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Mapping of cores has been an important activity in NoC-based system design aimed to find the best topological location onto the
NoC, such that the metrics of interest can be greatly optimized. In the last years, partial reconfigurable systems (PRSs) have included
Networks-on-Chips (NoCs) as their communication structure, adding complexity to the problem of mapping. Several works have
proposed specific and robust NoC architectures for PRSs, forming indirect and irregular networks, in which cases the mapping
and placement problems must be treated altogether. The placement deals with the physical positioning of those cores inside the
reconfigurable device. Up to now, to the best of our knowledge, the mapping-placement problem for those kinds of architectures
has not been addressed yet. In this work, the problem formalization for the design-time hardware core placement and mapping
in PRS-NoCs is proposed and methodologies for solving it with genetic algorithms (GAs) are presented. Several GA crossovers
and methodologies are compared for obtaining the best solution. Results have shown that best GA solution obtained, in average,
communication costs with 4% of penalty when compared with global minimum cost, obtained in a semiexhaustive approach. In

addition, the algorithm presents low execution times.

1. Introduction

Run-time reconfiguration (RTR) FPGAs, also known as
dynamically reconfigurable FPGAs (DRFPGAs), have been
accepted as an important potential alternative for lowering
costs of digital circuits, especially regarding the flexibility
in rapidly changing the functions being performed and
reducing area consumption. However, they add new dimen-
sions to the system-on-chip (SoC) design space, due to the
different possibilities of physical, temporal, and functional
partitioning of the original application.

Considering the generalized use of robust communica-
tion resources in current complex SoCs, structured com-
munication means, as network-on-chips (NoCs), have been
included in partial reconfigurable systems, generating PRS
based on Nocs, or PRS-NoCs, under different architectures
[1-4]. Besides having the high scalability and modularity
provided by NoCs, these PRSs can free the designer from
the details of minimizing data retention and signals manage-
ment, allowing him/her to focus on wrappers and computing
logic, reducing the design effort.

The NoC-based PRS approach has not yet been largely
adopted, partially due to the lack of more established design
tools in the design cycle, as for process partitioning and map-
ping, or physical placement, which are recognized as hard
problems, even for nonreconfigurable NoC-based systems
[5]. Although methodologies and tools have been proposed
[6-8], to deal with the increased design complexity of this
class of circuits, solutions to the associated problems are still
very ad hoc.

Mapping is the step in the SoC design flow where individ-
ual system processes are optimally assigned to NoC entry
points (routers), through the reduction of traffic profile and
consumed energy in the network, or other metrics defined
by the designer. In a later point in the design flow, each
process will be implemented either as a hardware core, a
memory, or a programmable processor running a piece of
software. Different mapping schemes have been presented for
fixed, nonreconfigurable systems [5, 9], consisting basically
of different algorithmic approaches for the resolution of
different cost-function optimization problems. Mapping in
MPSoCs environment has also been considered [10], but that



is treated as an operating system scheduling problem, with no
regard to hardware cost criteria.

The reconfiguration capability adds a new dimension to
the mapping problem since different cores are assigned to the
same router but are present in the logic fabric in separate
moments. There will exist several different configurations
in time or contexts, each one showing a particular traffic
profile. An optimized profile can be obtained for each context
through the nonreconfigurable systems mapping methods,
but the challenge is to consider all contexts in an interdepen-
dent form [11].

The placement problem deals with the allocation of
resources (cores) inside the reconfigurable device; that is,
given an assigned area, a set of cores must be placed in that
area in a way that they do not overlap each other and do not
exceed the space bounds. Traditionally, the placement prob-
lem is targeted to a regular NoC grid structure and performed
after the core mapping. Some works have treated the place-
ment as an execution time problem. One of the first works,
made by Ahmadinia et al. [12], proposes an algorithm that
finds the nearest possible position for an incoming core to the
already placed cores. In [13], a complete real-time operating
system was developed for tasks scheduling and placement
in FPGAs. Although those approaches treat the placement
problem, they cannot be applied to PRS-NoC architectures.

Some works on PRS-NoCs [1-4] have introduced
advanced architectures for PRSs, in which physical area
assigned to the routers is also reconfigurable. The router
area may potentially be occupied by reconfigurable cores of
varied sizes. The problem of placement and mapping for these
architectures is extremely complex, actually, a combination
of two NP-hard problems, with an explosive number of
subcases to be treated. To the best of our knowledge, this
problem has not been yet addressed, exception made for
[14, 15]. In the first paper, the authors have treated the
mapping-placement problem with focus in a regular an
direct NoC architecture, where each node was composed
of a reconfigurable slot, in which tasks can be allocated
and placed as cores. In [15], a smart-exhaustive approach is
presented for the mapping-placement problem for irregular
and indirect reconfigurable NoCs; however, since the
algorithm seeks the global minimum, it was not able to solve
the problem for applications with more than 15 cores.

