Hindawi

International Journal of Reconfigurable Computing
Volume 2018, Article ID 6784319, 14 pages
https://doi.org/10.1155/2018/6784319

Research Article

Hindawi

RP-Ring: A Heterogeneous Multi-FPGA Accelerator

Shuaizhi Guo, Tianqi Wang @), Linfeng Tao, Teng Tian, Zikun Xiang, and Xi Jin

University of Science and Technology of China, Hefei, China

Correspondence should be addressed to Xi Jin; jinxi@ustc.edu.cn

Received 21 August 2017; Revised 5 November 2017; Accepted 17 January 2018; Published 4 April 2018
Academic Editor: Michael Hiibner

Copyright © 2018 Shuaizhi Guo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To reduce the cost of designing new specialized FPGA boards as direct-summation MOND (Modified Newtonian Dynamics)
simulator, we propose a new heterogeneous architecture with existing FPGA boards, which is called RP-ring (reconfigurable
processor ring). This design can be expanded conveniently with any available FPGA board and only requires quite low
communication bandwidth between FPGA boards. The communication protocol is simple and can be implemented with limited
hardware/software resources. In order to avoid overall performance loss caused by the slowest board, we build a mathematical
model to decompose workload among FPGAs. The dividing of workload is based on the logic resource, memory access bandwidth,
and communication bandwidth of each FPGA chip. Our accelerator can achieve two orders of magnitude speedup compared with

CPU implementation.

1. Introduction

N-body simulations have been widely used in scientific and
engineering applications. Problems in astrophysics, semi-
conductor device simulation, molecular dynamics, plasma
physics, and fluid mechanics require efficient N-body simu-
lation methods [1]. The problem can be described as follows.
The topic gives the initial positions and velocities of N
particles, demanding updating their positions and velocities
every T time steps. Nonetheless, the size of the N-body
simulation (N) is always limited by the available computa-
tional resources, and the increasing need for larger system
simulations requires more efficient computational methods.
So many researchers have been interested in faster algorithms
for large-scale particle simulation and invented some efficient
algorithms, such as Barnes and Hut algorithms that reduce
the computation complexity to O(N log N) and FMM algo-
rithms which have a computation complexity of O(N) [2].
However, these algorithms use some approximation and are
complex to parallelize. Direct-summation N-body algorithm
computes the interaction between particles in an accurate
way and is quite convenient for parallelization. What is
more, direct-summation is a fundamental building-block for
other algorithms [3], so a lot of high performance direct-
summation computational platforms emerge these years. In

the modified Newton dynamics simulation project of Yunnan
Observatories, Chinese Academy of Sciences, we want to
work out such a platform that can make use of all the
resources that we have in lab and to meet the demand for
power and performance at the same time.

L1. Background. Computational solutions for N-body sim-
ulation can be categorized as CPU, GPU, ASIC, and FPGA
according to the computing unit. Furthermore, these tech-
nologies vary in their cost, programming abstraction level,
and power consumption [4]. There has been one thorough
study on x86-based or power-PC-based tuning [5] and
several papers on GPU cluster implementation [2, 6]. The
GRAPE (“GRAvity piPE”) project built ASIC-based high
performance computing solutions for gravitational force
calculations where the calculation of particle interactions
was calculated by an ASIC chip in the form of a fully
pipelined hardwired processor dedicated to gravitational
force calculation [7, 8]. Hamada et al. used the Bioler-
3 system to implement an FPGA-based gravitational force
computing accelerator [4]. These studies have shown that
CPUs’ performance is limited and ASIC offers no advantages;
GPUs are competitive in performance and performance per
cost; the performance per Watt figure favoured FPGA [4].

http://orcid.org/0000-0002-5921-6565
http://orcid.org/0000-0002-4159-2925
https://doi.org/10.1155/2018/6784319

International Journal of Reconfigurable Computing

Host computer

GRAPE

a, ¥

Basic idea of GRAPE

Particle
memory

<“H

>|Control/inte |<
rface unit

Pipeline block 0

Grape chip top level structure

Pipeline block 1
Pipeline block 2
__¢|Pipeline block 3

FIGURE 1: Basic idea of GRAPE and its top-level structure.

PCI

Host HIB NB

HIB: host interface board
NB: network board
PB: processor board

w| L |

NB

il O TR

NB

FIGURE 2: GRAPE computing cluster.

1.2. Related Work and Challenge. Figurel shows a basic
structure of a hardware accelerated solution for N-body
simulations. It consists of a host computer and an acceleration
coprocessor for potential calculation. The host computer
performs all other calculations, for example, position and
velocity upgrade. More specifically, the coprocessor consists
of a number of pipelines and the particle information
stored in particle memory. The control/interface unit receives
instruction from host computer and controls the pipeline
to acquire particle information from particle memory to
calculate potential [7, 9].

