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CPU has insufficient resources to satisfy the efficient computation of the convolution neural network (CNN), especially for
embedded applications. Therefore, heterogeneous computing platforms are widely used to accelerate CNN tasks, such as GPU,
FPGA, and ASIC. Among these, FPGA can accelerate the computation by mapping the algorithm to the parallel hardware instead
of CPU, which cannot fully exploit the parallelism. By fully using the parallelism of the neural network’s structure, FPGA can
reduce the computing costs and increase the computing speed. However, the development of FPGA requires great design skills.
As a heterogeneous development platform, OpenCL has some advantages such as high abstraction level, short development cycle,
and strong portability, which can make up for the lack of skilled designers. This paper uses Xilinx SDAccel to realize the parallel
acceleration of CNN task, and it also proposes an optimizing strategy of single convolutional layer to accelerate CNN. Simulation
results show that the calculation speed could be improved by adopting the proposed optimizing strategy. Compared with the
baseline design, the strategy of single convolutional layer could increase the computing speed 14 times. Performance of the whole
CNN task could be improved 2 times more than before, and the speed of image classification could attain more than 48 fps.

1. Introduction

Deep learning is currently the most popular field in recent
years. It processes complex input data based on themultilayer
neural network. Deep learning has a significant effect on the
analysis of machine vision [1], video surveillance [2], and
other information [3], which solves the problem of pattern
recognition in many complex scenes. It is also important for
the development of artificial intelligence. As a classical model
of the deep learning system, convolutional neural network
(CNN) has an enormous advantage in image recognition
[4]. Especially in the ImageNet Large Scale Visual Recogni-
tion Challenge 2012 (ILSVRC2012) [5], CNN improved the
accuracy rate from 70% to 80%, which is far better than

the traditional methods. Actually, CNN has broad space for
further development, which has been widely used in face
recognition [6], audio retrieval, hand posture recognition [7],
etc. [8]. It becomes increasingly difficult for CPU to realize
complex CNN [9], while using the heterogeneous computing
platform is an emerging method to accelerate CNN and the
hardware such as GPU [10, 11] or FPGA [12, 13].

Compared to CPUs, the neural network’s accelerators
based on FPGA are increasingly popular because of their
higher efficiency [14]. Over the baseline CPU, FPGA accel-
erators deliver one to two orders of magnitude speedups [1].
Moreover, the FPGA1024 design delivers almost 50x perfor-
mance improvement over the baseline CPU (Intel� Xeon E5-
2699v3 server) [14]. In addition, due to the structure of CNN,
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each layer of calculation is independent of others, and the
interlayered structure can be dealt with like a flow structure.
Moreover, various modules on FPGA can be executed in
parallel [15]. It is very suitable to accelerate CNN by mapping
the flow structure on FPGA. However, in order to use
FPGA, the development process requires that the hardware
description language as well as some knowledge about the
internal structure of FPGA must be comprehended, which
limits the designers’ ability to design to some extent.

OpenCL provides a new method for the acceleration of
CNN based on FPGA. It is a unified programming envi-
ronment [16] and a parallel programming standard for the
heterogeneous systems. Based on the traditional C language,
the codewritten inOpenCL is highly portable [17].Moreover,
on account of the existence of the framework about OpenCL
to FPGA, designers need neither to synthesize hardware
description language nor to understand the hardware circuit
structure, which greatly lowers the using threshold [18].

This paper proposed a parallel acceleration strategy of
CNN based on FPGA with OpenCL by the use of Xilinx
SDAccel. As the convolution layer is the most complicated
part of CNN, we first optimize the single convolution layer
and then, on this basis, we accelerate complete CNN and
explore different optimization strategies.

Throughout this paper, we deal with the following: the
general concept of CNN and the traditional method of CNN
on CPU in Section 2, the knowledge of heterogeneous com-
puting platform about OpenCL in Section 3, optimization of
a single convolution layer in Section 4, the acceleration of
complete CNN in Section 5, the experimental environments
and the analysis of experimental results in Section 6, and the
conclusions in Section 7.