In this work, solutions based on genetic algorithms are
presented for hardware core placement and/or mapping (in
design-time) for PRS-NoC irregular and undirected NoC
topologies and heterogeneous cores. The formalization of
the problem is provided and the solution of the problem
is obtained through genetic algorithms (GAs). For the best
solution analysis, several GAs crossovers and population
diversification techniques are applied and compared. The
best GA solution is compared with the global minimum
cost solution, obtained with the semiexhaustive algorithm
described in [15]. Results have indicated GAs as a good
alternative for solving the mapping-placement problem; the
best GA solution has obtained, in average, communication
costs with 4% of penalty when compared with global minima.
Besides that, GAs applied to this problem have presented very
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low and adequate execution times, even for applications with
26 cores and 5 reconfigurable scenarios.

The rest of the paper is organized as follows: in Section 2
some related works are presented and a general overview
of complex PRS-NoC architectures is shown in Section 3.
The problem formulation is presented in Section 4 and the
use of genetic algorithms for its solution is described in
Section 5. Section 6 presents the experimental results and,
finally, Section 7 shows the conclusions of this work.

2. Related Work

There are a few works about placement tools for PRS
described in literature. One of the first works that considered
the placement problem in SDRs [12] was for FPGAs with real-
time reconfiguration, where the starting point is a scheme of
scheduled and partitioned processes. The placement system is
composed of three parts: a data base of modules, a placement
request manager, and the placer. When a new module is
up to operate, a request is made for the manager, and the
algorithm analyses the occupied space to determine where to
place the new module. The criterion of the placement is the
optimization of communication between the modules. The
work was improved in [16] with the inclusion of computa-
tional geometry techniques for empty spaces control.

In [7] a placement method for PRS-NoCs in FPGAs was
proposed, considering heterogeneous processing elements
(PEs) in design-time. A placement algorithm called Dyno-
Place was proposed. It takes into account real aspects of
FPGA families, making it possible to automate this process
in the design methodology. The placement was organized
in five steps: in the first one, the dimensions of PEs are
processed and the modules are ordered; in the second one,
a list scheduling algorithm is used for placing modules with
same height sequentially in rows, from bottom to top and
from left to right; the procedure places the larger modules
first and the smaller ones later. The three last steps make the
necessary adaptations for the DRFPGA specific architecture.
This work does not treat the mapping problem and does not
focus on NoC regularity, allocating PEs at one side of the
device, while the routers are at the opposite side.

In [13] a reliable reconfigurable real-time operating
system (R3TOS) was developed for reconfigurable systems
without NoC. The R3TOS executes scheduling and placement
of tasks using several different metrics and methods. The
placement algorithms focus on preserving the maximum
empty rectangle (MER) for the future use for as long as possi-
ble. The algorithm analyses the timeline, for preventing future
fragmentations of modules, keeping the modules packed,
and, consequently, achieving higher computation densities.

Although these works have made complex explorations in
placement in PRS, they cannot be applied in NoC-based envi-
ronments (with exception of [7]). With exception of [13], the
placement algorithms only consider the instantaneous sce-
nario, ignoring the general scenario with all configurations.

The NoC mapping problem has been widely explored
in literature for nonreconfigurable architectures. Basically
the associated methodologies and algorithms have focused
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on minimizing different metrics, using different algorith-
mic solutions. The NMAP algorithm [9] minimizes the
communication cost for single route multiple paths with
an analytic approach; in [17], a study compared various
algorithms for minimizing energy consumption: exhaustive
search, simulated annealing, greedy incremental, and largest
communication, among others. Several works also proposed
a multiobjective approach like in [18], where an immune-
adaptive algorithm was presented for reducing both power
consumption and latency. A list of other nonreconfigurable
NoC mapping works can be found in [5].

The work of Beretta et al. [14] proposes a placement
and mapping methodology for simple PRS-NoCs, with a
direct and regular NoC topology. The space of the FPGA is
divided in big reconfigurable slots connected to routers, in
which modules are placed. The placement and mapping are
proposed for both application design and operating time and
for multiapplications. In the preprocessing step, the solution
is divided in basic mapping and specific configurations. The
basic mapping is composed of the modules which are used by
the most of the applications, and the specific configurations
are a set of configurations that cannot be reused from the
based mapping. Firstly, a genetic algorithm is used for placing
modules of the base mapping. A second mapping is executed
for placing the modules that belong to specific configurations.
Other algorithms are proposed for real-time mapping: a
greedy algorithm for configurations reuse or a SAT solver.

The only work to address the problem of mapping for
the simple PRS-NoCs architectures is the one proposed for
Beretta et al. However, it cannot be applied for the complex
PRS-NoC architectures like the ones proposed in [1-4], which
are the focus of the present work.

The only work to consider placement and mapping
for complex PRS-NoC architectures was described in [15],
where a semiexhaustive algorithm was proposed for solving
the problem. The algorithm was tested on three synthetic
applications, placing permutations of each combination of
cores sequentially. As part of the algorithm, it prunes a
permutation when it cannot be mapped due to extrapolation
of the device space. The solution, however, could not treat
applications with more than 15 cores due to the explosiveness
of the problem.

3. Complex PRS-NoC Architectures

Complex PRS-NoC architectures are those with irregular and
undirected NoC topology and heterogeneous cores, likes the
ones proposed by Bobda et al. [1], Jovanovic et al. [3], and
Killian et al. [4].

