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Driven by the importance of energy consumption in system-on-chip design as an evaluation factor, this paper presents a design
methodology at the system level to optimize power consumption on ARM-based architecture for real-time video processing. The
proposed design flow is based on the interaction between the tool and user optimizations. The tool optimizations are the options
and best practices available on the integrated design environment for the Xilinx technology and the target Zynq-7000 architecture.
The user methods present methods proposed by the user to optimize power consumption.We used the principles of voltage scaling
and frequency scaling techniques for user methods. These two techniques allow energy to be consumed in the proportion of work
to be done. The suggested flow is applied on real-time video processing system.The results show power savings for up to 60% with
respect to performance and real-time constraints.

1. Introduction

Embedded real-time video applications are becoming widely
spread andmore andmore used in a lot of systems.They have
important applications in various domains such as segmen-
tation [1], object tracking [2], visual detection and match-
ing [3], and stereo vision [4]. These systems are generally
executed in an embedded environment and are subjected to
many constraints like power consumption, time, and resource
constraints.

To develop and implement real-time high-quality appli-
cations, a combination of dedicated technologies and metho-
dologies has been proposed in order to obtain optimized sys-
tems with required performance. The used technologies vary
from specific processors such as General Purpose Processors
(GPP), Graphic Processing Unit (GPU), and Digital Signal
Processors (DSP) to parallel architectures like Application
Specific Integrated Circuits (ASICs) or even programmable
logic devices (FPGAs).

Today, FPGAs are more used to build complex video
processing applications. They give real-time performance,
hard to achieve with GPP or DSP [5, 6], while limiting

the extensive design work required for ASICs. Furthermore,
FPGAs enable implementing highly parallel architectures
thanks to the huge amount of programmable logic available
on a chip [7].

One of the major problems that face FPGA compared
with ASICs is the power consumption, which becomes a
limiting factor [8]. Therefore, more effort is being spent to
propose a design with low-power dissipation.

Since FPGAs are based on CMOS transistors, power con-
sumption can be divided into two main categories, static and
dynamic.The static power is dissipatedwhen the circuit is in a
quiescent state. It is caused by leakage currents ofCMOS tran-
sistors. These currents are the subthreshold leakage current,
the gate leakage current, and the junction leakage current [9].
Dynamic power consumption is given by

𝑃𝑑 = 𝛼 ⋅ 𝐶 ⋅ 𝑉
2 ⋅ 𝑓, (1)

with the following:𝐶 is the capacitance, 𝛼 is the charging rate
(depends on clock frequency), 𝑉 is the voltage supply, and 𝑓
is clock frequency.
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This power is highly related to the technology and it has
become a concern with modern FPGAs, which are being
implemented in a 24 nm technology.

To reduce power consumption, the principle causes of
power dissipation have to be investigated during all the steps
of the design process of integrated circuits from the algo-
rithmic level down to the transistor level. Designers should
consider the latest methods in low-power technology at all
design levels. Power savings can be realized by making the
right choices during all abstraction levels.

In this paper, we propose a design methodology for real-
time video processing to optimize power consumption and
to give an ASIC-like system on FPGA. This methodology is
applied on a high performance video system of 1920 × 1080
pictures at 60 frames/sec. The paper is divided as follows: the
second part contains the state of the art of some methods
used to reduce static and dynamic power for CMOS devices.
The third part presents a real-time video processing system.
The fourth part gives the suggested design methodology to
end up with an ASIC-like system. The fifth part contains
the experimental results and discussion and the sixth part
concludes the work.

2. FPGA Power Reduction: State of the Art

Most of modern FPGA boards are computing platforms
including programmable hardware element, memory resour-
ces, configurable I/O, embedded processors, and even em-
bedded operating systems running within FPGA. These
platforms allow a high level of system integration, with the
ability to combine related peripheral devices and embedded
processor cores with hardware functions. The challenge in
giving such complete platforms with hardware and software
functionalities is to permit the combination of hardware
performance and software flexibility. This combination is at
the expense of high power consumption, which is the major
limit of FPGA platforms.

To overcome this limit, researchers continually try to find
newmethods to optimize power consumption.The proposed
methods have explored all the abstraction levels of the design
process from the system level to the circuit and the techno-
logical level.This paragraph will be dedicated for some works
and methods for power reduction at various design levels.

Some works [10–12] have used HW/SW partitioning to
put forward optimal systems with low-power consumption
as power-aware decisions at a very early stage of the design
process. HW/SW partitioning is the problem of assigning
application tasks to the existing computational cores under
defined constraints such as area and power. It is formalized
as an optimization problem aiming to minimize an objective
function under defined constraints. The authors in [10]
proposed an algorithm for HW/SW partitioning to find the
best tradeoff between power and latency. They modeled the
application as a data flow graph and computed the latency
and power consumption for every suggested partitioning.
The proposed algorithm made a heuristic search for the best
solution which respected the defined constraints.