2. CNN Information and
Traditional Acceleration

2.1.The Basic Structure of Convolution Neural Network. CNN
is an efficient identification method which has received
considerable attention in recent years. CNN is a hierarchical
model whose basic structure consists of input layers, con-
volution layers, pooling layers, fully connected layers, and
output layers. The main characteristic is that the convolution
layer and the pooling layer alternate, and the local feature of
the previous layer gets the characteristics of the next layer
of convolution by the weight of the convolution. Through
the connections of multiple convolution with pooling layers,
images gradually change from the surface features to the deep
ones, then the features are classified by the fully connected
layer and the output layer, and finally the images are divided
into categories. Therefore, according to the function of every
layer, CNNcanbe divided into twoparts: the feature extractor
is composed of the input layer, the convolution layer, and the
pooling layer, while the fully connected layer and the output
layer constitute the classifier.

CNN was first put forward by a professor from Uni-
versity of Toronto called LeCun [3]. Based on the research
of Fukushima, he used BP algorithm to design the first
CNN, named LeNet-5. Because LeNet-5 is one of the most
classic structure of CNN, the following introductions and

Figure 1: LeNet-5 [3].

experiments are taken with the example of LeNet-5. LeNet-
5 is CNN for handwritten numeral recognition; Figure 1 is
the structure of LeNet-5, which contains three convolution
layers, two pooling layers, a fully connected layer, and a
Gaussian layer.

2.1.1. The Convolution Layer. In the convolution layer, the
input data is convolved with a learning convolution kernel
and the result of convolution forms the characteristic pattern
of this layer. By the activating function, each characteristic
pattern can be combinedwith the numerical value of previous
characteristic patterns. Its expression is shown in

𝑥𝑙𝑗 = 𝑓(∑
𝑖𝑒𝑀𝑗

𝑥𝑖−1𝑖 ∗ 𝑘𝑙𝑖𝑗 + 𝑏𝑙𝑗) (1)

where ‘I’ represents the number of layers, ‘k’ represents
the weight of the convolution kernel of l layer, and ‘b’
represents the bias of the characteristic pattern after the
convolution; f(x) is the activation function, like sigmoid and
tanh.

In LeNet-5 model, for example, the input size is 32∗32 in
C1 Layer, the convolution kernel’s size is 5∗5, and the size of
C1 Layer is 28∗28 (28=32-5+1). It can be seen from Figure 1
that C1 Layer has six two-dimensional planes totally, and each
plane has 26 (26=5∗5+1) parameters. Therefore, C1 Layer
has 156 parameters and 122304 (122304=(5∗5+1)∗6∗28∗28)
connections. The same is true for C3 and C5 Layer.

2.1.2. The Pooling Layer. The pooling layer is also called the
subsampling layer. It usually connects with the convolution
layer. Through partial correlation principle, on the one hand,
it can improve the robustness of the system, and on the
other hand, it can reduce the calculation of the characteristic
pattern. Its expression is shown in

𝑥𝑙𝑗 = 𝑓 (𝛽𝑙𝑗𝑑𝑎𝑤𝑛 (𝑥𝑙−1𝑗 ) + 𝑏𝑖𝑗) . (2)

‘dawn(𝑥𝑙−1𝑗 )’ represents the pooling function. Beta repre-
sents the weight coefficient of the pooling layer. ‘b’represents
the bias of the characteristic pattern after the pooling. The
main principle is to divide the image into n∗n image blocks,
then sum the pixels in each image block, and take the mean
or the maximum value.Therefore, the output image is the size
of the input image of 1/n. Among them, every characteristic
pattern has its own beta and b.

In LeNet-5 model, S2 consists of six characteristic pat-
terns of the size 14 x 14. Each neuron in the characteristic
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(a) Full connection layer model (b) Convolutional layer model

Figure 2

Figure 3: Workflow.

pattern connects with the 2 x 2 neighborhood of the cor-
responding characteristic pattern in C1 Layer. Because each
neuron’s sensory field does not overlap, every characteristic
pattern in S2 is one quarter of the size of the characteristic
pattern in C1. S2 Layer has 12 (12=(1+1)∗6) parameters
and 5880 (5880=14∗14∗(4+1)∗6) connections. S4 sampling
Layer’s analysis is the same.

