
Research Article
On a Real-Time Blind Signal Separation Noise Reduction System

Ka Fai Cedric Yiu 1 and Siow Yong Low2

1Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
2School of Electronics and Computer Science, University of Southampton, Malaysia Campus, Iskandar Puteri, Johor, Malaysia

Correspondence should be addressed to Ka Fai Cedric Yiu; macyiu@polyu.edu.hk

Received 30 May 2018; Revised 22 October 2018; Accepted 13 November 2018; Published 4 December 2018

Academic Editor: John Kalomiros

Copyright © 2018 Ka Fai Cedric Yiu and Siow Yong Low. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Blind signal separation has been studied extensively in order to tackle the cocktail party problem. It explores spatial diversity of
the received mixtures of sources by different sensors. By using the kurtosis measure, it is possible to select the source of interest
out of a number of separated BSS outputs. Further noise cancellation can be achieved by adding an adaptive noise canceller
(ANC) as postprocessing. However, the computation is rather intensive and an online implementation of the overall system is
not straightforward. This paper intends to fill the gap by developing an FPGA hardware architecture to implement the system.
Subband processing is explored and detailed functional operations are profiled carefully. The final proposed FPGA system is able
to handle signals with sample rate over 20000 samples per second.

1. Introduction

Speech enhancement has found numerous applications in
human machine interfaces, hearing aids, and even hearing
protection devices [1, 2]. However, research in this field is still
very much ongoing as enhancing speech in an online fashion
is not an easy task. The objective of speech enhancement is to
estimate the desired speech signal from the noisy observation,
which consists of both speech andnoise signals.The challenge
lies in designing an optimal filter that can suppress noise
while maintaining the perceptual and spectral features of the
speech signal [3]. Moreover, it is essential for the speech
enhancement process to be seamless and transparent. In
most implementations, both the noise estimation and its
suppression are typically performed in the frequency domain
for computational simplicity. The main issue with speech
enhancement is when the background noise is nonstationary,
e.g., babble or cafeteria noise. As speech is also nonstationary,
analyzing the overlapped spectral of speech and noise can be
challenging. If the noise is erroneously estimated, it will result
in the infamous “musical noise” effect [4, 5].

To resolve the nonstationarity issue, spatial filtering or
beamforming can be used to spatially filter out the speech
signal from the noisy signal [6–8]. In this case, localization

information and the array geometry will need to be carefully
incorporated into the beamforming design for a good per-
formance. This is because beamforming is sensitive to the
steering vector and localization errors [9, 10]. Any mismatch
between the observed signals and the model signal will result
in performance degradation. An interesting approach to
bypass the need of a priori information and potential model
mismatch is blind signal separation (BSS) [11–13]. BSS as it is
widely known requires only statistical independence among
its inputs to separate themixed observed signals [14]. A closer
analysis into BSS reveals that BSS primarily exploits spatial
information to perform the separation of mixed signals just
like a set of beamformers [15]. However, BSS in its original
formulation remains a separation algorithm, which yields
a number of separated outputs. In speech enhancement
applications, typically there is only one source of interest in
a noisy background.

Low et. al [16, 17] proposed the use of kurtosis measure to
select the source of interest out of a number of separated BSS
outputs.The other BSS outputs are then used for further noise
cancellation in the form of references for an adaptive noise
canceller (ANC). However, an online implementation of the
BSS-ANC system is not straightforward. This paper extends
the BSS-ANC in [16] by making it online and optimizing the

Hindawi
International Journal of Reconfigurable Computing
Volume 2018, Article ID 3721756, 9 pages
https://doi.org/10.1155/2018/3721756

http://orcid.org/0000-0002-7523-4069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/3721756

2 International Journal of Reconfigurable Computing

IS
TF

T

microphones

BS
S

-

A
D

A
PT

IV
E

N
O

IS
E

CA
N

CE
LL

ER

1st element

th element

K
U

RT
O

SI
S–

SI

G
N

A
L

SE
LE

CT
IO

N

ST
FT

Spatial Temporal

Spatio-temporal

L

L

Figure 1:The spatiotemporal processor with �퐿microphones.The figure shows how the kurtosis unifies the spatial and temporal decorrelators
as one spatiotemporal processor. Each bold arrow represents the �푀 frequency bins.

implementation by using multilevel parallelism [18, 19]. For
the design of the resulting online system, since the calcu-
lations include the independent component analysis (ICA)
which involves intensive matrix algebra, it is advantageous to
implement it on amachine which allows massive parallelism.
In general, microprocessor is not fast enough and ASIC is
too inflexible when the separation is carried out adaptively.
In view of this, we investigate the implementation of the
proposed beamformer on an FPGA system.