Figure 2 shows how to build a computing cluster with
GRAPE. To build a cluster with 16 GRAPE boards, we need

one host-interface board (HIB), five network boards (NBs),
and 16 processor boards (PBs). Each NB has one uplink
and four downlinks. Thus, the 16 PBs are connected to
the host computer through two-level tree network of NBs.
NB and HIB handle the communication between PB and
the host computer [9]. With the increase in the amount of
PBs, the demand for NBs increases rapidly. It means that
the interconnection overhead of building a large computing
cluster is unacceptable and the interconnection problem
becomes a challenge of building large computing cluster.

1.3. Motivation. We want to work out an accurate numeri-
cal computation method based on MOND theory. MOND

International Journal of Reconfigurable Computing

(Modified Newtonian Dynamics) theory is an alternative
for the popular Dark Matter (DM) theory, which success-
fully explains the distribution of force in an astronomi-
cal object from observed distributions of baryonic matters
[10].

MOND’s numerical algorithm is different from tradi-
tional N-body simulation’s method, so the GRAPE is not
suitable for our mission. MOND theory is based on potential
calculation and can be described as follows: given the density
distribution of baryonic matters p,(x), try to figure out the
final potential ®(x). The final potential is influenced by the
distribution of two kinds of matter: p,(x) and p,;,(x), where
pp(x) is the density distribution of baryonic matters including
stars and gasses and p,,(x) is the density distribution of
phantom dark matter, which is the theoretical hypothesis of
MOND [11]. The final gravity potential ®(x) is given by the
classical Poisson equation:

V2D (x) = 471G (p, (x) + pyp (%)) - 1)

pph(x) is given by the p,(x)’s potential ¢(x) as in the following
equation:

V- Vv \Y%
Pob = [.u(i/;/TQGO) (/5(35)] 2)

Finally, p,(x)’s potential ¢(x) is given by the classical
Poisson equation:

V2 (x) = 4nGp, (x) . (3)

Different from the traditionally direct-summation N-
body algorithm, MOND requires a more time-consuming
potential calculation, whose computation complexity is
O(N?).

With limited project budget, we choose to use the FPGA-
based direct-summation algorithm. Instead of designing new
specialized boards, we reuse existing ones in order to reduce
the overhead. The scale of MOND simulation is limited by
the available computational resources. A single FPGA chip
does not provide enough logical resource, so the multi-FPGA
solution seems to be the only choice. Major contributions of
our work are as follows:

(1) In order to accelerate direct-summation N-body
simulation we propose an extensible heterogeneous multi-
FPGA solution called RP-ring (reconfigurable processor
ring) to utilize existing multiple different FPGA boards. The
experiment shows that our implementation achieved two
orders of magnitude speedup compared with high-end CPU
implementation.

(2) In order to prevent the slowest board from dragging
the overall performance down, we propose a model about
how to decompose workload among FPGAs and optimize
logic resource allocation. To improve the whole system’s
performance, this model shall divide workload based on
the logic resource, memory bandwidth, and communication
bandwidth of each FPGA board and allocate logic resource
among potential calculation pipeline, DMA/FIFO, and other
modules.

The remainder of this paper is organized as follows:
Section 2 presents background information on the algorithm
of MOND theory numerical simulation. The following sec-
tion will present the architecture of RP-ring. Then we will
present the model, which guides the decomposition of work-
load and logic resource’s allocation. After that, we will present
our hardware implementation result on heterogeneous multi-
FPGA and compare it with other implementation on various
GPU boards and CPUs as well as ASIC implementation.
These results will then be discussed before conclusions are
drawn.

2. Direct-Summation Algorithm

MOND numerical simulation is a variant of N-body simu-
lation; the calculation can be described in the following five
steps [11]:

(1) With the known baryonic matter distribution p,(x),
calculate gravity potential ¢(x) according to (3).

(2) Calculate the phantom dark matter distribution
Pon(x) with (2) by finite difference

(3) Solve the Poisson equation (1) to get the final potential
D(x).

(4) Calculate the acceleration and velocity with the final
potential by ®(x) finite difference.

(5) Calculate the location of each particle in the next time
step.

Steps (2), (4), and (5) have a computation complexity of
O(N), so using CPU to do the tasks serially will not influence
the performance. Steps (1) and (3) have a computation
complexity of O(N?), so we focus on accelerating them.
In direct-summation algorithm, Steps (1) and (3), which
calculate gravity potential, we can use the solution of the
Poisson equation:

2 2
m; (Rl-j + 1.5¢)
G (4)

¢(7i) =m

i
Py 2, 2
j#i (Rij+e)

Therefore, in the following article we use FPGA to
construct potential calculation pipeline and propose the RP-
ring solution to build a larger multi-FPGA system. It should
be pointed out that this work is not limited to MOND theory
numerical simulation. It can be extended conveniently to
other direct-summation N-body simulations.