2.1.3. The Fully Connected Layer. When neurons of this layer
are connected with each neuron in the upper layer, it forms
a fully connected layer. After multiple feature extraction of
multiple convolution layers and pooling layers, CNN uses
the fully connected layer to classify the extracted features. Its
expression is shown in

𝑥𝑙 = 𝑓 (𝑢𝑙) (3)

𝑢𝑙 = 𝑤𝑙𝑥𝑙−1 + 𝑏𝑙. (4)

In LeNet-5 model, F6 is fully connected with C5, which
includes 84 neurons, 10164 parameters, and 10164 connec-
tions.

Comparing Figure 2(a) with Figure 2(b), we can see the
difference between the convolution layer and the fully con-
nected layer. In the convolution layer, the connections and
parameters are reduced by means of local connection and
weight sharing. In the fully connected layer, neurons of the

layer are connected with all the neurons in the upper layer,
and its parameters and connections are numerous, so the
fully connected layer generally appears near the output part
of CNN.

2.2. The Implementation of CNN by CPU

2.2.1. The Overall Design. The system is implemented by
C++ language. The abstract base class is defined; then the
convolution layer, the fully connected layer, and the pooling
layer are all derived from the abstract base class. CNN
is responsible for IO and the configuration of all CNN
structures and calls OpenCL’s API for the acceleration.

Figure 3 shows the workflow of the entire system. First,
read the configuration file of CNN, and then choose the way
of calculation according to the need. Finally, process all input
data in turn and get the elapsed time.

2.2.2. Test Results. The system is tested on the server plat-
form, and the convolution neural network is LeNet-5. The
main parameters of the platform are shown in Table 3. The
benchmarks of CNN, which are small convolutional cores
and LeNet-5 network, are simple enough. Therefore, for cur-
rent evaluations, the experimental results have no cumulative
effect.The results ofmultiple experiments are almost constant
throughmultiple running evaluations. Table 1 lists the single
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Table 1: The single thread calculation time of the LeNet-5 layers on CPU.

Layer C1 S2 C3 S4 C5 F6 O7 Total
Time (ms) 4.14 0.14 7.86 0.04 1.57 0.16 0.02 13.93

Table 2: Hardware on Xilinx FPGA[25].

OpenCL storage structure Hardware implementation about Xilinx FPGA
Global memory The DDR storage
Local memory The on-chip Block RAM
Private memory The on-chip registers

thread calculation timeof the LeNet-5 layers on serverwith
CPU.

3. The Heterogeneous Computing
Platform about OpenCL

OpenCL is an industry-standard framework about heteroge-
neous platforms made up of CPU, GPU [19], FPGA [20], and
other processors. By defining a unified framework, OpenCL
significantly increases the portability of programs. At the
same time, OpenCL allows developers to make specific opti-
mizations for different hardware if they need.OpenCL frame-
work mainly includes platform models, memory models,
programming models, and execution models [21]. Similar to
CUDA, OpenCL provides a standard framework for parallel
programming and can support programming a variety of
hardware platforms, including FPGAs.

Since 2013, Altera and Xilinx started to adopt OpenCL
SDKs for their FPGAs [22, 23]. It makes more developers take
advantage of the high-performance and low power benefits to
design for FPGAs.

OpenCL mainly faces parallel applications and supports
two parallel programming models [24]: data parallelism
and task parallelism. Data parallelism is implemented with
multiple work items in parallel, while task parallelism is a
command queue that relies on out-of-order execution. In this
paper, the data parallel model is adopted to accelerate the
single convolution layer, while CNN adopts the task parallel
model to accelerate.

4. The Optimization of the Convolution Layer

In image recognition, the convolution plays a key role. It
evolves from two aspects, one is the delay network of sound
processing, and the other is the algorithm to extract the
feature points on the image processing. For the latter, the
convolution is to filter the image and make some eigenvalue
extraction. As it can be seen from Table 1, 90% of CNN
is consumed in the convolution layer [26]. Therefore, it is
necessary to optimize the convolution part. We can think
about algorithms, hardware features, and so on.