To characterize the complex PRS-NoC, the dynamic
network-on-chip (DyNoC), proposed by Bobda et al. [1], is
adopted as the base model. This architecture has been used
due to its simplicity, and by using traditional NoC blocks,
as the five-port router. The DyNoC is a mesh-based NoC
topology where each router may be connected to a processing
element (PE). The routers have five ports: east, west, north,
south, and a local connection for a PE. The placement-
mapping task is to allocate cores in the areas reserved to PEs.

An example of the architecture is illustrated in Figure 1,
showing a mesh of routers (in orange) connected (or not) to
local PEs, which can be of single (in blue) or large (other col-
ors) sizes. In this example, four large size reconfigurable cores
allocated in the network (C1-C4). When a core is placed, it
occupies the specific area reserved to PEs; for large cores,
the routers inside the occupied area are deactivated, and the
communication internal to the cores is made with local buses
(represented by dotted lines). Each core communicates to
other NoC elements through an associated router located at
the upper-right corner of the placement location. Whenever
large cores exist, the NoC becomes indirect and irregular;
not every router has one associated core, as, for instance, in
Figure 1, the three ones at the bottom of the rightest column.

The communication is made through packets and the
authors propose to use the surrounding XY (S-XY) routing
algorithm, for the dynamic architecture. Basically, the algo-
rithm detects when a placed module is on the routing way
and surrounds it. The architecture provides an environment
in which the packet always has a path from source to
destination, since the placed cores are always surrounded by
routers. This is guaranteed by positioning routers in all sides
of the mesh, which makes the relative positioning between
cores and routers inverted as in the left and bottom border
in Figure 1. Having always a path between any two cores is
specially interesting for PRSs, since the reconfigurable cores
can be placed at any region.

4. Problem Formulation

Although we target DyNoC as the system model for the
mapping and placement problem, in order to simplify the
problem formulation and make it more general, it will be
considered that all the routers are placed at the upper-right
corner of the PEs. Hereinafter, the point of connection for
each potential router in the mesh will be called allocation slot.

A reconfigurable device entry space, U, has m x n alloca-
tion slots. The set P indicates a set of positions in the device:

P={p.lk=12,....,mxn}, sz(xp’yp)- 1)

A 7 x 7 entry space can be observed in Figure 2, where
the lower-left corner has a position p; = (0, 0), the upper-left
corner has a position p,; = (6,0), and the upper-right corner
has a position p,y = (6,6).

A scenario is a configuration defined in a given moment.
Each reconfiguration is a different scenario. Each scenario s
belongs to the set SC of all scenarios.

The classic problem formulations for NoC mapping are
not adequate for describing the physical characteristics of
the modules, which is necessary for solving the placement
problem. Therefore, we propose for this situation an extended
application characterization graph (EAPCQG).

An EAPCG is given by G(C, A), where each core ¢; € C is
a vertex with two weights (w;, h;), which represents the width
and height of the core in terms of number of slots. The set
C is subdivided in two groups: (1) fixed cores, present in all
configuration scenarios, described as Fc; € FC, where FC is
the set of all fixed cores; (2) reconfigurable cores present in
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FIGURE 1: The DyNoC architecture [1].
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FIGURE 2: An entry space with 49 allocation slots (7 x 7).

only one scenario s, but missing in the next scenario s + 1,
being described as Rg;(s).

Each directed edge a;; € A represents the communi-
cation from ¢ to c;. For each edge, the parameter b(a; ;)
represents the communication bandwidth between ¢; and ¢;
(in Mbits/s).

The G(C, A) graph is illustrated in Figure 3 through the
Big Alpha application, which will be used later in Section 6.
This application has thirteen cores, being six fixed cores
(Fcl-Fc6) and seven reconfigurable cores distributed in three
scenarios (RC(1), RC(2), and RC(3)). The communication
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FIGURE 3: The EAPCG of the synthetic application Big Alpha.

traffic between the cores which are represented in the arcs and
the weights (width w;, height #;) is described in each vertex.
The mapping function in PRS-NoCs can be defined as

Q:C— P, (2)

where each core ¢; is associated to one reference position p, =
(x> ¥)> with Q(c;) = (x;, y;). To take into account the core
sizes, the following function is also defined:

¢:C— R, 3)

where R is the set of all rectangular regions defined for two
positions p; and py, on opposite diagonals. ¢(¢;) = r; € Ris
a rectangle with origin in (x; —w; + 1, y; — h; + 1) and end in
(x5 3)-

Each scenario s, composed of FC U RC, has a specific
mapping QQ(s), which is the union of all mappings ¢(c;) with
¢; € FCURC(s). The placement of the fixed modules remains
unchanged for all scenarios s. Each mapping has the following
restrictions:

Vitj, ¢(c)ng(c)=0 (4)
¢(q)cU. (5)

Equation (4) guarantees that the cores will not overlap
each other, whilst (5) assures that the placement will not
exceed the device entry space.

