 78.04 63.32 71.43
Wdf7 53 103.92 95.57 63.53 69.09

T5 T6 T7T4

T3

T2

T1

Figure 6: JPEG task graph.

The tasks in HTG are distributed to the resources of
RHSCS based on DTD-MLF model as well as static task
distribution [4, 9] model with MLF as cost function (STD-
MLF). Since RLU maximum area is 200 bit slices, the tasks
T9 and T10 in HTG are treated as software tasks and mapped
onto MicroBlaze for their execution. DTD-MLF minimizes
the schedule length by 12.5% when compared to STD-MLF
and also resource utilization is enhanced in DTD-MLF over
STD-MLF.The tasks in JPEG task graph are distributed to the
resources of RHSCS and then tasks of independent task graph
HTG and JPEG together are distributed onto RHSCS. The
schedule length and resource utilization of the task graphs are
shown in Table 1.

Figures 7(a) and 7(b) show the performance improve-
ment in application execution and enhancement in resource
utilization obtained by DTD-MLF compared to STD-MLF.
From Figure 7(a), our approach DTD-MLF minimizes the
schedule length 12.5% for HTG and 4.2% for JPEG task graph
and it is 23.9% when both HTG and JPEG together are
targeted for execution, wherein, in Figure 7(b), the RHSCS

resources utilization is enhanced by 13.9% for HTG, 4.7% for
JPEG, and 29.8%whenHTG and JPEG are executed together.

TheDTD-MLF and STD-MLFmethodologies are further
applied to few real life benchmark applications summarized
in first column of Table 2.

As stated in Section 5.1.2, the benchmark applications are
represented as DAG and then the standard embedded SW
development flow and FPGAHWdevelopment flow are used
to acquire hardware software task attributes on RHSCS. The
tasks of the benchmark applications, represented as DAG,
are distributed onto RHSCS statically as well as dynamically
based onMLF criteria.The number of tasks, schedule length,
and resource utilization of the benchmark applications are
presented in Table 2. Table 2 demonstrates that the DTD-
MLF model minimized schedule length for the benchmark
applications over STD-MLF and also the benchmark appli-
cations utilized the resources of RHSCS effectively in DTD-
MLF compared to STD-MLF. The effectiveness of the DTD-
MLF methodology over STD-MLF methodology [4, 9] in
terms of schedule length and resource utilization of RHSCS
for the selected benchmark applications is shown in Figures
8 and 9, respectively.

From the results, the presented DTD-MLF methodology
boosted the application execution over STD-MLF by 16.33%
for DCT, 30.92% for Diffeq., 13.97% for Ellip., 34.96% for FIR,
30.52% for IIR, 13.39% for Lattice, 10.74% for Nc., 15.34% for
Voltera, 11.36% for Wavelet, and 8.04% for Wdf7. The DTD-
MLF enhanced the RHSCS resource utilization over STD-
MLF model by 20.51% for DCT, 42.86% for Diffeq., 16.16%
for Ellip., 53.76% for FIR, 43.96% for IIR, 15.46% for Lattice,
12.02% for Nc., 18.11% for Voltera, 12.08% for Wavelet, and
8.75% for Wdf7.
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Figure 7: Performance improvement of HTG, JPEG task graphs on RHSCS (a) schedule length and (b) resource utilization.
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Figure 9: RHSCS resource utilization of benchmark application in
both STD-MLF and DTD-MLF scenario.

6. Conclusion

In this paper, we have presented DTD-MLF methodology
for an on-chip heterogeneous reconfigurable computing
platform RHSCS and estimated its effectiveness in execu-
tion of selected benchmark applications. The RHSCS has
been realized on Virtex-5 FPGA device for applications
execution. The RHSCS contains MicroBlaze as softcore PE
and multiple RLUs configured on FPGA as hardcore PE. A
few benchmark applications have been represented as DAG
and design attributes of the tasks in DAG were obtained
offline by executing them on the resources of RHSCS. The
obtained design attributes of the tasks in DAG have been
utilized to find cost function called Minimum Laxity First
(MLF) which acts as the criteria for task distribution. The
benchmark applications represented asDAGwere distributed
onto the resources of RHSCS based on DTD-MLF and STD-
MLF methodologies. As compared to STD-MLF, the DTD-
MLF model boosted the execution speed of benchmark
applications up to 34.96%.The DTD-MLF methodology also
enhanced the RHSCS resources utilization up to 53.75% for
the chosen benchmark applications.
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