The authors in [12] modeled the system using data
flow graph using the bees’ colony to solve the optimization

problem of HW/SW partitioning under power and time
constraints. The heuristic algorithms were utilized as the
optimization problem was NP-Hard and the exact resolution
might take a longer time. To adjust the constraints according
to the user wishes, weighting coefficients were added to
the constraints to specify which of the two conflicting
terms would be more important for the final partitioning
result.

As the HW/SW problem is a high-level method used at
the system level, the metrics of the problem are computed
utilizing estimations and assumptions. These estimations
make the proposed solution very abstract with a low accuracy
when confronted with the constraints of real world imple-
mentation.

Tomove deeper into the design process, other researchers
have used methods at the architecture level like the dynamic
voltage scaling (DVS) and dynamic frequency scaling (DFS).
These methods use the dynamic adjustment of voltage and
frequency at run time. They aim to save power by enabling
the device regulation of its frequency and voltage based on
operating conditions. These methods need deep knowledge
of the working blocks and their frequencies.

The DVS, the DFS, or even Dynamic Voltage and Fre-
quency Scaling (DVFS) was first proposed to reduce power
consumption of microprocessors [15–17] and as they were
successful, they were generalized and used on FPGAs [18,
19]. The authors in [15] propose a method for static timing
analysis for dynamic scheduling schemes in order to use the
DFS. They propose a safe timing analysis for systems with
off-chip and hierarchical memories where memory latency
would not scale with processor frequency. This method,
called “frequency-aware,” replaced theWorst Case Execution
Time (WCET) obtained by static timing analysis. It expressed
WCET bounds with frequency-sensitive parameters where
cycles were interpreted in terms of the processor frequency
and where memory access is expressed in terms of the
memory latency overhead. The new suggested WCET is
determined on the fly for a given frequency.

The authors of [16] addressed the problem of real-time
systems with time critical applications. They put forward a
new algorithm for the DFS, which is directly applied to the
scheduler tomodify the OS’s scheduler and taskmanagement
service. First, a static frequency was assigned to every task.
This frequency was the lowest possible frequency that allows
the scheduler to meet deadlines for a given task set.

If a task finished before the worst case specification, the
frequency would be recomputed using the latest information.
The new value would be utilized until the release of the task
for a future invocation. Therefore, the frequency is recom-
puted at every new scheduling time using the real computed
time for accomplished tasks and the specified worst case for
others. This method provided a power reduction from 20 to
40%.

The authors of [17] proposed a DVFS technique for non-
real-time applications. The main idea reposes on lowering
the CPU frequency when accessing off-chip peripherals. The
temporal distribution of the on-chip and the off-chip work-
load is computed with different scenarios to determine the
CPU frequency during idle periods. The energy savings went
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up to 70% with a variable performance penalty depending on
the saving value.

In [18] the authors described a methodology for DVS on
commercial FPGAs.The authors used a circuit tomeasure the
logic delay, which would be used by the voltage controller
block to dynamically adjust the supply voltage using a
closed loop. The voltage controller was an external module
implemented on a PC. The experimental results using a
Xilinx Virtex XCV300E FPGAwere presented and the power
savings were between 4% and 54%. Although the authors
said that implementing the voltage controller as an internal
module is simple, giving results and statistics based on the
externalmodule is disputable since it is possible to cause delay
violation or more resource utilization.

The author in [19] suggested a method for dynamic volt-
age scaling.The critical path is used to locate the in situ detec-
tors, which would be utilized by the logic delay measurement
circuit to identify the critical point of operation. The voltage
was adjusted, and then a suitable corresponding frequency for
operation is identified in a closed loop configuration. As the
used Virtex-5 XC5VLX110T platform did not allow voltage
scaling, the authors use a redesign of DC-to-DCmodule that
supplies the Vccint voltage to the FPGA.

In the next paragraphs we present the proposed HW/SW
architecture for real-time video platform and the methods
used for optimization.

3. Hardware Software Architecture for
Real-Time Video Processing

Real-time video processing plays a key role in industrial
systems as it is being expanded to a lot of fields like multi-
media-based electronic products as video surveillance sys-
tems and cell-phone cameras.

Real-time video processing systems consist of processing
huge amounts of image data in a short time. The purpose
varies from a simple display to the extraction of useful
information for intelligent scene analysis. Digital videos are
multidimensional signals, which make them data intensive
and resource demanding as they need an important amount
of resources for computations and memory operations. For
example, for a full HDTV resolution of a 1920 × 1080 digital
image frame with 3 bytes of pixels at 60 frames/sec, such an
image contains 1920 × 1080 × 24 bits of data. Furthermore,
the large dimension of digital video demands the processing
of huge amounts of data of approximately 49 million pixels
per second.