4.1. LoopOptimization. Byusingmore nested loops, the data’s
reused effect can be improved to accelerate the computation
of the convolution layer. In order to further optimize the
convolution layer, when there is no dependence in the loop,

Figure 4

Figure 5

we can use loop unrolling to reduce the delay by consuming
more hardware resources and parallel execution of loops. As
shown in Figure 4, the loop will be expanded with a base of
2, and the theoretical runtime will be halved.

However, when the dependence exists in the loop, We
can solve this problem by cyclic pipelining. Cyclic pipelining
is that the three stages of reading, calculation, and memory
are in the working state to improve throughput, through
the pipeline operation. Figure 5 shows how to use cyclic
pipelining.

4.2. On-Chip Memory. In OpenCL storage structure, the
memory is divided into the globalmemory, the localmemory,
and the private memory. Table 2 lists this hardware on
Xilinx FPGA [25].

Since the global memory is mainly used for the data
transmission between Host and FPGA by adopting the DDR
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Table 3: TheMain Parameters of The Host.

Feature Specification
CPU Intel Xeon E3-1230 V2@3.30GHz
Memory 32GB
OS CentOS 6.5 Final
OpenCL SDK Xilinx SDAccel 2015.3(with OpenCL 1.0)

storage, the access delay is longer than before. Meanwhile, a
private memory adopts the on-chip registers with minimum
delay except for large amount of data of CNN, it will consume
large amounts of the resources, and the local memory is a
compromise. Its access latency is small while it does not take
up a large number of resources. Therefore, before the actual
calculation starts, the required data can be read from the
global memory to the local memory and then read back after
the calculation. It can further shorten the computation time
of the convolution layer and reduce the delay. In addition,
if the same image convolved, we can convolve all of the
convolution kernels together and store these separately.

4.3. Multiple Compute Units. On the FPGA platform, hard-
ware resources are programmable and there is no precon-
figured core, which gives users greater freedom. The core
is the compute units, which can calculate the work item.
For increasing the time parallelism, the Xilinx OpenCL SDK
automatically assigns work items to different compute units
at runtime. The number of compute units are limited by
two factors: one is the total resources on FPGA, and the
other is the maximum number of compute units supported
by SDAccel. In practice, SDAccel currently supports up to 10
compute units, but they do not make full use of the resource
on FPGA. It can be assumed that if SDAccel adds the number
of compute units, the time parallelism can be higher.

5. The Optimization of CNN

This part mainly considers the acceleration of CNN from two
aspects: the storage and the pipeline.

5.1. The Global Memory. The global memory is implemented
by DDR storage to exchange the data between Host and
FPGA. However, there are a number of layers in CNN, and
the cache between layer and layer is only the intermediate
result of calculation, without the need to be visible to the
Host. OpenCL specifies that the local memory can only be
used within the kernel. Therefore, these caches cannot be
implemented in the local memory.

In this case, SDAccel provides an optimization of the
global memory. By defining the global memory outside the
kernel, SDAccel automatically uses Block RAM on the chip.
Therefore, by defining the caches between layers and layers
by the global memory, the computation delay will be further
reduced. Figure 6 shows how to use the global memory on
the chip.

5.2.The Pipelining of CNN. InOpenCL, all compute tasks can
be represented as an event. The Host submits the compute

Figure 6

tasks to the task queue in OpenCL, which is assigned to the
compute device to complete the calculation. The order of
execution of events in a task queue can be sequential and
disorderly. In an out-of-order execution queue, a number
of dependent events can be set for every event to ensure
data dependencies. OpenCL commands that the queue does
not run the event until all dependent events are completed.
This kind of event mechanism is well suited to realize the
pipelining of CNN.

5.2.1. The Dependence Relationship of CNN. The key of the
pipelining of CNN is the relationship between events. For N
layers of CNN, an input sample can generate (N+2) events,
so an event can be represented as a binary group (i, j),
representing the jth event of the ith input sample. The arrow
symbol (i1, j1)󳨀→(i2, j2) indicates that the event (i2, j2)
depends on the event (i1, j1), so the event (i2, j2) must wait
for the event (i1, j1) to be completed.

After the analysis, two dependencies exist in CNN, which
are expressed as Theorems 1 and 2.

