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Two-dimensional discrete Fourier transform (DFT) is an extensively used and computationally intensive algorithm, with a plethora
of applications. 2D images are, in general, nonperiodic but are assumed to be periodic while calculating their DFTs. This leads
to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the
DFTs are being used for further processing, specifically for biomedical applications. In this paper we present a novel FPGA-based
solution to calculate 2D DFTs with simultaneous edge artifact removal for high-performance applications. Standard approaches
for removing these artifacts, using apodization functions or mirroring, either involve removing critical frequencies or necessitate
a surge in computation by significantly increasing the image size. We use a periodic plus smooth decomposition-based approach
that was optimized to reduce DRAM access and to decrease 1D FFT invocations. 2D FFTs on FPGAs also suffer from the so-called
“intermediate storage” or “memory wall” problem, which is due to limited on-chip memory, increasingly large image sizes, and
strided column-wise external memory access. We propose a “tile-hopping” memory mapping scheme that significantly improves
the bandwidth of the external memory for column-wise reads and can reduce the energy consumption up to 53%. We tested our
proposed optimizations on a PXIe-based Xilinx Kintex 7 FPGA system communicating with a host PC, which gives us the advantage
of further expanding the design for biomedical applications such as electron microscopy and tomography. We demonstrate that
our proposed optimizations can lead to 2.8x reduced FPGA and DRAM energy consumption when calculating high-throughput
4096 x 4096 2D FFTs with simultaneous edge artifact removal. We also used our high-performance 2D FFT implementation to

accelerate filtered back-projection for reconstructing tomographic data.

1. Introduction

Discrete Fourier Transform (DFT) is a commonly used and
vitally important function for a vast variety of applications
including, but not limited to, digital communication systems,
image processing, computer vision, biomedical imaging, and
biometrics [1, 2]. Fourier image analysis simplifies computa-
tions by converting complex convolution operations in the
spatial domain to simple multiplications in the frequency
domain. Due to the fundamental nature of 2D DFTs, they
are commonly used in a variety of image processing appli-
cations such as tomographic image reconstruction [3], non-
linear interpolation, texture analysis, tracking, image quality
assessment, and document analysis [4]. Because of their
computational complexity, DFTs often become a computa-
tional constraint for applications requiring high-throughput

and real-time or near real-time operations, specifically for
machine vision applications [5]. Image sizes for many of
these applications have also increased over the years, further
contributing to the problem.

The Cooley-Tukey fast Fourier transform (FFT) algo-
rithm [6], first proposed in 1965, reduces the complexity of
DFTs from 0(n?) to O(n logn) for a 1D DFT. However, in
the case of 2D DFTs, 1D FFTs have to be computed in two
dimensions, increasing the complexity to O(n* log n), thereby
making 2D DFTs a significant bottleneck for real-time
machine vision applications [7]. Recently, there has been sub-
stantial effort to achieve high-performance implementations
of multidimensional FFTs to overcome this constraint [5, 7—
14]. Due to their inherent parallelism and reconfigurability,
Field Programmable Gate Arrays (FPGAs) are attractive
targets for accelerating FFT computations. Being a highly
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flexible platform, FPGAs can fully exploit the parallel nature
of the FFT algorithm. 2D FFTs are generally calculated in
stages where all elements of the first stage must be available
before the second stage can be calculated. This creates the so-
called “intermediate storage” problem associated with strided
external memory access, specifically for large datasets.

While calculating 2D DFTs, it is assumed that the image
is periodic, which is usually not the case. The nonperiodic
nature of the image leads to artifacts in the Fourier transform,
usually known as edge artifacts or series termination errors.
These artifacts appear as several crosses of high-amplitude
coefficients in the frequency domain, as seen in [15, 16].
Such edge artifacts can be passed to subsequent stages of
processing, and in biomedical applications they may lead
to critical misinterpretations of results. Efficiently removing
such artifacts without compromising resolution is a major
problem. Moreover, simultaneously removing these spurious
artifacts while calculating the 2D FFT adds to the existing
complexity of the 2D FFT kernel.

Contributions. In this paper we present solutions for a
high-performance 2D DFT with simultaneous edge artifact
removal (EAR) for applications which require high frame
rate 2D FFTs such as real-time medical imaging systems and
machine vision for control. Our proposed optimizations lead
to a high-performance solution for removing edge artifacts
while the transform is being calculated, thus preventing
time consuming and possibly erroneous postprocessing steps.
Moreover, the proposed optimizations reduce the overall
energy consumption. This work builds on our previous work
presented in [8]. Major contributions include the following:

(1) We propose optimized periodic plus smooth decom-
position (OPSD) as an optimization for standard
periodic plus smooth decomposition (PSD) for edge
artifact removal (Section 4).

(2) Based on OPSD, we propose an architecture that
can reduce the access to DRAM and can decrease
the number of 1D FFT invocations by performing
column-by-column operations on the fly (Section 4).

(3) Since OPSD is heavily dependent on efficient FPGA-
based 2D FFT implementation which is limited
by DRAM access problems, we design a memory
mapping scheme based on ‘“tile-hopping”, which
can reduce row activation overhead while accessing
columns of data from the DRAM (Sections 5 and 6).

(4) The proposed OPSD and memory “tile-hopping”
optimizations also lead to better energy performance
as compared to row-major access (Section 6.4).

(5) We use our implementation as an accelerator for
filtered back-projection (FBP), an analytical tomo-
graphic reconstruction method, and show that for
large datasets our 2D FFT with edge artifact removal
(EAR) can significantly improve reconstruction run
time (Section 7).

As compared to our previous work [8], the current
implementation achieves better runtime, i.e., 1.5ms as com-
pared to 32.4ms for a 512 x 512 image. This increased
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performance is achieved by using state-of-the-art hardware
for high-bandwidth communication between the FPGA and
CPU modules, and by utilizing an efficient memory map-
ping scheme. The current work also analyzes the energy
consumption of the proposed paradigm. Moreover, we also
show how the real-time 2D FFTs can be used for tomographic
reconstructions.