In the literature, the implementation of a time-delay sonar
beamformer on reconfigured devices has been reported [20].
The beamformer achieved six times speedup over dedicated
DSP systems. Another beamformer implementation involves
delta-sigma modulation, and the beamformer is applied to
medical ultrasonic application [21].There is also implementa-
tion for antenna signals [22] or for audio applications [23] in
the time domain [24]. However, these studies do not consider
subband processing and have not considered a parallel filter
structure. It is therefore the main contribution of the paper
to build the first FPGA hardware architecture with parallel
beamforming filters for embedded systems. The complete
architecture is implemented to simulate a real-time operation
for the final signal separation system.Themain contributions
of the paper can be summarized as follows:

(i) In the FPGA hardware architecture, fixed point arith-
metics are applied with a careful bitwidth analysis to
explore suitable bitwidth of the system.The optimized
integer and fraction size using fixed point arithmetic
can reduce the overall circuit size significantly com-
pared with a basic implementation of the algorithm
in FPGA.

(ii) The hardware accelerator is used to perform the most
time consuming part of the algorithm. We implement
the algorithm and evaluate on a Virtex-4 platform.
By calculating the number of samples handled per
second, the proposed FPGA-based architecture can
process a maximum of 22758 samples per second,
which realizes the real-time capability.

Section 2 gives a description of the offline BSS-ANC
speech enhancement system and Section 3 details the pro-
posed hardware architecture and design. Specifically, the
dataflow of the main operation and algortihmic profiling
are presented. The experimental results are then included in
Section 4 with Section 5 concluding the findings.

2. A Revisit to the BSS-ANC System

Figure 1 illustrates the BSS-ANC system. The BSS acts as a
set of beamformers, which separates the target signal from
the background noise by using the �퐿 observations. The signal
is postprocessed by an ANC in order to enhance the target
signal further and to carry out echo cancellation at the same
time. To differentiate the target signal from the other outputs,
a statistical measure is applied to guide the BSS.

2.1. Second-Order Based Blind Signal Separation (BSS).
Second-order decorrelation is incapable of performing BSS
as decorrelation does not imply independence. However,
additional assumptions about the system can be incorpo-
rated to achieve separation. For instance, if the sources are
nonstationary, then their respective covariances at different
time intervals are linearly independent. This is consistent
with the observation that speech is highly nonstationary.
A typical speech signal consists of approximately ten to
fifteen phonemes per second and each of these phonemes
has varying spectral characteristics [25]. As such, additional
information can be obtained to perform the separation.
Intuitively, exploiting nonstationarity can be viewed as having
the same number of equations as the number of unknowns
to be solved. Needless to say, under stationary condition,
there is only one equation to solve more than one unknown.
This explains the reason why second-order based BSS alone
is insufficient to perform the separation. Nonstationarity has
been reported to successfully solve the instantaneous mixing
model [12, 26, 27].

International Journal of Reconfigurable Computing 3

Consider a convolutive mixture of �푁 sources with �퐿
sensors (where �퐿 ≥ �푁), the observed signal vector x(�푡) =
[�푥1(�푡), . . . , �푥𝐿(�푡)]

𝑇, at each of the sensors is

x (�푡) =
𝑃−1

∑
𝑝=0

H (�푝) s (�푡 − �푝) (1)

where s(�푡) = [�푠1(�푡), . . . , �푠𝑁(�푡)]
𝑇 is the �푁-source vector, H(�푝)

is a �퐿 × �푁 mixing matrix, �푃 is the length of the impulse
response from the �푛th source to the �푙th sensor, and (⋅)𝑇
denotes the transpose. Mathematically, BSS blindly finds an
unmixing matrix, W(�푝), which is of dimension �푁 × �퐿 × �푃 to
recover the sources from the observed �퐿 mixtures, up to an
arbitrary scaling and permutation.