While designing FPGA systems for real-time video pro-
cessing, the following issues have to be considered:

(i) How to propose an architecture that can fulfill the
performances required by different communicating
blocks: blocks in relation to the video processing
systems are subjected to timing constraints for high
bandwidth and data intensive operations with the
need for accessing the memory at the video rate.

(ii) How to propose an architecture that can be extended
when needed: the extension is the ability to add any

ARM A9

C
entral interconnect

D
D

R controller

DDR3

AXI3

AXI-VDMA

Video-in Video to 
stream

processing
Video-out

AXI4

HPGp

Custom

Figure 1: Block diagram of implemented design.

block in relation to the video processing system in the
limit of available resources.

(iii) How to get an optimal use of available resources: the
problem of partitioning the system between HW/SW
resources allows permitting the high performance of
hardware and the flexibility of software.

In previous works [20, 21], we suggested various real-time
video processing architecture with a variety of power saving
techniques. In [20] the authors put forward a hardware
architecture for video zoom-in processing with power reduc-
tion. The proposed hardware architecture was based on the
MicroBlaze 32-bit microprocessor and uses the Processor
Local Bus (PLB), an ancient protocol adopted byXilinx before
moving to the Advanced eXtensible Interface (AXI) protocol.
To reduce power consumption, the authors proposed a clock
controller block, which would verify every input before
processing.The new input would go through processing only
if it differs from the previous one. Otherwise, the blocks
would be deactivated. In [21], the authors explored different
design methodologies at different levels of abstraction. They
discussed how the choice of the design methodology has
an impact on the proposed architecture. The platform-based
design was proposed as a design methodology and was
tested on real-time video processing system. Both works are
implemented on Virtex 5 platform.

The choice of the appropriate target platform is very
essential for real-time systems. For the existing FPGA plat-
forms, many are suitable for video processing at real-time as
they can work at a frequency that can exceed 150MHz hence
the ability to support HD resolutions. In addition, for the
FPGA vendors, they have incorporated various hardware and
software IP cores for the most important functions needed
for video processing like timing generation and RGB con-
versions.

Figure 1 shows the block diagram for the proposed archi-
tecture implementation. The hardware or programmable
logic (PL) is used to implement video-related blocks like
video-in, video processing subsystems, and video-out. The
software part or processing system (PS) is responsible for
system-level-control registers, DMA controllers, and accel-
erator coherency port (ACP). The memory interface enables
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the PS and blocks implemented in the PL to access the
memory. The exploitation of the PS and the PL to implement
video processing modules is done according to the available
resources, performance constraints, power constraints, and
other issues like flexibility and time to market.

Choosing the best hardware platform to implement a
real-time video processing engine is challenging. In thiswork,
the Zynq ZC702 based Xilinx evaluation kit is chosen as
a target platform. It includes software, hardware, and IP
components facilitating the development of custom video
applications. In this design, we use the AXI protocol [22],
which is a part of ARM AMBA microcontrollers that was
adopted by Xilinx with Spartan 6 and future platforms.

The AXI interconnect, AXI3, and AXI Video DMA IP
cores can form the basis of video systems capable of allowing
handling video frame buffers and giving access to a shared
DDR3 SDRAM [23–25]. The AXI Video Direct Memory
Access (VDMA) core implements a video optimized direct
memory access engine with frame buffering.TheAXIVDMA
core transfers video data to and from memory under a
dynamic software control. The processor can access the PL
using the AXI3 master General Purpose (GP) interfaces. The
AXI HP interface allows the PL to access the DDR memory
through high bandwidth data path bus masters.

The PS is used to initialize blocks and master memory
access.The customprocessing block presents any kind of pro-
cessing that can be added to the video system.This processing
can be a low-level treatment, which makes changes on the
video directly, or a high-level treatment which aims to extract
semantic information. This block represents the extensible
part of the video system.

The video-out block is responsible for displaying the
video on a monitor.

The next paragraphwill present the usedmethods to opti-
mize power consumption on the proposed architecture.