A device architecture graph is a specific graph for each
scenario s, Arch(QQ(s)) = (T, Ch), where each router t; € T
is a vertex and each directed edge ch; ; € Ch represents the
communication channel between ¢; and t;. All routers are
connected to each other in vertical and horizontal fashion in
amxn grid. For each edge, the parameter bw(ch, ;) indicates
the bandwidth capacity between ¢; and t;. Path(i, j) is the
set of channels that make the path from the origin i to the
destination j and hops(i, j) is the number of routers in which
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the data must pass from i to j. Routers can be activated and
deactivated, under the following definition:

for any router t; adjacent to ¢,
(6)

bw(ch;;)=0  bw(ch;;)=0.
Equation (6) indicates that a deactivated router j does not
have connections with any other router. If a router has at least
one connection with another router, it is activated.

Derived from (2), the core mapping in each scenario s is
given as

Q(s) : FCURC (s) — P. @)

The existence of large size cores in the mapping process
implies that the network topology may turns indirect. This
issue will be modeled as follows.

Alongside the slot concept, the routers themselves are
positioned in the space P. All the cores ¢; communicate with
other cores through an associated router in the same position
of the placement:

VgeC, 3t eT— p(g)= p(tj). (8)

An occupied region Ro(c;) € R(c;) is a region that do not
allow active routers. This region exists for large core sizes if
both height and width are greater than one and it is delimited
by a rectangle with origin in (x; — w; + 1, y; — h; + 1) and end
in (x; — 1, y; — 1). Figure 4 illustrates the concept of a region
and an occupied region.

The routers inside an occupied region are deactivated
whilst other routers are activated.

For each scenario s the communication between the mod-
ules cannot exceed the bandwidth capacity of the channels:

Vch; ; € Arch(Q(s)), bw (Chi,j) > Z Zis
“i,jGQ(S)

)

where

7 - {b(ai)j), if ch; ; € Path (p (ci),p(cj)) (10)

b 0, otherwise,

where Path(p(c), p(c;)) indicates the sequence of the chan-
nels from ¢; to ¢; with the S-XY routing algorithm applied.

The mapping objective is to place the cores in order to
minimize the communication cost in every configuration
scenario, as described by

comm_cost = Z b (a,-)j) x hops (P (c).p (Cj)) 1)

ai,jeﬂ(s)

N

min Zcomm,cost. (12)
s=1

The objective function is simple; however when the num-
ber of hops is minimized, several other metrics are optimized,
for example, latency, communication delay, and energy con-
sumption. This kind of objective function is widely used in
literature, including [5, 9, 14, 17].
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FIGURE 4: A region R(c;) and a occupied region Ro(c;).

The minimum cost problem is illustrated in Figure 5, for
the Big Alpha application of Figure 3. The routers associated
to the cores are the black ones. It may be noticed that
cores with critical communication, like from Fcl to Fc4, with
50 MB/s, are close to each other. This can also be observed
when the core Rc2(2) is placed on the second scenario: it is
only two hops away from Fc4, since they send and receive
18 MB/s to each other. Similar communication treatment for
other pairs of cores may be observed in the mapping results.
Here the costs for the first, second, and third scenario are,
respectively, 454, 449, and 452, with a total cost of 1355.

5. Using Genetic Algorithms

In this section, we present the algorithmic solution to be
applied in the design-time for a PRS-NoC, in order to obtain
the optimized placement and mapping. For solving the
problem, we have selected genetic algorithms (GAs). GAs
have been successfully used as a solution for a large set of
minimization problems, including mapping problems [5, 14],
and they are able to deal with the hard constrains as the ones
previously described. In addition GAs greatly accelerate the
execution time when searching for a good solution, being
adequate for the mapping and placement problem which is
known to be explosive [5]. In this section, the use of GAs for
solving the problem presented in Section 4 is presented in
detail.

5.1. GA Coding. For the chromosome coding, we have
developed a simplified representation for the placement and
mapping process. Since dispersed cores require more routers
to hold communication, we start on with the assumption
that packed cores leads, generally, to a better communication
cost. Therefore, we will not consider empty spaces between
cores, what will be reflected in the chromosome, which makes
the computation process simpler and prevents fragmentation.
Using a generalist approach and considering the empty slots
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FIGURE 5: Mapping result for Big Alpha application: (a) scenario 1, (b) scenario 2, and (c) scenario 3.

would make the problem complexity proportional to the
factorial of the number of slots in the architecture while
the simpler representation makes the problem complexity
proportional to the factorial of the number of modules.

Each core represents a gene and the set of cores, ordered
according to the order of the scenarios, represents a chromo-
some.

Figure 6 shows the coding for an application with thirteen
cores and three scenarios. The first eight elements of the
chromosome represent the set of 5 fixed cores besides the 2
reconfigurable cores that compose reconfigurable scenario 1.
The ninth and tenth elements represent the reconfigurable
cores of scenario 2 and the last three elements represent
the reconfigurable cores of the last scenario, remembering
that it is implicit that the fixed cores appear in all three
scenarios. The core position into the chromosome represents
the physical position of the module, which can be seen in
Figure 5. Cores are placed according to two priorities: (1)
from top to bottom; (2) from left to right. The placement-
mapping for the first scenario described in Figure 6 is shown
in Figure 5(a). In the second scenario, reconfigurable cores of
first scenario are unplaced and Rc2(2) and Rc3(2) are placed
instead, using the top-bottom and left-right priority, as shown
in Figure 5(b). Figure 5(c) shows the same process for the last
three elements of the chromosome.