Paper Outline. The paper follows FPGA image processing
design methodology outlined in [16, 17], which involves
carefully profiling the software solution to understand com-
putational bottlenecks and overcoming them through careful
reformulation of the algorithm within a parallel hardware
framework. Section 2 gives a comprehensive background
of high-performance 2D FFTs using FPGAs, the DRAM
intermediate storage problem, and edge artifacts. Section 3
presents PSD in detail which is the implementation objective.
Section 4 presents OPSD, an optimized solution to reduce the
latency of the serial part of the algorithm which limits overall
performance. Section 5 presents a memory mapping scheme
that can reduce the column-wise strided external memory
access. Section 6 presents experimental results and explains
target selection in detail, experimental setup, and bench-
marks results. Section 7 presents filtered back-projection as
a proposed application. Section 8 presents conclusions.

2. Background

2.1. High-Performance 2D FFTs Using FPGAs. There are
several resource-efficient, high-throughput implementation
approaches of multidimensional DFTs on a variety of differ-
ent platforms. Many of these methods are software-based and
have been optimized for efficient performance on general-
purpose processors (GPPs), for example, Intel MKL [11],
FFTW [9], and Spiral [10]. Implementations on GPPs can
be readily adapted for a variety of scenarios. However, GPPs
consume more power as compared to dedicated hardware
and are not ideal for real-time embedded applications.
Several application-specific integrated circuit- (ASIC-) based
approaches have also been proposed [18-20], but since it is
not easy to modify ASICs, they are not cost-effective solutions
for rapid prototyping of image processing systems. Graphical
Processing Units (GPUs) on the other hand can achieve
relatively high throughput but are energy inefficient and limit
the portability of large-scale imaging systems.

Due to their inherent parallelism and reconfigurability,
FPGAs are attractive for accelerating FFT computations,
since they fully exploit the parallel nature of the FFT algo-
rithm. FPGAs are particularly an attractive target for medical
and biomedical imaging apparatus and instruments such
as electron microscopes and tomographic scanners. Such
devices do not have to be manufactured in bulk to justify
application-specific solutions and require high bandwidth.
Moreover, increasing mobility and portability constitute a
future objective for many medical imaging systems. FPGAs
are also more efficient for prototyping machine vision appli-
cations since they are relatively more fine-grained when
compared to GPPs and GPUs and can serve as a bridge
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FIGURE 1: (a) An overview of row-column decomposition (RCD) for 2D FFT implementation. Intermediate storage is required because all
elements of the row-by-row operations must be available for column-by-column processing. (b) An overview of strided column-wise access
from DRAM as compared to trivial row-wise access. An entire row of elements must be read into the row buffer even to access a single element

within a specific row.

between general-purpose and application-specific accelera-
tion solutions.

2.2. DRAM Intermediate Storage Problem. There have been
several high-throughput 2D FFT FPGA-based implementa-
tions over the past few years. Most of these rely on repeated
invocations of 1D FFTs by row and column decomposition
(RCD) with efficient use of memory [5, 7, 12, 21, 22]. RCD
makes use of the fact that a 2D Fourier transform is separable
and can be implemented in stages; i.e., a row-by-row 1D
FFT can be proceeded by a column-by-column 1D FFT with
intermediate storage (Figure 1). Most of the previous RCD-
based 2D FFT FPGA implementation approaches have two
major design challenges: (1) The 1D FFT implementation
needs to have a reasonably high throughput and needs to
be resource efficient. Moreover, spatial parallelism needs to
be exploited by running several 1D FFTs simultaneously. (2)
External DRAM needs to be efficiently addressed and to have
a high bandwidth.

Since the column-by-column 1D FFT requires data from
all rows, intermediate storage becomes a major problem for
large datasets. Many implementations rely on local memory
such as resource-implemented block RAM for intermediate
storage which is not possible for large datasets [21]. Large

datasets have to be offloaded to external DRAM because
only a portion of the dataset that fits on the chip can be
operated on at a given time. For complex image processing
applications, this means repeated storage and access to the
external memory during every stage of processing.

As shown in Figure 2(a) DRAM hierarchy from top to
bottom is rank, chip, bank, row, and column. Each DRAM
bank (Figure 2(b)) has a row buffer that holds the most
recently referred row. There is only one row buffer per bank
which means only one row from the data-grid can be accessed
at once. Before accessing a row, it has to be activated by
transferring the contents from internal capacitor storage into
aset of parallel sense amplifiers. The row buffer is the so-called
“fast buffer”, because when a row is activated and placed in the
buffer, any element can be accessed at random.

If a new row has to be activated and accessed into the
row buffer, a row buffer miss occurs and requires a higher
latency, A,,;,, (Figure 2(c)). On the contrary if the desired
row is already in the bufter, a row buffer hit or page hit occurs
and the latency to access elements is substantially lower, A ;.
This implies A,,;; = Ay, + C,, where C, is the overhead
associated with accessing a new row to read a specific
element (Figure 2(c)) [12]. There is also overhead involved in
writing the row back to the data-grid (precharge), say, C,,.
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FIGURE 2: (a) An overview of the DRAM hierarchy. (b) Image showing the structure of a single DRAM bank. (c) Flow chart explaining
additional latency introduced when a new row has to be referred to in the row buffer to access a specific element.

However, both C, and C,, can be concealed by interleaving
(switching between banks). Since row-wise access is trivial,
the row-by-row 1D FFT part of RCD-based 2D FFT is easily
accomplished. However, once the row-by-row 1D FFT is
stored in the DRAM in standard row-major order, to access
a single column, each row of the DRAM has to be accessed
into the row buffer, rendering the read process extremely
inefficient. This is typically the major bottleneck for high-
throughput 2D FFTs (Figure 1(b)). We address this problem
by designing a custom memory mapping scheme (Section 5).