4. Real-Time Video Processing System Design
for Power Optimization

Asdemonstrated in the introduction, the power consumption
is a key factor in the evaluation of embedded systems. A
challenging idea for researchers as well as for system design-
ers is to propose architecture with minimal power consump-
tion.The design of an ASIC-like system needs tailored power
optimization decisions that will verify the system require-
ments and performance. The design process has to start by
defining different application requirements. Figure 2 shows
the steps followed during the design process in order to pro-
pose an ASIC-like system. The figure shows a typical FPGA
design process and the interaction with the power-aware
decisions. At the specification step, the device is selected
and the system requirements are well defined. A thermal
power and supply current allocation are done at this step.
After the proposition of the architecture and the definition
of the hardware and the software tasks, the designer adds
the appropriate power-aware decisions. These decisions can
be tool and user methods. The tool methods are high-
level decisions available within the design tool and can be
selected and added by user as optimization decisions. When

Specification

Synthesis

Placement

Power metrics
definition 

Power optimization
decisions

Optimized architecture

Performances?

Power estimation

Lab testing

Routing

Figure 2: Power in the FPGA design process.

chosen, these decisions will be added automatically to the
design during the synthesis and implementation step. The
user methods are optimization strategies that are suggested
and implemented by the user and which can be application
specific or generalized methods. The power-aware decisions
will be followed by a test and verification to check that the
system performance is not violated.This verification uses the
physical information, which is added to the dimension of the
problem after the synthesis, placement, and routing steps. At
these stages, a more accurate estimation for power can be
added, and so the designer can change the decision if the
budget exceeded or performance is violated.

The validation of the power-aware methods is based on
power estimations at every design stage. Xilinx provides
two different tools for power estimation, which are Vivado
Power Analysis (VPA) and Xilinx Power Estimator (XPE).
XPE is a power estimation tool used in the predesign and
preimplementation phases. Based on architecture and device,
it helps select power supply and to specify I/O loading, design
resource usage, and activity rates.TheVPAallows performing
power estimation at all stages of the design flow: synthesis,
placement, and routing. It is more accurate at the postroute
since it can read from the implemented design database the
exact logic and routing resources used.

4.1. Tool Optimization Method. The FPGA market is almost
dominated with two top FPGA companies, which are Xilinx
andAltera. Every company provides its specific platforms and
specific design tools used for these platforms. As a result,
the tool optimizations are platform-specific and tool-specific.
They are applied on specific details of the design. In this work,
we target the Xilinx FPGA and hence we use the Vivado
design tool. The Vivado Integrated Design Environment
(IDE) is a tool that offers many options to help designers
during the design process

The available optimization options are as follows:

(i) Intelligent clock gating: this method is used to reduce
dynamic power consumption through turning off the
clock.There is a general clock gating or specific block



International Journal of Reconfigurable Computing 5

clock gating. General clock gating is provided by
Vivado IDE to automatically reduce the switching
factor 𝛼 defined in (1). This option can be selected
whether during the preplacement savings or the post-
placement savings.

(ii) BRAM savings: they are a configurablememorymod-
ule compatible with a variety of BRAM interface con-
trollers. The Vivado IDE offers power optimization
for available Xilinx 7 series devices for BRAMs in true
dual port mode. The writing mode can be changed
safely for both reading and writing operations if its
output is not connected or not needed during writing
or reading operations. These optimizations will be
performed as long as they do not affect user function-
ality and performance. This option can be explicitly
enabled and disabled during the preplacement sav-
ings. The designer can exclude a part of the design
from the specified optimizations when it is necessary
to protect a defined critical path that may be changed
after power savings.

(iii) Standby mode: this option puts the CPU in the
standby mode and starts it up when an event or
interrupt is detected. In this mode of operation, the
device is powered up, but themajority of its clocks are
gated off.This puts the processor in a static statewhere
the only consumption will be caused by leakage cur-
rents and some logic which are responsible for the
detection of wakeup conditions.

4.2. User Methods for Power Optimization. User methods are
all the methods that can be added to optimize the power
consumption of the whole system. Some of the famous
methods used are voltage and frequency scaling.

The DVS or the DFS is the process of varying the
voltage or frequency for a target processor voltage domain
and frequency domain. As the voltage and frequency are
directly related to power consumption (1), reducing the
voltage permits a quadric reductionwhile reducing frequency
allows a linear reduction of power consumption.

To use the DVS and the DFS on a target FPGA, the
following definitions have to be considered [26]:

(i) The process strength of a device is defined as the
ability and degree of variation in the attributes of
integrated transistors of a device. There are three
classes, weak, nominal, and strong. A weak device is
able to operatewith the lowest acceptable frequency at
nominal voltages. Strong devices can run at faster fre-
quencies than required at nominal voltages and can
function at voltages lower than nominal voltage val-
ues at the minimum specified frequency.

(ii) The voltage domain is defined as the group ofmodules
sharing the same power supply voltage for the core
logic of each device.