5.2. General Structure. According to the GA technique, each
solution of the problem can be coded as chromosomes. A
chromosome is a set of genes, and a set of chromosomes
compose a population. A classical GA follows four main steps:
(1) generation of a random population; (2) selection of the
fittest individuals; (3) crossover of selected individuals; (4)
mutation. Steps (2), (3), and (4) are repeated for the refine-
ment of the new population (offspring), and the previous
population is substituted (killed) [19].

The implemented algorithm is described as in
Algorithm 1 as a pseudocode. The algorithm will be tested
later with several types of crossover and with population
diversification techniques; however, this general structure
will be the reference.

Initially, a set of random solutions is generated (line 2).
The “population size” (PZ) parameter defines the number
of chromosomes in each population. The fitness function is
defined as the inverse of communication cost, represented by
(12).

The main algorithm is composed by two loops: the first
one (starting at line 4) refers to the refinement of population
which is limited by the number of generations (NG). In each
generation, a second loop (starting at line 5) performs the
selection, crossover, and mutation for all elements of the
population.

The selection step is performed by the roulette wheel
technique [19] in which the probability P of a chromosome
being selected is proportional to its fitness value (13). In line
6 the roulette process is used to select chromosomes cr_sell
and cr_sel2. Consider

fitness (1)

P ="
() anzzl fitness (1)

(13)

At the end of each iteration, the previous population is
killed and the offspring becomes the new population. Line 27
saves the best solution of the current generation.

The crossover is executed with a probability P(Crosso-
ver), typically between 0.5 and 1 [20]. The crossover operator
is applied in different parts of the chromosome which
represents a scenario. The crossover between chromosomes
cr_sell and cr_sel2 generates two new chromosomes, where
cr_sell is the donor of genetic material for the first one and
cr_sel2 is the donor for the second one.

After the crossover, the algorithm executes the mutation
according to its probability (usually lower than 0.05 [20]).
The mutation process is basically the swapping of two genes
of each part of the chromosome. The mutation is useful to
avoid focusing on a particular solution, maintaining a wider
searching space. In line 19, the possibility of the mapping is
verified, that is, if it is valid and fits into the entry space with
respect to the restriction described in (5). If it does, fitness
function is computed; otherwise fitness function value is zero.
In line 26 offspring becomes the current population, while
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Fc6 Fcl Fc4

FIGURE 6: Placement-mapping chromosome coding for GA.

Fc3 | Fc5 |Rcl(1)| Fc2 [Rc2(1)|Rc2(2)|Rc1(2)|Rc1(3)

Rc3(3)

Rc2(3)

RC(2)

RC(3)

(1) best_solution = co

(2) population = generate_random_population(PZ)
(3) V population, fitness = 1/comm_cost

(4) while generation < NG do

(5) while i <PZdo

(6) cr_sell, cr_sel2 = roulette(population, fitness)
(7) if P(crossover) then

(8) Offspring(i) = Crossover(cr_sell, cr_sel2)
9) Offspring(i + 1) = Crossover(cr_sel2, cr_sell)
(10) else

11) Offspring(i) = cr_sell

(12) Offspring(i + 1) = cr_sel2

(13) end if

(14) if P(mutation) then

(15) Offspring(i) = mutate(cr_sell)

(16) Offspring(i + 1) = mutate(cr_sel2)

17) end if

(18) for i,i+1 do

19) if offspring(i).maps then

(20) fitness = 1/comm_cost

(21) else

(22) fitness = 0

(23) end if

(24) end for

(25) end while

(26) population = offspring

(27)  if fittest(generation) < best_solution then
(28) best_solution = fittest(generation)

(29) endif

(30) generation++

(31) end while

(32) return best_solution

ArLGoriTHM I: Pseudocode of a GA for reconfigurable placement and mapping in NoCs.

previous population is killed. If a better solution is found, it
is saved at the end of iteration.

5.3. Crossovers. Normally, crossover operators are applied all
over the chromosome. However, the representation adopted
in this work, as in Figure 6, subdivides the chromosome in
parts corresponding to each configuration scenario; an adap-
tation was performed: the crossover is executed in several
parts of the same chromosome. Three types of crossovers are
presented.

5.3.1. OX. The first crossover is the classic ordered crossover
[19]. Figure 7 illustrates an example of the OX process in a
mapping with three scenarios, where the first chromosome
is the donor and the second one is the receiver. Figure 7(a)
shows the first step, where two chromosomes are selected:
the first chromosome will donate a subset of each part

(represented in gray) to the receiver in the same position. In
the second step, the receiver eliminates from its codes the
cores donated by the donor, as shown in Figure 7(b). The
remaining cores in the receiver are circularly shifted to the
left inside its own area (e.g., the first part performs shifts
only in the eight first slots) as illustrated from Figure 7(c) to
Figure 7(d), occupying empty spaces and opening the
required slots for the donor subset. Finally Figure 7(d) shows
the OX result.