2.3. Edge Artifacts. While calculating 2D DFTs, it is assumed
that the image is periodic, which is usually not the case.
The nonperiodic nature of the image leads to artifacts in the
Fourier transform, usually known as edge artifacts or series
termination errors. These artifacts appear as several crosses
of high-amplitude coeflicients in the frequency domain
(Figure 3(b)). Such edge artifacts can be passed to subsequent
stages of processing, and in biomedical applications they may
lead to critical misinterpretations of results. No current 2D
FFT FPGA implementation addresses this problem directly.
These artifacts may be removed during preprocessing, using
mirroring, windowing, zero padding, or postprocessing, e.g.,

filtering techniques. These techniques are usually computa-
tionally intensive, involve an increase in image size, and also
tend to modify the transform.

The most common approach is by ramping the image
at corner pixels to slowly attenuate the edges. Ramping is
usually accomplished by an apodization function such as
a Tukey (tapered cosine) or a Hamming window, which
smoothly reduces the intensity to zero. Such an approach can
be implemented on an FPGA as a preprocessing operation
by storing the window function in a look-up table (LUT)
and multiplying it with the image stream before calculating
the FFT [16]. Although this approach is not extremely
computationally intensive for small images, it inadvertently
removes necessary information from the image. Loss of this
information may have serious consequences if the image
is being further processed with several other images to
reconstruct a final image that is used for diagnostics or other
decision-critical applications. Another common method is
by mirroring the image from N x N to 2N x 2N. Doing
so makes the image periodic and reduces edge artifacts.
However, this not only increases the size of the image by 4x,
but also makes the transform symmetric, which generates an
inaccurate phase component.
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FIGURE 3: (1a) An image with nonperiodic boundary. (1b) 2D DFT
of (la). (Ic) DFT of the smooth component, i.e., the removed
artifacts from (la). (1d) Periodic component, i.e., DFT of (la) with
edge artifacts removed. (le) Reconstructed smooth component. (1f)
Reconstructed periodic component.

Simultaneously removing the edge artifacts while cal-
culating a 2D FFT imposes an additional design challenge,
regardless of the method used. However, these artifacts must
be removed in applications where they may be propagated to
subsequent processing levels. An ideal method for removing
these artifacts should involve making the image periodic
while removing minimal information from the image. Peri-
odic plus smooth decomposition (PSD), first presented by
Moisan [4] and used in [23-25], is an ideal method for
removing edge artifacts (specifically for biomedical appli-
cations) because it does not directly intervene with pixels
beside those of the boundary and does not increase image
size. Moreover, its inherently parallel nature makes it ideal for
a high-throughput, FPGA-based implementation. We have
further optimized the original PSD decomposition algorithm
to make the overall implementation much more eflicient, by

decreasing the number of required 1D FFT invocations and
by reducing external DRAM utilization (Section 4).

2.4. LabVIEW FPGA High-Level Design Environment. A
major concern while designing complex image processing
hardware accelerators is how to fully harness on the divide-
and-conquer approach. Algorithms that have to be mapped
to multiple FPGAs are often marred by communication
problems, and custom FPGA boards reduce flexibility for
large-scale and evolving designs. For rapid prototyping of
our algorithms, we used LabVIEW FPGA 2016 (National
Instruments), a robust data-flow-based graphical design
environment. LabVIEW FPGA provides integration with
National Instruments (NI) Xilinx-based reconfigurable hard-
ware, allowing efficient communication with a host PC and
high-throughput communication between multiple FPGAs
through a PXIe (PCI eXtensions for Industry Express) bus.
LabVIEW FPGA also enables us to integrate external Hard-
ware Description Language (HDL) code and gives us the
flexibility to expand our design for future processing stages.
We used NI PXIe-7976R FPGA boards that have a Xilinx
Kintex 7 FPGA and 2GB high-bandwidth (10GB/s) external
memory. This platform has already been extensively used for
rapid prototyping of communication standards and protocols
before moving to ASIC designs. The optimizations and
designs we present here are scalable to most reconfigurable
computing-based systems. Moreover, LabVIEW FPGA pro-
vides efficient high-level control over memory via a smart
memory controller.

3. Periodic Plus Smooth Decomposition (PSD)
for Edge Artifact Removal (EAR)

Periodic plus smooth decomposition (PSD) involves decom-
posing the image into a periodic and smooth component
to remove edge artifacts with minimal loss of information
from the image [4]. This section presents an overview of
the PSD algorithm and profiles the algorithm for possible
parallelization and optimization to achieve efficient FPGA
implementation.

Let us have discrete n by m gray-scale image I on a finite
domain Q = {0,1,...,n— 1} x {0, 1,...,m — 1}. The discrete
Fourier transform (DFT) of I is defined as

6= Y 16)ep(-2r(24e2)). g

(1,j)eQ

This is equivalent to a matrix multiplication WIV, where

1 1 1 . 1
1 w w ... w'!
1w wt L w?Y
W= 2
1 w2 @22 DD
T T o VR s V)
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(3)

k < ,271)]‘ ( ,2nk>
w =exp|-i— ) =exp|-i— ].
n n

V has the same structure as W but is m-dimensional. w* has
period n which means that wk = wk+l", Vk,1 € N; therefore,

1 1 1 ... 1 1
1 w oWt Wt
1 w2 w4 wn—4 wn—Z
W= (4)
1 wn—2 n—4 w4 2
1 n—1 n—2 w2 1

Since in general I is not (1, m)-periodic, there will be
high-amplitude edge artifacts present in the DFT stemming
from sharp discontinuities between the opposing edges of
the image as shown in Figure 3(b). Reference [4] proposed
a decomposition of I into a periodic component P, which
is periodic and captures the essence of the image with all
high-frequency details, and a smoothly varying background
S, which recreates the discontinuities at the borders, so I =
P+ 8. Periodic plus smooth decomposition can be computed
by first constructing a border image B = R + C, where R
represents the boundary discontinuities when transitioning
row-wise and C when going column-wise.