Following the approach in [12], the solution to the joint
diagonalization of �푀 covariance matrices can be estimated
as

Ŵ (�휔) = arg min
W(𝜔)

𝑀−1

∑
𝑚=0

‖E (�휔,�푚)‖2𝐹 , (2)

where ‖ ⋅ ‖2𝐹 is the squared Frobenius norm and the error
function is E(�휔,�푚) = W(�휔)[R𝑥(�휔,�푚)]W𝐻(�휔) − Λ𝑠(�휔,�푚).
Here, Λ𝑠(�휔,�푚) is the covariance matrix of the sources s(�푡) at
frequency �휔 and (⋅)𝐻 denotes Hermitian transposition.

As explained previously, the estimation of the frequency
domain unmixing weights W(�휔) leads to arbitrary permu-
tation of each frequency bin. This is because successful
separation in each frequency bin does not mean that the
separated sources are properly aligned and scaled for the
reconstruction process. One simple method to solve this
problem is to set a constraint on the time-domain filter size
of the unmixing weights, �퐹, such that W(�휏) = 0, �휏 > �퐹 ≪
Ω, where Ω is the number of frequency bins. As shown in
[12], the constraint gathers independent frequencies to form
a continuity of the spectra. In this way, the permutation
problem can be tackled. A side benefit to the above is that
the constraints smooth out fluctuations in the weighting
because of possible nonconverging bands, which ensures a
smooth transition from one band to the other. This reduces
or prevents artifacts during the reconstruction process.

2.2. Postprocessor: Adaptive Noise Canceller. BSS as it is
algorithmically defined attempts to recover �퐿 number of
sources given �퐿 observations. In the case thus far, we have
only one target signal (e.g., in hands-free mobile applications
with multiple noise sources). By appropriately choosing the
speech dominant BSS output, further decorrelation can be
performed via an adaptive noise canceller (ANC). In this
case, the kurtosis is used as the outputs discriminator. Thus,
BSS output with the highest kurtosis value will be the
speech dominant output and the remaining �퐿 − 1 outputs
will serve as reference signals for the ANC. Similar to the
generalized sidelobe canceller (GSC), the spatiotemporal
decorrelator [17] benefits from the addition of more elements
since each element provides an additional degree of freedom
for the ANC to adapt on, provided that the references are
uncorrelated.

The following modified frequency domain leaky LMS
algorithm for the frequency �휔 is used:

h (�휔, �푘 + 1) = (1 − �훽) h (�휔, �푘)

+ �푧∗ (�휔, �푘) yref (�휔, �푘) �푓 (�휔, �푘) ,
(3)

where the (�퐿 − 1)�퐾 × 1 stacked reference weights are

h (�휔, �푘) = [h𝑇1 (�휔, �푘) , . . . , h𝑇𝐿−1 (�휔, �푘)]
𝑇
, (4)

and

h𝑙 (�휔, �푘) = [ℎ𝑙 (�휔, �푘) , . . . , ℎ𝑙 (�휔, �푘 − �퐾 + 2) ,

ℎ𝑙 (�휔, �푘 − �퐾 + 1)]𝑇 .
(5)

Similarly, the (�퐿 − 1)�퐾 × 1 stacked reference signals are

yref (�휔, �푘) = [y𝑇1,ref (�휔, �푘) , . . . , y𝑇𝐿−1,ref (�휔, �푘)]
𝑇
, (6)

where

y𝑙,ref (�휔, �푘) = [�푦𝑙,ref (�휔, �푘) , . . . , �푦𝑙,ref (�휔, �푘 − �퐾 + 2) ,

�푦𝑙,ref (�휔, �푘 − �퐾 + 1)]𝑇 .
(7)

The nonlinear function �푓(�휔, �푘) is given as

�푓 (�휔, �푘) =
�훾

�퐾�̂휎2𝑧 (�휔, �푘) + �훾y𝐻
ref (�휔, �푘) yref (�휔, �푘)

, (8)

and the constants �훽 and �훾 are the leaky factor and the step
size, respectively. The role of the leaky factor is to prevent
the adaptive filters from having one or more modes that are
undriven and undamped. This usually happens when there
is no energy in the subband, i.e., the autocorrelation has
zero eigenvalues. Thus, in such an event, the leaky factor
will stabilize the filter by forcing those modes to zero. The
order of the filter is�퐾 and �휎2𝑧(�휔, �푘) is a time-varying estimate
of the output signal power �푧(�휔, �푘) that adjusts the step size
according to the target signal level. It is built upon the fact
that excess MSE increases with both the step size and the
target signal [16]. When this happens, the function in (8) will
effectively reduce the step size. The output signal power is
estimated using the square of vector norm of length �퐾 and
then exponentially averaged as