5.3.2. NWOX. The OX presents a shifting characteristic that
may not preserve the absolute positions of the parents in the
chromosome of the son: the circular shift moves the genes
from extreme left to the extreme right. For preserving the
absolute positions in the crossover, the nonwrapping ordered
crossover (NWOX) [21] was proposed.

Figure 8 shows the NWOX crossover process. Figures
8(a) and 8(b) present the same situation seen in the OX case;



-

International Journal of Reconfigurable Computing

Rcl(2)|Re3(3) - Rel(3)

RC(3)

Rc1(1)| Fcl Fc6 Fc4 Fc3 [Rc2(1)

(a)

Fc2

Fc5 |Rc1(2)|Rc2(2)|Rc1(3)|Rc3(3)|Re2(3)
RC(3)

Rc3(3)-Rc1(3)

RC(3)

* Fc3 [Re2(1)| =*

Fc5 |Rel(2)| *  |Rcl(3)[Re3(3)[ =

RC(3)

Rc3(3)-Rc1(3)

RC(3)

Fc5 *

Fc3 [Rc2(1)

Shift

(d)

* |Rcl(3)[Re3(3)[ *

RC(3)

Shift

Shift

Rc3(3)-Rc1(3)

RC(3)

FIGURE 7: Ordered crossover (OX).

as in the second figure, the order of Fc6, Fc3, RC2(1), and Fc5
is established. The difference turns out to be clear in the third
step, where the space for reception of new cores is allocated
between the ordered genes as in Figure 8(c).

Note that the relative order of the receptor is preserved.
Instead of performing the circular shift and moving the
modules Fc6 and Fc3 to the right side of the chromosome
as in the OX, those are maintained closer to their original
positions. In this way, the final result of the NWOX is shown
in Figure 8(d).

5.3.3. PMX. The partially matched crossover (PMX) [19] uses
a principle of position swapping inside the chromosome.
Figure 9(a) presents the donor and receptor (superior
and inferior, resp.). In Figure 9(b) the first swapping process
occurs, where the position of the receptor gene swaps posi-
tions so that it can correspond to the same positions of the

donor in the gray area. As the gene Fc4 was swapped to a
region outside of the gray zone, its position must be changed
again with a new swap, until the gray region turns identical
to the gray zone of the donor as illustrated in Figure 9(c).

5.4. Population Diversification Techniques. One of the known
problems of GAs is the premature convergence to a local
minimum [22]. To deal with this issue, several methodologies
were proposed to force the diversification of population,
maintaining its health. Two techniques were selected among
the existing ones, due to their known effectiveness and easy
implementation: the random offspring generation (ROG)
[23] and the adaptative genetic algorithm (AGA) [20].

5.4.1. ROG. One of the factors that lead to a premature
convergence is the great number of individuals with the same
genetic material. In case that happens, there is a great prob-
ability of performing crossover with two identical parents,
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FIGURE 8: Nonwrapping ordered crossover (NWOX).

leading to a simple cloning process, and consequently to a
unchanged situation.

To deal with this problem, the ROG technique was pro-
posed, where before each crossover process the genetic codes
are verified. In case the parents are identical, one of the two
son’s chromosome is completely randomized, and the other
one is just cloned.

5.4.2. AGA. The AGA technique [20] does not have fixed
probabilities for crossover and mutation. These probabilities
are dynamically changed according to the evolution of the
algorithm.

For a good evolution, a GA must have two characteris-
tics: convergence to a minimum (local one or global one)
and the wide exploration of the search tree. The balance
between these two characteristics is controlled by the prob-
ability of crossover P(crossover) and probability of mutation
P(mutation). For adapting the probability to the momentary

situation, the authors proposed varying probabilities accord-
ing to the fitness value:

fmax_f’

—

P (crossover) = k,

max

fmax _f

(14)
P (mutation) = k,

—>

max

where f,.. is the greatest fitness of population, f' is the

greater fitness between the crossing individuals, f is the
population fitness mean, and f is the fitness value of the
chromosome that will be mutated. k; and k, are control
parameters of the AGA and must vary from 0 to 1.

In addition, in order for the 100% probability not to be

exceeded, the functions must follow the restrictions:
P (crossover) = k, if f' < f, 15)
P (crossover) = k, if f < f,

where k; and k, are also control parameters.
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FIGURE 9: Partially matched crossover (PMX).
6. Experimental Results 6.2. Semiexhaustive Solution. In order to have an algorithmic

6.1. Synthetic Applications. Given the difficulty for finding
real applications adequate to PRS-NoCs in the technical liter-
ature and open access databases, nine synthetic applications
were created. There are several benchmarks that could fit
in simple PRS-NoCs that were used in our previous work
[11]. However, those benchmarks do not fit for the placement
problem.