R(i, j)
I(n-1-i,j)-I(i,j), i=0ori=n-1
- 0, otherwise
. (5)
C(ij)
I(i,m—l—j)—I(z,]), j:O()rj:m_l
- 0, otherwise

with nonzero values only in the edges as shown below:

B=R+C
bll blZ bl ;m—1 blm
by 0 0 by ©
bn—l,l 0 0 bn—l 1
bnl _bIZ (R _bl,m—l _bnm

The DFT of the smooth component S can be then found by
the following formula:

B(s,t)
2 cos (2mts/n) + 2 cos (2mt/m) — 4’

S(s,t) =
(7)

V(s,t) € Q\{(0,0)}.

The DFT of the image I with edge artifacts removed is
then P = T - S. Figures 3(c) and 3(d) show the DFT of
the smooth and periodic components, respectively. Figures
3(e) and 3(f) show the reconstructed periodic and smooth
components. On reconstruction, it is evident that there is
negligible visual difference between the actual image and the
periodic reconstructed image for this example.

3.1. Profiling PSD for FPGA Implementation. Algorithm 1
summarizes the overall PSD implementation. There are
several ways of arranging the algorithm. We have arranged
it so that DFTs of the periodic and smooth components
are readily available for further processing stages. For best
results, both the periodic and smooth components should
undergo similar processing stages and should be added back
together before displaying the result. However, depending
on the application it might be acceptable to discard the
periodic component completely. For an n x m image, steps
A and C have a complexity of O(nmlog(nm)) and steps B
and D have complexity O(m + n) and O(mn), respectively.
Computationally the performance of PSD is limited by steps
A and C. Figure 4 shows a proposed top-level architecture
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where step A and steps B, C, and D are completed on separate
FPGAs while step E can be done on the host PC. Two high
end FPGAs are used instead of one because resources on
one FPGA are insufficient to compute a large size 2D FFT
as well its edge artifact removal components. The overall
performance may be limited by FPGA 2 where most of the
serial part of the algorithm lies. There are two major factors
which limit the throughput of such a design:

(1) While FPGA 1 and FPGA 2 can run in parallel, the
result of step A from FPGA 1 has to be stored on the
host PC while steps B, C, and D are completed on
FPGA 2 before step E can be completed on the host
PC.

(2) The DRAM intermediate storage problem explained
in Section 2.2 and Figures 1 and 2 has to be addressed
since strided access to the DRAM for column-wise
operations can significantly limit throughput.

As for (1), it has been addressed in the next section where
we make use of the inherent symmetry of the boundary
image to reduce the time required to compute the 2D FFT
of the boundary image. As for (2), it has been addressed by
designing a semi-custom memory mapping controller which
“tiles” the DRAM floor and “hops” between several tiles so as
to minimize strided memory access.

4. Proposed: Optimized Periodic Plus Smooth
Decomposition (OPSD)

In this section, we optimize the original PSD algorithm. This
optimization is to effectively reduce the number of 1D FFT
invocations and the number of times the DRAM is accessed.

Equation (6) shows that, except the corners, the boundary
image B is symmetrical in the sense that boundary rows and
columns are algebraic negation of each other. In total Bhasn+
m — 1 unique elements, with the following relations between
corners with respect to columns and rows:

by =1yt

bim = Tim — 11

(8)
bnl =T +6n
bnm = Tim ~ G
= bnm = _bll - blm - bnl' (9)

In computing the FFT of B, one normally proceeds by first
running 1D FFTs column-by-column and then 1D FFTs row-
by-row or vice versa. An FFT of a column vector v with length
nis Wv, where W is given in (4). The column-wise FFT of the
matrix B is then

B=WB. (10)

Let us have a closer look at the first column, denoted by B,;.
The 1D FFT of this vector is

B, = WB,
11 1 b,
1 w w™! by,
2 2(n-1)
~ 1 w w™" b,
1 n—-2 w(n—2)(n—1) bn—l,l
1 n—1 w(n—l)(n—l) bnl

(11)

n
Zbil
i=1
n
i1
Zbﬂw
i

1

n

Zb‘l 220D
1

i=1

L .
Zbilw(n—Z)(z—l)
i=1

L .
Zbilw(n—l)(t—l)
i=1

It can be shown that the ID FFT of the column j €

{2,3,...,m—1}is
B, =WB,
1 1 1 blj
1 wn—l 0
1 2 w2(n—1) 0
1 n—2 w(n—Z)(n—l) 0
1 n—1 w(n—l)(n—l) _blj (12)
0
1- wn—l
1- wn—2
= bl] = blj‘)’,
1-w?
1-w
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Input: I(j, j) of size n x m
Output: P(s, t) S(s, 1)

116G, j) 5 I(s,t)

2:while1 < j <mdo
while 1 <i <ndo

3
4
5
6: else
’7.
8
9

14: end while
15: end while
16:B— R+C

17: BGi, j) = B(s, 1)

21: return P(s, t) S(s, t)

Step A: Compute the 2D DFT of image I(i, j):

Step B: Compute periodic border B:

if(i=0Vvi=n-1)then
R(G, j) «— I(n—1-1,j) - I, j)

R(@,j) «— 0
end if
: if(j=0Vj=m-1)then
10: CG, j) — I(i,m—1—- ) - I(, j)
11: else
12: CG,j) — 0
13: end if

Step C: Compute the 2D DFT of B(s, t):

Step D: Compute the Smooth Component S(s, t):
18: D(s, t) «— 2 cos(2ms/n) + 2 cos(2rt/m) — 4
19:8(s, 1) — B(s,t) = D(s, 1)

Step E: Compute the Periodic Component P(s, t):
20: P(s,t) «— I(s,t) - 8(s, 1)

ALGORITHM 1: Periodic plus smooth decomposition (PSD).

and the 1D FFT of the last column B, is

B,,=WB,, (13)
b
i1
_Z:billUF1 +(byy +byy,) (1 - wnil)
i=1
_ _;bﬂwz(FI) + (bll + b1m) (1 - wz(nil)) (14)
_Zbilw(ﬂ—Z)(i—l) + (bll + blm) (1 _ w(n—z)(n—l))
=1
_Zbilw(n—l)(i—l) +(by, +by,,) (1 _ w(n—l)(n—l))
i=1
B, =-B,+ (b, +b,,) (15)
Therefore, the column-wise FFT of the matrix B is
B=(B; b,v ... b, v -By+ (b, +b,,)7). (16)