�휎2𝑧 (�휔, �푘) = (1 − �휆) �휎2𝑧 (�휔, �푘 − 1) + �휆 ‖z (�휔, �푘)‖2 , (9)

where

z (�휔, �푘)

= [�푧 (�휔, �푘) , . . . , �푧 (�휔, �푘 − �푄 + 2) , �푧 (�휔, �푘 − �푄 + 1)]𝑇 ,
(10)

�휆 is the smoothing parameter, ‖ ⋅ ‖ denotes the Euclidean
norm, and the output of the overall system is given as

�푧 (�휔, �푘) = �푦target (�휔, �푘) − h𝐻 (�휔, �푘) yref (�휔, �푘) . (11)

4 International Journal of Reconfigurable Computing

FFT
FFT

FFT
Initialization FFT Complex Matrix

Multiplier

IFFT

Microphone Array
Input

Yout

Figure 2: Dataflow of the main operations.

3. Hardware Architecture and Design

As explained in Section 2, the entire algorithm is imple-
mented in the frequency domain. The main dataflow of the
proposed system is shown in Figure 2, which performs the
following processes:

(1) Transform the input signal to their frequency domain
representations via short time FFT;

(2) Filter the frequency transformed signals by theweight
estimates from the Complex Matrix Multiplier;

(3) Reconstruct the signal estimates back to the time
domain via short time IFFT (inverse FFT).

The architecture makes use of parallelism property of
the algorithm via frequency domain. In summary, one can
explore implementing parallelism at several levels, including
[28]

(i) loop level parallelism, where consecutive loop itera-
tions can be run in parallel,

(ii) task level parallelism, where entire procedures inside
the program can be run in parallel,

(iii) data parallelism.

Since the algorithm is made up of a control part and
a computation part, the first stage consists in locating the
computational kernels of the algorithms. The algorithmic
profiling is performed to determine the time consumption
of the computation kernels. The profiling exercise can be
summarised in Tables 1 and 2. The results show that both
the FFT/IFFT and Complex Matrix Multiplier operations are
the most computationally expensive, which takes up 98.9%
of the CPU time. Thus, FPGA modules will be developed
and optimized for these operations. The remaining parts
of the code can then be run by software powered by the
PowerPC processor supported by Auxiliary Processor Unit
(APU). Note that Virtex-4 family FPGAs are suitable to
carry out this implementation. It has an Auxiliary Processor
Unit (APU) controller which can simplify the integration
of hardware accelerators and coprocessors. These hardware
accelerator functions behave as extensions to the PowerPC,
thereby offloading the CPU from heavy computational tasks.

Figure 3 shows the block diagram of this architecture,
which includes two APU channels linked to the FFT/IFFT
module and the Complex Matrix Multiplier module simul-
taneously. In an effort to better synchronize the execution
times between the FFT/IFFT operation and the Complex
Matrix Multiplier operation, multiple instances of Complex
MatrixMultiplier module can be created and aligned with the

Table 1: Profiling results of overall operations.

Function Time (s) %Overall Time
Perform BSS 152.1 86.9%
Calculate BSS Output 14.2 8.1%
Post Processing ANC 4.9 2.8%
OTHERS 3.9 2.2%

Table 2: Profiling results of detailed operations.

Operation %Overall Time
24-bit FFT/IFFT (256 pt) 43.8%
Complex Matrix Multiplier 55.1%
OTHERS 1.1%

computational time. The proposed system makes use of the
hardware accelerator to provide a high level of parallelism.
These functional units can be operated in parallel across the
frequency bins. Indeed, the parallel nature of the frequency
domain allows a high degree of parallelism to be imple-
mented. Moreover, it is possible to explore both performance
and area optimization to find a trade-off point in the imple-
mentation. Furthermore, these functional units are highly
scalable and adaptable and are dedicated to implementing
elementary arithmetic operations.These units can be inserted
or removed from the architecture in an immediate way,
just by setting the value of dedicated VHDL generics. This
feature allows direct tuning of many key parameters of the
architecture, e.g., width of the bus, latency of the functional
units, and throughput.