Theorem 1 ((i, j-1) 󳨀→ (i, j)). Event (i, j) depends on event (i,
j-1). Obviously for the same input sample, the calculation of the
Layer j in CNN depends on the calculation result of the Layer
(j-1).

Theorem 2 ((i-1, j+1) 󳨀→ (i, j)). Event (i, j) is dependent on
event (i - 1, j + 1). There is only one cache area between Layer j
and Layer (j+1), so the calculation of Layer j must wait for the
calculation of Layer (j+1) before it outputs the calculation result
to the cache between the two.

Figure 7 shows the dependency among OpenCL events
generated by the four input samples in three-layer CNN.
Each square represents an event, the horizontal axis repre-
sents Event j, and the vertical axis represents Input Sample i.
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Figure 8 shows a sequence diagram in which CNN is
not streamlined. You can see that all events are executed
sequentially.

Figure 9 shows a sequence diagram in which CNN is
streamlined. Due to the pipelining of each of the two levels,
the time required to process an input sample has not changed,
but overall throughput has been increased by about N2.

Theorem 3 represents the time t required to deal with an
input sample on average.

Theorem 3 (T = max(t0 + t1, t1 + t2..., tj-2 + tj−1)).
5.2.2. The Realization of OpenCL. OpenCL API provides
that all dependent events must be continuously distributed
in memory when setting dependent events for an event.
It means that all events connected by the dotted line

in Figure 7 should be continuously distributed in the
memory. To avoid unnecessary losses, all events need to
be remapped to a new two-dimensional coordinate system
(m, n). In this frame, all events of the same n coordinates
form a one-dimensional array and can be called directly by
OpenCL API. To define j as the total events of an input
sample, Theorem 4 represents the mapping relation from
coordinates (i, j) to coordinates (m, n) and Figure 10
represents the arrangement of events in (m, n) coordinates
after the mapping.

Theorem 4. The mapping relation from coordinates (i, j) to
coordinates (m, n) is as follows:

m = min (i, [ 𝐽 − 1 − 𝑗2 ]) (5)

n = j + 2i. (6)

6. Experiment Environment and
Result Analysis

6.1. Experimental Environment. The laboratory server is used
to set up the experimental environment, in which the Host
adopts the CPU and the computing equipment uses FPGA to
complete the experiment and measure the data.

6.1.1. Host Configuration. Table 3 lists the main parameters
of the Host. The CPU is Intel Xeon e3-1230 V2@3.30GHz,
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Table 4: Specific parameters of alpha data ADM-PCIE-7V3 FPGA.

Feature Specification
Memory Two 8GB DDRS memory speeds up to 1333MT/s
# of Flip Flops 866400
# of LUTs 433200
Device
# of DSP Slices 3600
# of Block RAMs 1470

Table 5: The optimization results.

Optimization Methods FFs LUTs DSPs Block RAMs Time(ms)
Baseline 5360 8793 16 18 50.4
Loop Pipeline 5374 8814 16 18 50.0
Loop Unroll 5533 10214 16 18 27.9

Table 6: Calculating time with different number of compute units.

Compute unit 1 2 3 4 5 6 7 8 9 10
Computing time 27.9 14.5 10.8 7.4 7.3 5.9 5.8 4.2 3.9 3.5
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Figure 10

the operating system is CentOS 6.5 Final, and the Xilinx
OpenCL SDK is SDAccel 2015.3, which supports OpenCL
1.0.

6.1.2. FPGAConfiguration. Thecomputing device uses Alpha
Data ADM-PCIE-7V3 FPGA, and its FPGA’s core uses Xilinx
Virtex-7XC7VX690T-2, which includes dual channel DDR3
memory (1333MT/s). Table 4 lists its specific parameters.

6.1.3. CNN Benchmark. CNN for testing uses LeNet-5, intro-
duced in Section 2.As a classical CNN, LeNet-5 can better test
the performance of the acceleration on FPGA. At the same
time, the whole system stores data by XML format which
can automatically generate OpenCL code according to the
parameters of CNN.