To compute the column-by-column 1D FFT of the matrix,
B, we only have to compute the FFT of the first vector
and then use the appropriately scaled vector, v, to derive
the remainder of the columns. The row-by-row FFT has

to be calculated in a row burst normal way. Algorithm 2
presents a summary of the shortcut for calculating B(s, t).
The steps presented in Algorithm 2 can replace step C
in Algorithm 1. By reducing column-by-column 1D FFT
computations for the boundary image, this method can
significantly reduce the number of 1D FFT invocations,
reduce the overall DRAM access, and eliminate problematic
column-wise strided DRAM access for an efficient FPGA-
based implementation. For column-wise operations, a single
1D FFT of size m is required rather than nm 1D FFTs of size
m. Moreover, since one has to simply store one column of
data, it can be stored on the on-chip local memory (BRAM
or SRAM). This can be implemented by temporarily storing
the initial vector B, and scaling factors b, j in the block
RAM/register memory, drastically reducing DRAM access,
and lowering the number of required 1D FFT invocations.
Performance evaluation for this has been presented in the
results section.

Table 1 shows a comparison of mirroring, PSD, and
our proposed OPSD with respect to DRAM access points.
Mirroring has been used for comparison purposes because it
is an alternative technique that reduces edge artifacts while
maintaining maximum amplitude information. However,
due to replication of the image, most of the phase information
is lost. Figure 5 graphically shows that our OPSD method sig-
nificantly reduces reading from external memory and reduces
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Output: B(s, t)

1: B, i El
2:while1 < j <mdo
3: B_’. — blj"'

4: end while

Row-by-Row DFT:
7:B,, = B(s,t)
8: return B(s, t)

Input: B(i, j) of size n x m

(I\cw - '?HU »
2D F(B) < B % B, 2% B
Column-by-Column DFT via Symmetrical Short-cut:

5:B,, < —-B, + (b, +b,,)v
6: B, <« Concatenate B, B, ...

cw: column-wise/column-by-column
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B, .B

m-1 “m

ALGORITHM 2: Proposed symmetrically optimized computation of B(s, t).
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FIGURE 5: Graph showing DRAM access (equal to number of DFT points to be computed) with increasing image size for mirroring, periodic
plus smooth decomposition (PSD), and our proposed optimized period plus smooth decomposition (OPSD).

the overall number of DFT computations required. It should
be noted that such optimization is only possible for either
column-wise or row-wise operations because after either of
these operations the output is not symmetrical anymore.
Completing the column-wise operation first prevents strided
reading; however, this results in strided writing to the DRAM
before row-wise traversal can start. This can be minimized by
making efficient use of the local block RAM. Output columns
are stored in the block RAM before being written to the
DRAM in patches such that each row buffer access writes
elements in several columns.

5. Proposed: Tile-Hopping Memory Mapping
for 2D FFTs

In this section we propose a tile-hopping external memory
access pattern for efficiently addressing external memory

during intermediate storage between row-wise and column-
wise 1D FFT operations to calculate a 2D FFT. As explained
in Section 2.2 and Figure 2, column-wise reads from DRAM
can be costly due to the overhead associated with activating
and precharging. In the worst case scenario it can limit
DRAM bandwidth up to 80% [26]. This is a problem with
all such image processing operations where one stage of the
processing has to be completed on all elements before the
next stage can start. In the past there have been several
implementations using local memory; however, with growing
demand for larger image sizes external memory has to be
used. There have been several DRAM remapping attempts
before, such as [5, 13]. They propose a tile-based approach
where an #n x n image (input array) is divided into n/k x n/k
tiles where k is the size of the DRAM row buffer which
allows for very high-bandwidth DRAM access. Although, this
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TaBLE 1: Comparing mirroring, PSD, and OPSD.
Algorithm DRAM Access DFT
Points Points
Mirroring SNM SNM
P + S Decomposition (PSD) ANM 4NM

Optimized PSD (Proposed) 3NM+ N+ M —1 3NM + M

method may be ideal to maximize the DRAM performance
for 2D FFTs, it incurs a high resource cost associated with
local memory transposition and storing large chunks of data
(entire row/column of tiles) in the local memory. Moreover,
tiling in the image domain also requires remapping row-
by-row operations. Another approach to reducing strided
DRAM access has been presented in [27]. They present a
2D decomposition algorithm which decomposes the problem
into smaller subblock 2D FFTs which can be performed
locally. This introduces extra row and column data exchanges,
and total number of operations are increased from 0(r* log n)
to O(n*(1 +logn)). Other implementations do not address the
external memory issue in detail.

We propose tile-hopping address mapping which reduces
the number of row activations required to access a single
column. Unlike [5], our approach does not require significant
local operations or storage. The proposed memory mapping
controller was designed on top of LabVIEW FPGA’s existing
memory controller which efficiently controls interleaving and
issues activation and precharge commands in parallel with
data transfer. The reduced number of row activations also
reduces the amount of energy required by the DRAM. This
will be further discussed in the energy evaluation presented
in Section 6.4 and Table 3 where we demonstrate that the
proposed tile-hopping address mapping can reduce energy
consumption up to 53%.