The block diagram of the hardware accelerator is given
in Figure 4. The diagram illustrates the two FCB channels
connecting to the two accelerators, namely, a FFT/IFFT
module responsible for short time frequency transformation
and time domain reconstruction and a Complex Matrix
Multiplier module used to calculate the gradient of the
error function and updating the unmixing frequency domain
weights. The details of the APU instruction execution and
data flow in the FPGA architecture are described in [28].
Briefly, once the APU passes an instruction to the hardware
accelerator, the instruction will be decoded by the decoder
logic. The instruction will then be executed on the data from
the memory. Following the decoding of the instruction, the
state machines handle data transfers between the APU and
the operations module by using registers to store data for the
subsequent operations. The data frommemory is transferred
between the APU and the interfacing logic via the load and
store instructions.

International Journal of Reconfigurable Computing 5

Power
PC

Complex Matrix
Multiplier

Compact Flash

 OPB

 PLB

APU
Controller

DDR SDRAM

FFT/IFFT

HW Accelerator

Virtex-4
FPGA

FCB

Timer

I/F

Figure 3: Block diagram of the proposed FPGA architecture for BSS.

FFT/IFFT

Complex
Matrix

Multiplier

FCB Bus FCB Interface Logic

Decoder
FSM FIFO

Buffer

Complex
Matrix

Multiplier

...
FCB Bus FCB Interface Logic

Decoder
FSM FIFO

HW Accelerator

Figure 4: Block diagram of the hardware accelerator.

While the FFT/IFFT can be implemented by using the
core generator LogiCORE IP FFT provided by the vendor
tools [29], the Complex Matrix Multiplier module must be
designed to maximize the system performance. The block
diagram of the implementation is depicted in Figure 5. As
the adaptation is a data-oriented application, the dependency
and movement of the data are important in order to ensure
that the update function can be implemented in a time-
multiplexed fashion, and the scheduling of the operations can
be done sequentially to achieve the desired trade-off between
performance and circuit complexity.

The data flow in the proposed architecture can be
explained by the following [28]:

(1) In the first instance, the filtering process starts with
the processor forwarding a load instruction for filter
input data to the APU;

(2) The instruction set is passed to the interface logic via
the APU, which decodes the instruction and waits for
data frommemory to arrive;

(3) The input data is sent to the interface logic;

(4) The processor forwards the store instruction to the
APU in anticipation of the filter output once the load
instructions are completed;

(5) The interface logic decodes the store instruction and
waits for data from the filter module;

(6) Once processing is performed, the operation module
then returns results to the interface logic;

(7) The interface logic returns the output data to the pro-
cessor via the APU and they are written to memory.

Figure 6 presents the main state machine that is respon-
sible for the load and store operations. The hardware state
machine manages the data transfer by sending and receiving
the data from software to hardware or vice versa. This state
machine communicates with the processor via the APU.

When the hardware state machine states a ready flag, it
means that it is ready to accept the data. The role of PowerPC
is to provide the data and address it. It will also issue a
valid signal, which provides the indication to write. Once the
hardware obtains the valid signal, it then writes the data at

6 International Journal of Reconfigurable Computing

imag_inA

MM4x4_controller

Controller

Controller

real_inA

rowA_in

colA_in

IMAG
Output
Buffer

IMAG_OUT

REAL_OUT

imag_out

real_out

imag_inB

real_inB

rowB_in

REAL
Output
BufferOutput

Buffer

colB_in

MATRIX A
MatrixA

Matrix A

MatrixB

MATRIX B

Matrix B

MatrixB

MatrixA

Imag Buffer

Imag Buffer

Real Buffer

Real Buffer

READ

Controller
READ

WRITE

CMAC4

A0_i
A1_i

A3_i
A2_i

A0_r
A1_r

A3_r
A2_r

B0_i
B1_i

B3_i
B2_i

B0_r
B1_r

B3_r
B2_r

Figure 5: Block diagram of the Complex Matrix Multiplier module.

IDLE

WAIT

STORE Load

No Valid
Instruction

Loaded
<96 Bytes

Loaded 96 Bytes

Load

St
or

e a
nd

 O
p

in
 P

ro
gr

es
s

Result Ready

Result
Not Ready

Stored
<8 Bytes

StoreStore
8 By

tes

Reset

Figure 6: The data flow of the main state machine.

the address provided by the PowerPC. Once completed, the
hardware asserts a flag which informs the PowerPC that data
has beenwritten.This triggers await state whereby the system
awaits for the result. Once the result is ready, it then asserts
a result ready flag. Interestingly, the PowerPC can detect
the completion in two ways [28]. In the default state, the
processor can continuously poll a bit in order to detect when

the calculation has completed.The second approach works by
enabling an interrupt. Upon the completion of the process,
the interrupt output signal will be asserted. The interrupt
approach helps to save valuable time by avoiding the polling
loops to perform other calculations. This is especially the
case while the hardware accelerator is updating the weights of
BSS.