(iii) The operating performance point is the voltage re-
quired for every device to be able to operate at a
desired processor clocking frequency. For example,
for the processing systemDDR I/O supply voltage, the

Inputs: 𝑉min 𝑥, 𝑉op 𝑥, st;
Begin
Identify voltage bounds for the target block;
Do
𝑉op = 𝑉op − st;
Test performance;
if test failed
𝑉op = 𝑉op − st;
Break;

End if
While (𝑉op > 𝑉min 𝑥)
End

Algorithm 1: Voltage scaling algorithm.

minimum value is 1.14 v and the maximum is 1.89 v
[27]. This information can be found in the technical
report of the target FPGA device.

(iv) The critical path of the system is defined as the long-
est path for achieving the execution of a program
from the source to the sink of a dataflow graph. This
information is used to track the critical tasks when
scaling the voltage and the frequency to ensure per-
formance of the system.

4.2.1. Dynamic Voltage Scaling. In this paper, the DVS is used
for power saving. Let𝑉min 𝑥 be theminimumvoltage required
for the block 𝑥 to operate in normal conditions and under
which the system fails. These values are characteristics fixed
at the manufacturing of the device. Let𝑉op 𝑥 be the operating
voltage of the block 𝑥.The algorithm used to scale the voltage
is as in Algorithm 1, where st is a float representing the step
of incrementing and decrementing the voltage.

In the ZC702 board, the power is supplied to the com-
ponents through a number of independent rails using pro-
grammable power regulators (UCD9248) and Power Man-
agement Bus (PMBus) compliant system controller from
Texas Instruments. The PMBus is an open standard protocol
that defines communication with power converters. The
PMBus allows writing and reading power, current, and volt-
age information. The processors can access the PMBus using
1-to-8 I2C switch present on the board. The Zynq ZC7020
device is divided into several power domains. These power
domains are generated by 6 regulators which generate differ-
ent voltages required by the Zynq and the onboard compo-
nents. The supplied voltage and currents are continuously
measured and monitored by three (UCD9248) power con-
trollers available on the ZC702 board.

In this work, scaling the voltage of hard blocks is done
using the PMBus protocol, which simplifies the communi-
cation with power converters in a power system. It enables
software or hardware in the device to access to a manageable
power supply [28–30].

The optimal operating voltages are computed using algo-
rithm in Algorithm 1. Then the system is configured only
one time with these values at every start of the system.
The configuration and the implementation of the proposed
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algorithm are done by the processor through soft code. More
details about the scaled blocks will be found in experimental
results.

4.2.2. Frequency Scaling. Frequency scaling is the ability to
change the frequency of a block without degrading the per-
formance of the system.

As we target a defined reconfigurable platform, which is
the Zynq, the analysis of technical details about the clocking
system is essential to determine to which level the scaling is
possible.

In this work, we test two methods for frequency scaling:
scaling the frequency of the processor, which we call the
DVS, and scaling the frequency of the blocks implemented
on the PL, which we call adaptive frequency scaling (AFS).
Whether applying theDVS or theAFS, an analysis of different
execution paths is essential to ensure the nonviolation of the
system performance.

Let 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛} be a set of 𝑛 tasks defining an
application 𝐴. The meaning of task varies according to the
chosen granularity; it can be an instruction, a portion of code,
or a block. Let𝐺 be a Control Data Flow Graph (CDFG).𝐺 is
defined as 𝐺(𝐸, 𝑉) with

𝑉 = {V1; V2; . . . ; V𝑛}

𝐸 = {𝑒𝑖𝑗 | 1 < 𝑖, 𝑗 < 𝑛} .
(2)

𝐺(𝐸, 𝑉) is an oriented graph that describes the dependencies
between the tasks 𝑜𝑖 of an application, 𝑉 is the set of nodes,
and 𝐸 is a set of edges.

Every task 𝑜𝑖 is mapped to a node V𝑖. 𝑒𝑖𝑗 is the edge linking
task 𝑜𝑖 to task 𝑜𝑗.

Let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚} be a set of paths from the source to
the sink, 𝑠𝑖 = {V1 − V𝑗 − V𝑘 ⋅ ⋅ ⋅ − V𝑛}, 1 < 𝑖 < 𝑚. Every path
starts with a source node V1 ∈ 𝑉 and ends with a sink node
V𝑛 ∈ 𝑉.

Every task 𝑜𝑖 has a Best Case Execution Time (BCET)
and Worst Case Execution Time (WCET). The WCET of a
program is the WCET of the longest path from the source
to the sink, WCET = {maxwcet𝑖/1 < 𝑖 < 𝑚}, and the
BCET of a an application is the BCET of the longest path,
BCET = {max bcet𝑖/1 < 𝑖 < 𝑚}.

BCET is when everything goes as expected without
exceptions and WCET is due to unexpected scenarios like
resource occupation, memory refreshment, or pipeline haz-
ards.