Instead of writing the results of the row-by-row 1D FFT
in row-major order we remap the results in a blocked or tiled
pattern as shown in Figure 6. This means that when accessing
an image column, several elements of that column can be
retrieved from a single DRAM row access. For an n1x n image,
each row of size n can be divided into h tiles (i.e., n = h.N(t),
where N(t) is the number of elements in each tile). These tiles
can be remapped onto the DRAM floor as shown in Figure 6.
If the size of the row is small enough, it may be possible to
convert it into a single tile (i.e., # = 1). However, this is
unlikely for realistic image sizes. For a tile of size pxq, a single
row of the image is written into the DRAM by transitioning
through p.h rows. If k is the size of the row buffer, there
are k/q distinct tiles represented in each DRAM row and it
contains the same number of elements from a single image
column. Given regular row-major storage when accessing
column-wise elements, one would have to transition through
n DRAM rows to read a single image column. However,
with this approach, when accessing an image column, k/q
elements of that column could be read from a single DRAM
row which has been referred to in the row buffer. Although
the cost of writing an image row is higher when compared to
a standard row-major DRAM writing pattern, (i.e., referring
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to p.hrather than nrows), the number of DRAM row referrals
during column-wise read is reduced to n.g/k which is n.(1 -
q/k) less row referrals for a single column read.

We refer to this method as tile-hopping because it entails
mapping data onto several DRAM tiles and then hopping
between the tiles such that several elements of the image
column exist in a DRAM row which has been referred to
in the row bank. Although this mapping scheme has been
developed for column-wise access required during 2D FFT
calculation, the scheme is general and can be adapted to other
applications. Performance evaluation of this method has been
presented in the experiments section.

6. Experimental Results and Analysis

6.1. Hardware Configuration and Target Selection. Since 2D
DFTs are usually used for simplifying convolution operations
in complex image processing and machine vision systems, we
needed to prototype our design on a system that is expandable
for next levels of processing. As mentioned earlier, for rapid
prototyping of our proposed OPSD algorithm and tile-
hopping memory mapping scheme, we used a PXlIe-based
reconfigurable system. PXIe is an industrial extension of
a PCI system with an enhanced bus structure that gives
each connected device dedicated access to the bus with a
maximum throughput of 24GB/s. This allows a high-speed
dedicated link between a host PC and several FPGAs. The
LabVIEW FPGA graphical design environment is efficient for
rapid prototyping of complicated signal and image processing
systems. It allows us to effectively integrate external HDL
code and LabVIEW graphical design on a single platform.
Moreover, it allows a combination of high-level synthesis
(HLS) and custom logic. Since current HLS tools have
limitations when it comes to complex image and signal
processing tasks, LabVIEW FPGA tries to bridge these gaps
by streamlining the design process.

We used FlexRIO (Flexible Reconfigurable I/0) FPGA
boards plugged into a PXIe chassis. PXIe FlexRIO FPGA
boards are adaptable and can be used to achieve high
throughput, because they allow direct data transfer between
multiple FPGAs at rates as high as 8GB/s. This can signifi-
cantly simplify multi-FPGA systems, which usually commu-
nicate via a host PC. This feature allows expansion of our
system to further processing stages, making it flexible for a
variety of applications. Figure 7 shows a basic overview of
a PXIe-based, multi-FPGA system with a host PC controller
connected through a high-speed bus on a PXIe chassis.

Specifically, we used two NI PXIe-7976R FlexRIO boards
which have Kintex 7 FPGA and 2GB external DRAM with
theoretical data bandwidth up to 10GB/s. This FPGA board
was plugged into a PXIe-1085 chassis along with a PXIe-8880
Intel Xeon PC controller. PXIe-1085 can hold up to 16 FPGAs
and has 8 GB/s per-slot dedicated bandwidth and an overall
system bandwidth of 24 GB/s.

6.2. Experimental Setup. As per Algorithms 1 and 2, dis-
cussed in previous sections, implementation involves five
stages: (A) calculating the 2D FFT of an image frame, (B)



International Journal of Reconfigurable Computing

Row-by-Row (RR) Output

1

Writing RR Output to DRAM

n

(a) Dataset view

Reading from DRAM

\k/ Row Buffer

k Row Buffer

(b) Memory view

(c) Memory view
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FIGURE 7: Block diagram of a PXIe-based multi-FPGA system with
a host PC controller connected through a high-speed bus on a PXIe
chassis [8].

calculating the boundary image, (C) calculating the 2D
FFT of the boundary image, (D) calculating the smooth
component, and (E) subtracting the smooth component from
the 2D FFT of the original image to achieve the periodic
component. The bottleneck consistently occurs in A and the
serial part of the algorithm (A — B — C). The limitation

due to A is reduced removing the so-called “memory wall”
by using our proposed tile-hopping-based memory mapping.
The limitations due to the serial part of the algorithm are
reduced by using OPSD rather than PSD. For quantification,
the delay for A is 0.62ms for a 512 x 512 image.

The design flow presented in Figure 4 was followed.
Data-flow is clearly shown in a graphical programming
environment making it easier to visualize how a design
efficiently fits on an FPGA. Highly efficient implementations
of 1D FFT were used from LabVIEW FPGA for parallel
row-by-row operations and by integrating Xilinx LogiCORE
for column-by-column operations. Each stage of the design
was dynamically tested and benchmarked. The image was
streamed from the host PC using a Direct Memory Access
(DMA) FIFO. 1D FFTs are performed in parallel rows of 8
and stored in the DRAM via local memory in a tiled pattern
as explained in the previous section. This follows reading
several rows to extract a single column which is Fourier-
transformed using Xilinx LogiCORE and is sent back to
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FIGURE 9: Block diagram of 2D FFT showing data transfer between
external memory and local memory scheduled via a Control Unit
(CU).

the host PC. If the image is being streamed directly from
an imaging device which scans and provides random or
nonlinear sequence of rows, it is necessary to store a frame
of the image in a buffer. This can also be accomplished
by streaming the image flow from the host PC or using a
smart camera which can delay image delivery by a single
frame. Local memory shown in Figure 9 is used to buffer
data between external memory and 1D FFT cores. This
memory is divided into read and write components and is
implemented using FPGA slices. Block RAM (BRAM) is used
for temporary storage of vectors required for calculating the
2D FFT of the boundary image (in the case of FPGA 2).
The Control Unit (CU) organizes scheduling for transferring

data between local and external memory. CU is based on
LabVIEW’s existing memory controller and our memory
mapping scheme presented in Section 5.