International Journal of Reconfigurable Computing 7

0 0.5 1 1.5 2 2.5 3
x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Input speech signal
x 105

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Input noise signal

x 105
0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) Filtered signal using floating-point representation
x 105

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) Filtered signal using fixed point representation

Figure 7: Input signal and results of BSS.

4. Results

Theperformance evaluation of the proposed hardware archi-
tecture was simulated in the Xilinx XC4VSX55-12-FF1148
chip. The settings for the experiment were as follows:

(i) Input sequences were English speech from
male/female with four microphones;

(ii) Sampling frequency was 16 kHz;
(iii) Prototype filter length in the analysis and synthesis

filter banks was 128;
(iv) Number of taps in the adaptive filters was 5;
(v) Parameter �훼 was 0.15, regulator for BSS was 1, and

order for the temporal weights (ANC) was 3;
(vi) Number of subbands was chosen as �푀 = 256 unless

otherwise stated;
(vii) Number of iterations for the BSS was 2000.

The first task is to figure out a suitable bitwidth for the
fixed point arithmetic. The input speech and noise signals are
displayed in Figures 7(a) and 7(b), respectively. By adjusting
the bitwidths, it turns out that the appropriate integer size is

Table 3: Implementation results of BSS.

FPGA device XC4VSX55-12 XC2VP30-7
Slices used 5937 (12%) 8916(32%)
DSP48/MULT used 72 (14%) 72 (52%)
Block RAM used 8 (2%) 8 (5%)
Frequency (MHz) 184.8 165.9

12 (fraction size is 20). Further increase in the size does not
improve the results significantly.TheBSSfiltered output using
a 32-bit fixed-floating point arithmetic is compared with
the pure floating point implemenation as shown in Figures
7(c) and 7(d). Using 32-bit fixed-float architecture, very
similar results are achieved, showing that partial fixed point
operations have not affected the accuracy of the calculations
much. In practice it may be possible to overflow occasionally
even if the integer size is 12, so saturation arithmetic has been
employed in the hardware design to minimise the impact.

Table 3 represents the implementation results of the pro-
posed hardware design for BSS on both Xilinx XC4VSX55-
12-FF1148 and Xilinx XC2VP30-7-FF896 FPGAdevices. Note

8 International Journal of Reconfigurable Computing

Table 4: Maximum speedup with multiple instances in the FPGA device.

Samples/s Number of Instances Slices DSP
FFT / IFFT Complex Matrix Multiplier Used Used

3057.1 1 1 24% 14%
5434.8 1 2 37% 24%
8152.3 1 3 50% 33%
11039.5 1 4 63% 42%
14096.6 1 5 73% 52%
17323.6 1 6 86% 61%
5265.0 2 1 35% 18%
8661.8 2 2 48% 27%
12907.8 2 3 61% 35%
17663.2 2 4 74% 46%
22758.4 2 5 87% 53%
5434.8 3 1 46% 22%
9341.1 3 2 59% 31%
14436.3 3 3 72% 40%
20380.7 3 4 85% 49%
5604.7 4 1 57% 26%
10020.5 4 2 70% 34%
15795.0 4 3 83% 43%

that DSP48 is a coarse-grained DSP embedded block in
Virtex-4 Series FPGA for multiplication while MULT is a
block multiplier in Virtex-2 Pro Series FPGA.

In order to estimate the performance of the proposed
FPGA-based BSS system, we first incorporate one instance
of FFT/IFFT and one instance of Complex Matrix Multiplier
hardware accelerators. Taking one data block with 256 sam-
ples, assuming the sampling rate is 16kHz, the number of
clock cycles required for processing the block of data in the
frequency domain is measured as 15,421,718.Therefore, given
that the period of one clock cycle is 1/(184�푀:�푧) = 5.43�푛�푠
on a Virtex-4 FPGA, the FPGA-based BSS can perform one
step of speech enhancement in 0.0837�푠 or equivalently 3057.1
samples per second.