Using timing analysis and the computation of WCET
helps define the bounds of the execution time of a task on
a particular hardware or software platform.

There exist two methods to performWCET analysis [31]:

(i) Static methods: they take the task code with some
annotations, analyze the set of possible paths, and
combine control flowwith amodel of the target archi-
tecture to obtain upper bounds for this combination.

(ii) Measurement-based methods: they execute the task
on the target hardware or a simulator for a vector of
inputs.

In this work we use a measurement-based method to deter-
mine the bounds of the system. The computed WCETs are
used as input information for the scaling algorithm.

As we target a defined reconfigurable platform which is
the Zynq, the analysis of technical details about the clocking
system is essential to determine to which level the scaling is
possible.

The 7 series FPGAs clocking resources [32]manage clock-
ing using clockmanagement tiles (CMT)which provide clock
frequency deskew, synthesis, and jitter filtering. Each CMT
consists of one phase-locked loop (PLL) and one mixed-
mode clockmanager (MMCM).The PLLs andMMCMs used
to synthesize frequencies with a wide range.The PS clocks are
derived from one of three programmable PLLs. These 3 PLLs
drive the clocks of theCPU,DDR, and I/O. Each of these PLLs
is loosely associated with the clocks in the CPU, DDR, and
peripheral subsystems.

ThePL has its independent clockmanagement generation
and distribution structures. It also receives four clock signals
from the PS side. These signals are completely asynchronous
to each other and do not have a relation with other PL
clocks. The communication between PL and PS side is
possible through functional interfaces like AXI interfaces,
interrupts, and clocks and through configuration signals [27].
The Dynamic Configuration Port (DRP) allows software to
configure hardware using a DRP interface, which is an AXI4-
Lite interface.TheDRP also enables generating custom clocks
on the fly through a dynamic partial reconfiguration of PLLor
MMCM modules. The relation between the input frequency
and the output is outlined using

Fclkout = Fclkin ∗ 𝐷
𝑀

(3)

with 𝐷,𝑀 being two programmable frequency dividers by
configuration through DRP.

The DFS is performed at run time with frequencies that
conform to the used processormode,whereas theAFS is done
according to the data input size. As the target is a real-time
video processing system, the input varies according to the size
of the video. The operating frequency of the PL blocks varies
also with the video size: hence, a HD video of 1360/738 does
not require the same processing frequency as full HD video
of 1920/1080.

TheAFS allows the system to operate under theminimum
frequency needed to guarantee the nonviolation of perfor-
mance.

5. Experimental Results

The proposed architecture is prototyped on the Zynq ZC702
evaluation board. The ZC702 provides a hardware environ-
ment for developing and evaluating designs targeting the
Zynq XC7Z020 device. It includes 1 GB DDR3 component
memory, 128Mb Quad SPI flash memory, USB 2.0, Secure
Digital (SD) connector, a HDMI codec, I2C bus, and 2 UART
interfaces.

This paragraph is dedicated to give experimental results
and show the benefits of the proposed design flow in power
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reduction. A performance comparison is also held to verify
the performance of the whole system.

5.1. Hardware and Software Architecture. The design of the
target system is carried out using the Vivado Design Suite
tool. It is utilized to design, integrate, and implement with the
Zynq-7000 All Programmable, Xilinx 7 series, and UltraScale
devices. Working with this design suite, the design imple-
mentation can be accelerated with place and route tools that
analytically optimizemultiple and concurrent designmetrics,
such as timing and power. The Vivado gives the ability to
analyze the design at each design stage, which allows earlier
modifications in the design processes. It provides also timing
and power estimations after synthesis, placement, or routing.

Figure 3 illustrates a simplified block diagram of the hard-
ware implementation of the video processing architecture.
This figure is limited to interface connection between blocks.
It contains the Zynq7 processing system, a video pipeline,
AXI interconnects, AXI performance monitor, and video-
related blocks.

(i) The processing system is used to initialize blocks and
master memory access. The frequency and voltage
scalingmodules are also implemented on the process-
ing system.

(ii) The AXI interconnects are responsible for handling
information to and from the processing system.

(iii) The AXI performance monitor is responsible for
different statistics with the AXI protocol interfaces. It
is used for transactions, external system events, and
performance measurement for AXI4-, AXI3-, and
AXI4-Stream and AXI4-Lite interfaces. It captures
real-time performance metrics for the throughput
and the latency. In this work we used the performance
monitor IP to perform real-time profiling using the
SDK.

(iv) The video pipeline contains theVideoDirectMemory
Access (VDMA), which is a soft IP core that provides

high bandwidth for direct access to thememory using
AXI4-Stream-video peripherals. The AXI4-Lite slave
interface is used to perform initialization, registers,
and status.