6.2. Results Analysis

6.2.1. Analysis of Optimization Results about the Convolution
Layer. The optimization of the convolution layer is mainly
the C3 Layer in LeNet-5. After using a single compute
unit of loop tiling and local memory, loop unrolling and
cyclic pipelining are used to optimize it. Table 5 lists the
optimization results, and the loop unrolling increases the
calculation speed by 45% and consumes more computa-
tional resources.

The optimization is for a single compute unit. If we com-
bine multiple compute units on the FPGA, the computation
time is less.Table 6 shows the value of calculating timewith
different numbers of computing units. In current evalua-
tions, since the clock frequency of the FPGA development
board is fixed, and the clock cycles of selected benchmark
of CNN are also constant. The running time of multiple
evaluations is constant as well. In addition, we have no OS
interactions and complex memory management, so the run-
ning time is not a randomvalue throughmultiple evaluations.
Figure 11 shows the change trend of the calculation time
with the number of compute units. We can see that the
computation time is basically decreasing with the number of
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Table 7: The assignments of compute units.

Layer C1 S2 C3 S4 C5 F6 O7
Number of Compute Units 2 1 3 1 1 1 1

Table 8: The resources of every compute unit on FPGA.

Layer FFs LUTs DSPs Block RAMs
C1∗2 8331 11762 19 20
S2 6967 10672 15 31
C3∗3 8160 15935 17 18
S4 6777 10071 15 9
C5 7141 11593 16 136
F6 6637 10341 15 10
O7 5087 4488 12 4
SUM(%) 74751(8.63%) 118494(27.32%) 145(4.03%) 284(19.32%)

Figure 11: The calculation time with the number of compute units.

compute units, but the scheduling unit also produces some
losses, so it is not completely consistent with the curve in
Figure 11.

6.2.2. Analysis of Optimization Results of CNN. In sequen-
tial execution, all OpenCL kernels calls will be executed
sequentially and SDAccel supports up to 10 compute units.
The convolution layer takes the most time, so two or three
compute units are configured for the convolution layer.
Table 7 lists the assignments of compute units. However,
though themost compute units have been used, the resources
of FPGA are still small enough to give full play to the
performance of FPGA.

Table 8 lists the resources of FPGA that are consumed
by every compute unit. We can see that if more compute
units can be supported in parallel, the performance will
improve further.

Figure 12 shows the average running time of every
event in the program, and we can see that, even after
optimization, the two convolutions layers (event 2 and
event 4) consume the most time.

Figure 13 shows the time distribution of the first two
eventswithout streamline.Each event is represented as a line
segment, where left endpoint’s coordinate is ‘start time’, and

Figure 12: The average running time of every event.

Figure 13: The time distribution without streamline.

right endpoint’s coordinate is ‘end time’. It can be found in all
events being executed sequentially.

Figure 14 shows the time distribution of the events
with streamline. It shows that both the second convolution
layer of the first input and the first convolution layer of
the second input can be calculated on FPGA. The overall
throughput on FPGA is also improved, which is represented
by the properly working pipeline. Before the pipeline, the
throughput of the system is 24.4 FPS, while it reaches 48.5
FPS. Now the throughput has doubled.
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Figure 14: The time distribution with streamline.

7. Conclusion

This paper is devoted to the parallel acceleration of CNN
based on FPGA with OpenCL, by using Xilinx SDAccel
tools. Taking LeNet-5 as an example, the acceleration of
convolution layer and CNN is studied. On the convolution
layer, by adopting the loop optimization and memory access-
ing methods, the computation speed could be increased 14
times of processing convolution layer, while the whole system
processing speed would be improved 2 times, where the
overall speed reaches 48.5 fps.

Due to their own characteristics, CPU could not fully
exploit the parallelism of CNN algorithms and GPU would
consume much more power. Alternatively, by fully using
the parallelism of the neural network’s structure, FPGA can
not only reduce the computing costs but also increase the
computing speed. Currently, Xilinx SDAccel’s tool chain
could not support up to 10 compute units in parallel until
now, but FPGA has its redundant resources to support more
computing units.With the increasing development of the tool
chain in the future, the parallel acceleration of CNN based on
FPGA with OpenCL has its prospects.
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