Table 4 summarises the implementation results when
adding more instances of the filter in an XC4VSX55-12-
FF1148 FPGA chip. It shows how the number of instances
affects the speedup. With different slices and DSPs being
deployed, maximum frequency and speedup vary whenmul-
tiple instances are implemented on an XC4VSX55-12-FF1148
FPGA device. A XC4VSX55-12-FF1148 chip can accom-
modate at most two FFT/IFFT and five Complex Matrix
Multiplier hardware accelerators, so the maximum sampling
rate will be 22758.4 samples per second. Consequently, it can
indeed achieve real-time performance.

5. Conclusions

In this paper, an online blind signal separation system has
been proposed, which involves designing the separation
matrix and a postfiltering noise canceller. A hardware imple-
mentation of the algorithms on an FPGA virtex-4 system has

been described. In the algorithm, in order to achieve com-
putational efficiency, a frequency domain implementation is
employed to speed up the convergence of the beamformers.
The complete architecture is simulated in hardware and
results show that real-time performance can be achieved
when anFPGA-based hardware accelerator performs the crit-
ical parts of the algorithm. The resulting embedded system
will find applications in modern multimedia systems. As a
future extension, it would be of interest to investigate power
consumption of the final design based on the technique in
[30].

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper is supported by RGCGrant PolyU 152200/14E and
PolyUGrant 4-ZZGS andG-YBVQ.Theauthorswould like to
thank Mr. Xiaoxiang Shi for carrying out the implementation
on FPGA.

References

[1] “Microphone Arrays: Signal Processing Techniques and Appli-
cations,” in Digital Signal Processing, Springer-Verlag, Berlin,
2001.

International Journal of Reconfigurable Computing 9

[2] J. Benesty, S. Makino, and J. Chen, “Speech Enhancement,”
in Signals and Communication Technology, Springer-Verlag,
Berlin, March 2005.

[3] P. Loizou, Speech Enhancement:Theory and Practice, CRC Press,
Taylor and Francis, Boca Raton, Florida, USA, 2007.

[4] R. Martin, “Noise power spectral density estimation based on
optimal smoothing andminimum statistics,” IEEE Transactions
on Speech and Audio Processing, vol. 9, no. 5, pp. 504–512, 2001.

[5] R. Miyazaki, H. Saruwatari, T. Inoue, Y. Takahashi, K. Shikano,
and K. Kondo, “Musical-noise-free speech enhancement based
on optimized iterative spectral subtraction,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 20, no. 7, pp.
2080–2094, 2012.

[6] L. J. Griffiths and C. W. Jim, “An alternative approach to
linearly constrained adaptive beamforming,” IEEE Transactions
on Antennas and Propagation, vol. 30, no. 1, pp. 27–34, 1982.

[7] I. Claesson and S. Nordholm, “A Spatial Filtering Approach to
RobustAdaptive beamforming,” IEEETransactions onAntennas
and Propagation, vol. 40, no. 9, pp. 1093–1096, 1992.

[8] S. Y. Low, N. Grbić, and S. Nordholm, “Speech enhancement
usingmultiple soft constrained subband beamformers andnon-
coherent technique,” in Proceedings of the 2003 IEEE Interna-
tional Conference on Accoustics, Speech, and Signal Processing,
vol. 5, pp. 489–492, Hong Kong, April 2003.

[9] H. Q. Dam, S. Y. Low, S. Nordholm, and H. H. Dam, “Adaptive
microphone array with noise statistics updates,” in Proceedings
of the 2004 IEEE International Symposium on Cirquits and
Systems, vol. 3, pp. 433–436, Canada, 2004.

[10] S. Y. Low, N. Grbic, and S. Nordholm, “Robust microphone
array using subband adaptive beamformer and spectral subtrac-
tion,” in Proceedings of the 8th IEEE International Conference on
Communications Systems, ICCS 2002, pp. 1020–1024, Singapore,
2002.

[11] J.-F. Cardoso, “Blind signal separation: statistical principles,”
Proceedings of the IEEE, vol. 86, no. 10, pp. 2009–2025, 1998.

[12] L. Parra and C. Spence, “Convolutive blind separation of non-
stationary sources,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 8, no. 3, pp. 320–327, 2000.

[13] Z. Lv, B.-B. Zhang, X.-P. Wu, C. Zhang, and B.-Y. Zhou,
“A permutation algorithm based on dynamic time warping
in speech frequency-domain blind source separation,” Speech
Communication, vol. 92, pp. 132–141, 2017.