The nine synthetic applications are based on three
arrangement of cores named Alpha, Beta, and Gamma. The
arrangements are described in Table 1, where the first column
shows the applications, the second one shows the number of
fixed cores, and the last 5 columns show the number of cores
for each configuration scenario.

Starting from the basic arrangements, three core sizes
variations are created for each application: (1) small cores,
in which the placed cores will not violate the entry space;
(2) varied cores, where small and big cores are mixed, with
the placement sometimes violating the entry space; (3) big
cores, in which placement will almost always violate the
entry space, reducing the number of possible solutions. The
application Alpha with big cores is the one presented in
Figure 3. The other applications are not illustrated here due
to space limitations.

reference to be compared to the GA solution, an exact and
semiexhaustive solution was developed. The objective is to
find the minimum communication cost represented by (12).

The semiexhaustive algorithm is a classic branch-and-
bound algorithm to search in every permutation of each
scenario. For instance, for the application Alpha with big
cores (presented in Figure 3) the algorithm would test every
permutation of the first scenario, and, for each one of those
permutations, the two possible variations of the second
scenario with the six possible variations of the third sce-
nario. Each possibility represents a branch; when the branch
violates the placement restrictions imposed by (4) and (5),
it is bounded. The bound also occurs when the bandwidth
capacity, represented by (9), is exceeded.

This semiexhaustive approach is similar to the one pre-
sented in [15] but more accurate, guaranteeing to achieve
the global minimum. In [15], a smart-exhaustive algorithm
was presented but some of the results were stuck to the local
minima.

Table 2 shows the results for the semiexhaustive algo-
rithm. The first column shows the applications and their
variations are shown in second column. The global minimum
cost obtained by the algorithm is shown in the third column
and the algorithm execution time is in the fourth column.
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TaBLE 1: Characteristics of synthetic applications.
Application Fixed cores Reconfigurable cores
Scl Sc2 Sc3 Sc4 Sc5
Alpha 6 2 2 3 N/A N/A
Beta 4 3 5 2 4 N/A
Gamma 7 3 5 5 3 3
TABLE 2: Results of the semiexhaustive algorithm.
Application Cores Best cost Execution time (s) % of violation
Small 877 197 0
Alpha Varied 1317 89 71.3
Big 1355 60 94.8
Small 2364 6552 0
Beta Varied 2518 4486 15.3
Big 2659 698 91.4
Small N/A >8.6 x 10* N/A
Gamma Varied N/A >8.6x10* N/A
Big N/A >8.6 x 10* N/A

The last column shows the percentage of cases that exceeded
the entry space, and consequently, were not mapped.

The algorithm has worked well for the first case, with
acceptable execution times. The algorithm also presented
good results for the Beta application; however, the execution
time increased significantly, as expected, when compared to
the first case. The explosiveness of the problem is evident
when the last case is analysed. Even after 24 hours of simu-
lation, the algorithm was not able to conclude the placement-
mapping analysis.

Observing the data presented in Table 1, it is clear that the
size of the NoC and the number of fixed and reconfigurable
cores cause an increase in the algorithmic effort for the
solution of placement-mapping problem. Therefore, for real-
life nonsynthetic applications with large number of cores,
there is a need for an algorithm that can solve the problem
in polynomial time.

6.3. GA Results. For the simulation, three cases of crossover
described in Section 5 were tested. For each type of crossover,
three types of GA were considered for simulation: the ordi-
nary GA (OGA), with no techniques for population diversi-
fication, the Adaptive GA (AGA), and the GA with random
offspring generation (ROG). All algorithmic derivations were
tested for each one of the nine applications, which resulted
in 81 simulations. Each simulation was repeated 10 times
for obtaining the average value. This was done since all the
simulations are different due to the random generation of the
first population.

The algorithms were simulated on MATLAB, on which
the codes of the GA were developed. The simulation of the
S-XY algorithm was performed on the same platform for the
calculation of the communication cost.

For all simulations, it was empirically defined that the
number of generations NG, of 300, offers a good trade-oft

between quality of solutions and computational effort. Fol-
lowing the same reasoning, the size of population was defined
as 100 individuals. For the ordinary GA, the probability of
crossover and mutation was set to 0.7 and 0.02, respectively.
In the AGA the control parameters were defined as k; = k; =
1 and k, = k, = 0.5 as suggested by [20].

Table 3 shows the costs obtained from the GA for all the
cases. The first column shows the applications, while their
variations are listed in the second column. Columns 3, 4, and
5 show the costs for the crossover NWOX with the ordinary
GA, and the variations AGA and ROG, respectively; in the
same sequence, columns 6, 7, and 8 present the costs for PMX
and the same process is repeated in the last three columns for
the OX.

For a better visualization of results, they are presented in
a color scale where the dark green represents the best solution
and the red represents the worst solution.

The ordinary GA presents results, from moderate to bad
results when compared to other alternatives. This can be
explained by the premature convergence to a local minimum.

The approach with the ROG technique shows some
good results for the Alpha application and bad results for
the other applications. It was noted during the simulations
that the variation of population was too high, showing that
the technique is not appropriate for the specific mapping
problem, preventing the convergence to a global optima in
larger applications.