(v) The video-related blocks are standard blocks used in a
video chain and transfer the video stream after mak-
ing the necessary conversions. The RGB to YCrCb
converts the design pixels to from RGB used by the
AXI4-Stream to the 16-bit YUV 4 : 4 : 4 signal format.
The Chroma Resampler block takes the output of the
RGB to YCrCb and converts it to YUV 4 : 2 : 2 which
is the format required by HDMI output.

Table 1 gives the resource utilization of the proposed
architecture and some blocks.

The software part running on the PS is built using the
Xilinx Software Development Kit (SDK). The SDK is an
embedded environment to create and test software platforms
and applications targeting Xilinx embedded processors. This
software environment works with hardware designs created
with Vivado. In this work, the software part running on the
ARMprocessorwith standalone operating systemhas the role
controlling hardware.

5.2. Tool Optimizations Results. Figures 4(a) and 4(b) show,
respectively, the power consumption and the resource utiliza-
tion for various optimization approaches using tool optimiza-
tions.The proposed groups of values are named, respectively,
as follows:

(i) No optimization (no-opt) for synthesis and imple-
mentation without any additional optimization

(ii) Preplacement power gating (pre-opt), which is a
power optimization method added by the tool and
performed after the placement step

(iii) Postplacement clock gating (post-opt), which is a
power optimization added by the tool after the place-
ment step

(iv) Low DDR mode (low-ddr).

The maximum of power savings is obtained with a low DDR
mode. The tool optimizations allow power savings up to 7%.

5.3. Voltage Scaling Results. The voltage scaling method is
implemented as a software code running on the processor.
The communication with voltage rails is done using the
I2C bus. To avoid the unnecessary additional resources, the
optimal values are computed using excessive test scenarios.
This analysis defines the optimal values that will be used by
the system without need to collect them at run time using
additional resources.

The DVS method requires the knowledge of the voltage
bounds of different blocks. Table 2 [27] shows the maximum
and minimum of recommended operating voltage values for
some blocks of the ZC702 device.

Although the voltage value can reach more inferior
values than those indicated in the safety bounds (e.g., the
𝑉ccpint minimal value can reach 0.5 v) [27], the safety of a
functioning of the device outside the indicated bounds is not
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Figure 4: Resource utilization for different saving approaches.

Table 1: Resource utilization.

Slice LUTs Slice registers Slice Lut Flip Flop Block RAM DSPs
The total system 10823 14524 4689 5121 10.5 19
AXI performance Monitor 2787 3504 1135 1079 0 0
Clock reset 19 40 14 15 0 0
Processing system 538 655 226 284 0 0
Video-out 239 355 126 103 1 0
RGB to YCrCb 365 335 144 163 0 4
Video Timing Controller 131 212 78 39 0 0
Video pipe (VDMA) 5886 8371 2514 3042 9.5 12

Table 2: Voltage recommended values for some blocks of the target Zynq ZC702 device.

Blocks Description Minimum operating
voltage (v)

Typical operating
voltage (v)

Maximum operating
voltage (v)

Vccpint
PS internal supply

voltage 0.95 1 1.05

Vccint
PL internal supply

voltage 0.95 1 1.05

Vccpaux
PS auxiliary supply

voltage 1.71 1.80 1.89

Vccaux
PL auxiliary supply

voltage 1.71 1.80 1.89

Vccbram
PL block RAM supply

voltage 0.95 1.00 1.05

tested.The technical report [27] indicates that an exposure to
maximum values for extended periods of time might affect
device reliability.

Figure 5 highlights the voltage scaling results of some 𝑉cc
rails. Each figure indicates the powermargin for every chosen
value. For example, for the 𝑉ccint rail, when the minimum
operating value is chosen (0.95) the power consumption of
this block varies between 22 and 31mw.

5.4. Frequency Scaling and Design Performances. The fre-
quency scaling varies according to the target architecture.
There is the frequency of the PL blocks and the frequency
of the PS. Defining the scaling values needs an analysis

of the functioning of the system. To do so, we use the
System Performance Analysis (SPA) toolbox available under
the SDK development tool. This toolbox allows exploring
the performances of hardware and software at run time.
The observation of the system performance at critical stages
allows taking the right optimization decisions in order to
refine the system performances without degradation.

Figure 6 illustrates the CPU utilization rate. We use only
one core in the proposed architecture. The graph shows that
the utilization rate is between 91% and 100%. This informa-
tion shows that applying DFS on a processor executing a real-
time video system does not allow for a noticeable optimiza-
tion as the CPU utilization is usually at its maximum values.
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Figure 5: Voltage scaling results on different rails.
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Adaptively, we propose the AFS, which allows scaling
frequency according to the input size.