Step B was accomplished using standard LabVIEW
FPGA HLS tools for programming (5) using the graphical
programming environment. In step C the 2D FFT of the
boundary image needs to be calculated by row and column
decomposition. However, as shown mathematically in the
previous section, the initial row-wise FFTs can be calculated
by computing the 1D FFT of the first (boundary) vector and
the FFTs of reaming vectors can be computed by appropriate
scaling of this vector.

We need the boundary column vector for 1D FFT calcula-
tion of the first and last columns. We also need the boundary
row vector for appropriate scaling of v for the 1D FFT of
every column between the first and last columns. Row and
column vectors of the boundary image are stored in block
RAM (BRAM). Figure 8 shows a functional block diagram
of the overall 2D FFT with optimized PSD process. Steps D
and E are performed on the host PC to minimize memory
clashes and to access the periodic and smooth components
of each frame as they become available. 86% of resources are
used on FPGA 1 and 41% resources are used on FPGA 2. The
resource utilization is reported according to LabVIEW FPGA
synthesis and compilation experiments. It should be noted
that part of the reason for high resource utilization is because
of using LabVIEW FPGA high-level synthesis tools as well
as Xilinx LogiCORE tools. Using standardized tools makes
it harder to optimize for resource utilization. The current
implementation was optimized for performance in terms of
run time and energy consumption.
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6.3. Performance Evaluation. The overall performance of the
system was evaluated using the setup presented in Figure 9.
The data was streamed from the host PC; in certain cases
high frame rate videos as well as direct camera input were
streamed from the host. All results presented are for 16-bit
fixed-point precision. Figure 10(a) presents the effectiveness
of our proposed tile-hopping memory mapping scheme. It
clearly shows the effectiveness of our proposed memory
mapping since it is closer to the theoretical peak performance.
Figure 10(b) presents the overall results comparing PSD and
OPSD and demonstrating the effectiveness of our proposed
optimization. PSD was also implemented on the same plat-
form but the optimization presented in Section 4 was not
used. This rendered the serial portion of the algorithm to be
the bottleneck which reduced overall performance. Table 2
shows a comparison of our implementation in contrast to
recent 2D FFT FPGA implementation approaches and shows
that we achieve a better performance even with simultaneous
edge artifact removal. Although, our implementation is tested
with 16-bit fixed-point precision which limits the accuracy of
the transform, the precision may be sufficient for a variety
of speed critical applications where alternative edge artifact
removal methods (e.g., filtering) may decrease overall system
performance. Although, the dynamic range of fixed-point
data is smaller than floating-point data, which can lead to
errors in the 2D FFT; for certain applications it is more
important to have an artifact-free transform as compared to
a highly accurate transform.

6.4. Energy Evaluation. The overall energy consumption
of the custom computing system depends on (1) power
performance of the system components and (2) throughput
disparity. Throughput disparity results in idle time for at

least one of the components and lowers the overall sys-
tem throughput. A throughput-optimized system minimizes
instances where certain components of the architecture are
idle. The proposed optimizations in Sections 4 and 5 clearly
reduce throughput disparity and minimize the idle time of the
system. Thus, besides causing delays due to significant over-
head, standard column-wise DRAM access also contributes
to the overall energy consumption. This is not only due to
high count of DRAM row charges but also because of energy
consumed by the FPGA in idle state. Ideally, maximizing the
DRAM bandwidth limits the amount of energy consumption.
Proposed “tile-hopping” memory mapping scheme improves
the DRAM bandwidth as seen in Figure 10 and hence reduces
the overall energy consumption. The same is true for the
proposed OPSD method where reduced DRAM access and
1D FFT invocations lead to reduced energy consumption. In
this section we analyze the amount of improvement in energy
consumption based on the proposed optimizations.

We estimate the DRAM power consumption for both
the baseline (standard, strided) and the optimized (“tile-
hopping”) memory access using MICRON DRAM power
calculator. The energy is calculated in »nJ for each read,
i.e.,, energy per read. This is accomplished by calculating
the run time for a specific 2D FFT and estimating the
amount of energy consumed by the DRAM power calculator.
Table 4 depicts the DRAM energy consumption for 2D FFTs
before and after the proposed “tile-hopping” optimization for
column-wise DRAM access. As mentioned earlier, row-wise
DRAM access is fast and row buffer size data can be accessed
by a single row activation. According to Table 4 the energy
required for DRAM access is reduced by 42.7%, 48.8%, and
52.9% for 1024 x 1024, 2048 x 2048, and 4096 x 4096 size 2D
FFTs, respectively.
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TaBLE 2: Comparison of OPSD' 2D FFT with regular RCD-based implementation.
Platform SEAR? Precision RT? (ms)
Yes/No bits 512 x 512 1024 x 1024
Kintex 7, 28nm (ours) Yes 16 (fixed) 1.5 4.8
Kintex 7, 28nm (ours) No 16 (fixed) 0.9 4.1
Kintex 7, 28mm [8] Yes 16 (fixed) 324 116.7
Stratix IV [5] No 64 (double) - 6.1
Virtex-5-BEE3, 65nm|[14] No 32 (single) 24.9 102.6
Virtex-E, 180nm [21] No 16 (fixed) 28.6 76.9
ASIC, 180nm No 32 (single) 21.0 -
! Optimized periodic + smooth decomposition (OPSD)
? Simultaneous edge artifact removal
3 Runtime (ms).
TaBLE 3: DRAM energy consumption baseline vs tile-hopping.
1024 x 1024 2048 x 2048 4096 x 4096
njoule nJoule njJoule
EPR* CW” Read
(Baseline) 4.46 5.77 7.12
EPR CW Read
Tile-Hopping 2.54 2.95 336
(Proposed)
Reduction (%) 42.7% 48.8% 52.9%
“Energy per read (EPR).
°Column-wise memory access (CW).
TABLE 4: 2D FFT + EAR energy consumption baseline vs optimized (OPSD + tile hopping).
1024 x 1024 2048 x 2048 4096 x 4096
njoule njJoule njJoule
EPP' 2D FFT + EAR
Baseline 36.92 41.25 48.35
2D FFT+EAR (Opt.)
Tile-Hopping + OPSD 15.88 1706 18.11
(Proposed)
Improvement 2.3X 2.4x 2.8x
TEnergy per point (EPP).