The best results were obtained from the AGA, showing
that its mechanisms for the diversification of population have
fitted better to the placement-mapping problem.

The PMX was the best of the three types of crossover,
which makes the AGA with PMX the best presented solution.

In order to analyze the general quality of results obtained
with the GA approach, Table 4 compares the results from GA
with the results of the exact and semiexhaustive algorithms.
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TABLE 3: Minimum communication costs obtained from the GAs.
o NWOX PMX (0)'¢
Application Cores
OGA AGA ROG OGA AGA ROG OGA AGA ROG
gmal  [IOILAT 9075 9246 [100361 90071 988 9740 (90800 9429
Alpha Varied 14771 1417.8 15206  [1559.07 [13868° « 1456.0 1530.5 14240  [1557.0
b DIGS6SN 16300 (53770 MGSWSN [HSIZZN 16365 less7 15043 (153781
Small  2576.0 24850 29533 25038 23950  2796.1 2569.0  [237787 26443
Betan  vaed 25507 [E5EN RN (o519 (2SSl 26078 (SIS (27644
Big 2820.3 2771.8 31072 | 27299 = 2760.2 2899.0 2797.5 3027.3
small 39327  [36609% [44078 39708  [367961 39262 [3657.41 (43867
Gamma  ,..q 40728  [1393167 [WASGSI6N 41020  [N38886Y 41412 3964.8  4463.6
Big 4268.2 41092  [47837° 41592  [39740" 4223.1 4049.6 48146
TABLE 4: Cost penalty from gas when compared to the minimal solution.
o NWOX PMX (0)'¢
Application Cores
OGA AGA ROG OGA AGA ROG OGA AGA ROG
Small 15.3% 3.5% 5.4% 14.4% 2.7% 10.5% 11.1% 3.0% 7.5%
Alpha Varied 12.2% 7.7% 15.5% 18.4% 5.3% 10.6% 16.2% 8.1% 18.2%
Big 24.5% 20.3% 13.5% 25.3% 11.6% 20.8% 21.5% 17.7% 13.5%
Small 9.0% 51% 24.9% 5.9% 1.3% 18.3% 8.7% 0.6% 11.9%
Beta Varied 13% 0.6% 12.3% 0.9% 0.6% 11.8% 3.6% 0.7% 9.8%
Big 4.4% 2.6% 15.0% 1.0% 2.2% 16.5% 7.3% 3.5% 12.0%
Small 7.5% 0.1% 20.5% 8.6% 0.6% 24.0% 7.3% 0.0% 19.9%
Gamma Varied 4.7% 1.1% 17.4% 5.5% 0.0% 14.1% 6.5% 2.0% 14.8%
Big 7.4% 3.4% 20.4% 4.7% 0.0% 21.3% 6.3% 1.9% 21.2%

The percentage indicates how much the cost is above the
minimum cost; this index will be named cost penalty. The
Gamma application (bold font), was compared with the best
cost obtained by the GA, since it was not possible to obtain
the global minimum cost with the semiexhaustive algorithm,
as previously described in Table 2.

The best solution (PMX-AGA) presented penalties
between 0.6% and 11.6% with an average penalty of 4%.
Other crossovers presented similar results: the NWOX-AGA
reached from 0.6% to 20.3% with 6.6% of average and the
OX-AGA presented from 0.6% to 17.7% with 5.6% of average
penalty.

The mappings for the Alpha application with large size
cores presented the worst results. As the occupation of the
PRS-NoC was the largest among the synthetic applications,
it was difficult for the algorithm to achieve convergence to a
global minimum, since a great number of mappings violated
the restrictions.

The Alpha application took at most 48 seconds to be
mapped using the GA. The Beta and Gamma applications
took at most 73 and 113 seconds to be mapped, respectively.
All the simulations were executed in a PC with an Intel Core
17-3770 processor and 8 GB of RAM. The execution times
have shown that the algorithm is completely acceptable for
a design-time activity.

7. Conclusion

This work presented GAs solutions for placement and map-
ping for NoC-based reconfigurable systems. The problem
formulation was developed in an eflicient way, since all
important aspects of PRS-NoC were successfully described,
in order to include all important aspects of a PRS-NoC under
irregular and indirect communication network. The formu-
lation was the base for the development of GA solutions.

The problem was adapted for GAs, which enabled the
solution for a great variety of applications. Three crossovers
were tested: the NWOX, the PMX, and the OX. Each
crossover was tested for two techniques of population diver-
sification: the AGA and the ROG.

The different types of crossover presented similar results,
where the PMX was slightly better. The ordinary GA and the
ROG technique tended to converge to a global minimum,
while the AGA fitted better to the placement-mapping prob-
lem. The AGA results were close to the global minimum cost
when combined with any crossover type. The AGA combined
with PMX presented the best results, with penalties between
0.6% and 11.6% and an average penalty of 4%.

The execution time was 48, 73, and 113 seconds for
applications with 13, 16, and 26 cores, respectively, to execute
the entire placement-mapping process. The execution times
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are completely acceptable for a design-time activity. It also
shows that the algorithm is able to solve the problem for a
relative large number of cores.
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