Figure 7 shows the result of AFS on different video input
sizes. Power savings are up to 12%.

5.5. Comparison with Other Works. Voltage and frequency
scaling, for both hard and soft parts for commercial FPGAs,
are implemented by several researchers using different meth-
ods. In this part, we compare our work with two existing
works, which are the main works in the literature that focus
on frequency and voltage for commercial 28 nm FPGAs.
The authors used voltage and frequency scaling [13] and
added logic scaling in [14] to optimize power consumption.
The voltage scaling and frequency scaling were performed
through two separate units for each of them. In [13], the
DVS unit was composed of a MicroBlaze processor, a Dual
Port RAM, and an I2C IP core. It allows accessing the
configuration and monitoring the PMBus power rails. The
control and record of power and voltage values were done at
run time.TheMicroBlaze received the power and the voltage
values and communicated with the PMBUS via the I2C to
write new values.The dialog between theMicroBlaze and the
power rails was done through commands written in C.

The frequency scaling unit utilized a PicoBlaze� 8-bit
microcontroller. Frequency scaling was made through the
communication with the off-chip Silicon Labs Si570, which
was an oscillator programmable at run time to scale the
frequency to the wanted values. The communication was
done through I2C protocol.

In [14] the authors used voltage, frequency, and logic
scaling to optimize power consumption. The voltage scaling
unit is identical to the one used in [13].The frequency scaling
unit utilized a ROM containing the configuration parameters
used by the MMCM to generate the clock for the user
logic. The frequency would be decreased continually at run
time and stopped when a value causing timing violations is
detected.
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Table 3: Comparison with different works.

Additional resources Frequency scaling
method

Voltage scaling
method Test method Power achievements

Work 1 [13]
MicroBlaze PicoBlaze

I2C IP core
Dual Port RAM

I2C communication
with Si570 oscilator

I2C communication
with PMBus

Random functions
with different sizes

Up to 64.98% (using
voltage and frequency

scaling)

Work 2 [14]

MicroBlaze I2C IP
core

Dual Port RAM
ROM

Configuration of
MMCM
ROM

I2C communication
with PMBus

Random functions
with different sizes

Up to 60% (using
frequency, voltage,
and logic scaling)

Our work I2C IP core Soft configuration of
the MMCM

Soft configuration of
PMBus

Real-time video
application

With real-time
constraints

Up to 60% (using
frequency and voltage

scaling and tool
optimizations)

Compared to the previous citedworks, we utilize adaptive
frequency and voltage scaling as user methods in addition to
the tool ones. The two previous works collected information
such as the frequency and voltage of functioning blocks at run
time and scale them accordingly. Collecting information at
run time would result in extra resources and additional com-
plexity in the algorithms used tomanage the information.The
two works applied the proposed methods on test modules,
which they called Power Consuming and Speed Testing
Modules (PCASTMs). These PCASTMs were proposed with
various numbers of modules to occupy different percentages
of the device. The proposed tests were tasks without real-
time requirements. In addition, for the voltage scaling, they
tested voltage values under the recommended values available
in the datasheet. Testing with values under the minimum
recommended could give more power savings up to 70% [33]
but with doubtful safety for long term functioning with real-
time constraints.

In our work, the idea is simple: as the different execu-
tion scenarios are known in advance, the collection of the
information is done at the design level using tests and timing
analysis to determine the optimal operating points. The pro-
posed method necessitates only I2C IP core and its imple-
mentation presents a low complexity. In addition, scaling the
voltage many times at run time is not useful in our opinion
as it leads to power and heat dissipation while accessing the
power rails. Configuring the device blocks with the optimal
voltage at the start is more efficient. Table 3 gives a summary
about the three works.

6. Conclusion

Driven by the complexity of the SOC design and the big con-
currence between SOC vendors, the design of an optimized
system is very challenging. With the increasing consumers’
demands and the saturation that faces Moore’s law, the power
consumption has become a struggle. Designers have to find
new solutions for the power consumption problem. In this
work, we have proposed a design methodology that brings
together tool and user optimizations. These methods have
been used to design a real-time video processing system.The
work has been implemented onZynqZC702 boardwithARM
9 target processor. The tool methods have been specific to

the design tool and work with a target platform. The user
methods have been general and can be applied on other
real-time video processing systems. The adaptive frequency
scaling and the dynamic voltage scaling have been controlled
by the ARM processor. Compared to the existing works,
this methodology has allowed up to 60% of power savings
with minimal additional resources. Future work will be on
the application of other methods like clock gating and its
integration into the design of real-time video systems.
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The data used to support the findings of this study are
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