The metric used to compare the overall energy optimiza-
tion achieved for 2D FFTs with EAR is energy per point, i.e.,
the amount of average energy required to compute the 2D
FFT of a single point in an image with simultaneous edge
artifact removal. This was achieved by calculating the energy
consumed by Xilinx LogiCORE IP for 1D FFTs, the DRAM,
and the edge artifact removal part separately. The estimated
energy calculated does not include energy consumed by the
PXIe chassis and the host PC. Essentially, the FPGA-based
architecture presented here could be used without the host
controller. The energy consumption incorporates dynamic
as well as static power. The overall energy consumption per
point is reduced by 56.9%, 58.6%, and 62% for calculating
1024 x 1024, 2048 x 2048, and 4096 x 4096 size 2D FFTs with
EAR, respectively.

7. Application: Filtered Back-Projection
for Tomography

In order to further demonstrate the effectiveness of our
implementation, we use the created 2D FFT module as
an accelerator for reducing the run time for filtered back-
projection (FBP). FBP is a fundamental analytical tomo-
graphic image reconstruction method. In depth details
regarding the basic FBP algorithm have been left out for
brevity, but can be found in [28, 29]. The method can be used
to reconstruct primitive 3D tomograms from 2D data, which
can then be used as a basis for more complex regularization-
based methods such as [30-32]. The algorithmic flow is based
on the Fourier slice theorem; ie., 2D Fourier transforms
of projections are an angular component of the 3D Fourier
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TaBLE 5: Comparing filtered back-projection (FBP) runtime (as an application for using the proposed 2D FFT with simultaneous EAR).

3D Density CPU (i7) FPGA + Host PC (i7)
Sec Sec

128 x 128 x 128 21.3 sec 19.5 sec

256 x 256 x 256 475 sec 42.4 sec

512 x 512 x 512 94.8 sec 81.3 sec

1024 x 1024 x 1024 322.3 sec 275.3 sec

2048 x 2048 x 2048 1687.7 sec 1364.4 sec
4096 x 4096 x 4096 16463.1 sec 12599.4 sec

CPU Reconstructed Phantom

Original Phantom FPGA+CPU Reconstructed Ph.

08 -

0.6

Intensity
°
S

Intensity

04

02

FIGURE 11: Figure showing a thin slice of filtered back-projection
results by reconstructing a 128 x 128 x 128 Shepp-Logan phantom.
The 3D density was reconstructed from 180 equally spaced simulated
projections using standard linearly interpolated FBP and using a
Ram-Lak filter. It can be seen that the results from the FPGA + CPU
solution have some errors; this is due to the fact that the 2D FFT of
each projection is less accurate. The results are good enough to be
used as a basis for further optimization based refinement methods.

transform of the 3D reconstructed volume. Our 2D FFT
accelerator was used to calculate the 2D FFTs of the projec-
tions as well as for initial stages of the 3D FFT which was then
completed on the host PC. Similar to the 2D FFT, the 3D FFT
is separable and can be divided into 2D FFTs and 1D FFTs.
The results have been shown in Table 5. It can be seen that
the improvement for smaller size densities is not significant
because their FFTs are quite fast on general-purpose CPUs.
However, for larger densities the FFT accelerator can give a
significant improvement. If the remaining components are
also implemented on an FPGA, significant speed increase
can be achieved. Results of a thin slice from a 3D simulated
Shepp-Logan [33] phantom have been shown in Figure 11. It
can be seen that the results from the hardware accelerated
FBP are of slightly lower quality. This is due to the fact
that our 2D FFT implementation is less accurate (16 bit,
fixed-point) as compared to the CPU-based implementation
(FFTW, double-precision floating). The accelerated FBP was
also tested with real Electron Tomography (ET) data.

8. Conclusion

2D FFTs often become a major bottleneck for high-
performance imaging and vision systems. The inherent
computational complexity of the 2D FFT kernel is fur-
ther enhanced if effective removal (using PSD) of spurious
artifacts introduced by the nonperiodic nature of real-life
images is taken into account. We developed and implemented
an FPGA-based design for calculating high-throughput 2D
DFTs with simultaneous edge artifact removal. Our approach
is based on a PSD algorithm that splits the frequency domain
of a 2D image into a smooth component which contains the
high-frequency, cross-shaped artifacts and can be subtracted
from the 2D DFT of the original image to obtain a periodic
component that is artifact-free. Since this approach calculates
two 2D DFTs simultaneously, external memory addressing
and repeated 1D FFT invocations become problematic. To
solve this problem we optimized the original PSD algorithm
to reduce the number of DFT samples to be computed and
DRAM access. Moreover, to reduce strided access from the
DRAM during column-wise reads we presented and analyzed
“tile-hopping”, a memory mapping scheme which reduces the
number of DRAM row activations when reading a single
column of data. This memory mapping scheme is general
and may be used for a variety of other applications. We
demonstrate that “tile-hopping” memory mapping can reduce
the DRAM energy consumption by 52.9%. Moreover, we
show that the proposed optimizationslead to 2.8x less energy
consumption for the overall 2D FFT with EAR architecture.

Our methods were tested using extensive synthesis and
benchmarking using a Xilinx Kintex 7 FPGA communicating
with a host PC on a high-speed PXIe bus. Our system is
expandable to support several FPGAs and can be adapted
to various large-scale computer vision and biomedical appli-
cations. Despite decomposing the image into periodic and
smooth frequency components, our design requires less
run time, compared to traditional FPGA-based 2D DFT
implementation approaches and can be used for a variety
of highly demanding applications. One such application,
filtered back-projection, was accelerated using the proposed
implementation to achieve better results specifically for larger
size raw tomographic data.
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