[14] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Oze-
rov, “A Consolidated Perspective on Multimicrophone Speech
Enhancement and Source Separation,” IEEE/ACM Transactions
onAudio Speech and Language Processing, vol. 25, no. 4, pp. 692–
730, 2017.

[15] S. Araki, R. Mukai, S. Makino, T. Nishikawa, andH. Saruwatari,
“The fundamental limitation of frequency domain blind source
separation for convolutive mixtures of speech,” IEEE Transac-
tions on Audio, Speech and Language Processing, vol. 11, no. 2,
pp. 109–116, 2003.

[16] S. Y. Low, S. Nordholm, and R. Togneri, “Convolutive blind
signal separation with post-processing,” IEEE Transactions on
Audio, Speech and Language Processing, vol. 12, no. 5, pp. 539–
548, 2004.

[17] S. Y. Low and S. Nordholm, “A Blind Approach to Joint
Noise and Acoustic Echo Cancellation,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP ’05), vol. 3, pp. 69–72, Philadelphia, Penn-
sylvania, USA, 2005.

[18] J. Y. Mori and M. Hubner, “Multi-level parallelism analysis
and system-level simulation for many-core Vision processor
design,” in Proceedings of the 2016 5thMediterraneanConference
on EmbeddedComputing (MECO), pp. 90–95, Bar,Montenegro,
June 2016.

[19] G. Zhong, A. Prakash, S. Wang, Y. Liang, T. Mitra, and S.
Niar, “Design Space exploration of FPGA-based accelerators
with multi-level parallelism,” in Proceedings of the 20th Design,
Automation and Test in Europe Conference and Exhibition,
DATE 2017, pp. 1141–1146, Switzerland, March 2017.

[20] P. Graham and B. Nelson, “FPGA-based sonar processing,” in
Proceedings of the 1998 ACM/SIGDA 6th International Sympo-
sium on Field Programmable Gate Arrays, FPGA, pp. 201–208,
February 1998.

[21] B. G. Tomov and J. A. Jensen, “A new architecture for a single-
chipmulti-channel beamformer based on a standard FPGA,” in
Proceedings of the 2001 Ultrasonics Symposium, pp. 1529–1533,
USA, October 2001.

[22] M. D. Van De Burgwal, K. C. Rovers, K. C. H. Blom, A. B.
J. Kokkeler, and G. J. M. Smit, “Adaptive beamforming using
the reconfigurable MONTIUM TP,” in Proceedings of the 13th
Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, DSD 2010, pp. 301–308, France, September
2010.

[23] D.Theodoropoulos andG. Kuzmanov, “A reconfigurable beam-
former for audio applications,” in Proceedings of the 2009 IEEE
7th Symposium on Application Specific Processors, SASP 2009,
pp. 80–87, USA, July 2009.

[24] N. Dubey and R. Mehra, “Blind Audio Source Separation in
TimeDomain using ICADecomposition,” International Journal
of Computer Applications, vol. 132, no. 6, pp. 48–53, 2015.

[25] P. K. Ghosh, A. Tsiartas, and S. Narayanan, “Robust voice
activity detection using long-term signal variability,” IEEE
Transactions on Audio, Speech and Language Processing, vol. 19,
no. 3, pp. 600–613, 2011.

[26] J. Li, H. Zhang, M. Fan, and J. Zhang, “Non-stationary sources
separation based on maximum likelihood criterion using
source temporal–spatial model,” Neurocomputing, vol. 275, pp.
341–349, 2018.

[27] J. Yin, Z. Liu, Y. Jin, D. Peng, and J. Kang, “Blind Source
Separation and Identification for Speech Signals,” in Proceedings
of the 2017 International Conference on Sensing, Diagnostics,
Prognostics and Control (SDPC), pp. 398–402, Shanghai, August
2017.

[28] K. F. C. Yiu, Z. Li, S. Y. Low, and S. Nordholm, “FPGA
multi-filter system for speech enhancement via multi-criteria
optimization,” Applied Soft Computing, vol. 21, pp. 533–541,
2014.

[29] Inc. Xilinx, “Fast Fourier Transform product specification,”
LogiCORE IP Product Guide, DS260, 2011.

[30] W. Tang, C. H. Ho, C. Sham, and K. F. C. Yiu, “Low-power
reconfigurable acceleration of robust frequency-domain echo
cancellation on FPGA,” in Proceedings of the 2010 International
Conference on GreenCircuits and Systems (ICGCS), pp. 361–364,
Shanghai, China, June 2010.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