3. Architecture

As (4) shows, the accumulation of the potential acting on
each particle by all other particles in the system is mutually
independent. We can calculate several particle-pairs’ poten-
tial simultaneously, so the existing ASIC implementation
represented by GRAPE puts several potential calculating
pipeline in the chip to find the best degree of parallelism. In
Section 1, we have analyzed the existing work and find out
their bottleneck. Now we come to the RP-ring.

4 International Journal of Reconfigurable Computing
Host
computer
FPGA board 0 FPGA board n — 1
FPGA board 1 FPGA board 2 FPGA board n — 2
FPGA board 2
Input cable | FPGA | Output cable
] .[Input Input- Output- Output ‘.
__connection FIFO Protocol FIFO connection |
controller
On-board (L IPMAL RS 1 poremtial pipts
memory | | Potential pipeline 0 |—
| Potential pipeline 1
ul S pipeline
:Potential pipeline S — 1
FIGURE 3: The architecture of RP-ring.
Fixed P
F Pipeline 0
Fixed P
Each time Pipeline 1
input S
P points points
inon- _ |
board
memory Fixed P
— Pipeline S - 1

F1GURE 4: The input of potential pipeline.

3.1. RP-Ring Solution. Figure 3 illustrates a ring network
consisting of N FPGA boards and a host computer. Each
FPGA board has on-board memory and is connected with
previous/next FPGA board with cable. There are s pipelines,
DMA, memory controller, and other modules in an FPGA
chip. All these modules are controlled by protocol controller.
The potential pipelines have two input ports, one connected
to Input-FIFO and the other connected to DMA-FIFO. In

order to reuse the local particle information, we fix the data
from the Input-FIFO, which is received from previous board,
and traverse the local particle information as Figure 4 shows.
In the following paragraphs, we will explain RP-ring’s control
flow and data flow.

3.1.1 Control Flow. As shown in Figure 3, each FPGA board’s
control flow has the following features:

International Journal of Reconfigurable Computing

FPGA board 0
Host computer

FPGA board 1

—)

Particle i information
(i) Location = (x;, y;, ;)
(ii) Mass = m;

(ii) Mass = m;

Particle i information

(i) Location = (x;, y;, ;)

(iii) Potential = 0 + p,

I Particle i information

(i) Location = (x;, y;, 2;)

(iii) Potential = 0

Compute interaction I

(ii) Mass = m;
(iii) Potential = 0 + py + p;

Init

On-board memory:
work set 0

Compute

interaction

Final result

Particle i information

(i) Location = (x;, y;, 2;) _

(ii) Mass = m;

Particle i information
(i) Location = (x;, y;, z;)
(ii) Mass = m,
(iii) Potential = Y2 * p;

On-board memory:
work set 1

(iii) Potential = 871 i Compute 1nteract10nI

On-board memory:
work set n — 1

FIGURE 5: The data flow of RP-ring.

(1) Obtain the results from the previous FPGA board and
put data into the Input-FIFO.

(2) There is DMA on-board memory to get local particle
information and put it into the DMA-FIFO.

(3) The pipelines gain data from Input-FIFO and DMA-
FIFQ, calculate the potential, and then write the result
into Output-FIFO

(4) Read data from Output-FIFO, and send it to the next
FPGA board through output connection.

3.1.2. Data Flow. Figure5 shows the data flow of RP-ring.
The information of the ith particle consists of its location
x = (x;, ¥}, 2;), mass m;, and potential p; which is initialized
to zero. When the ith particle’s information reaches the zero
board, the FPGA board calculates the interaction between
the particle and the local particles work set 0 and stores the
intermediate results p, + 0 into the potential field. When the
ith particle’s information reaches the first board, the FPGA
board calculates the interaction between the particle and the
local particles work set 1 and stores the intermediate results
p1 + po + 0 into the potential field. Therefore, when the
ith particle’s information flows through the whole ring and
returns to the host computer, the potential field reaches the
final result Y~" p;. Then the host computer can continue to
follow up operation.

The RP-ring solution, we propose in this paper, can
avoid the problem we mentioned in Section 1. It implements
an extensible heterogeneous multi-FPGA solution. Differ-
ent from the GRAPE’s tree network, RP-ring utilizes ring
topology network. Each FPGA board’s on-board memory
stores a portion of particle information. During the process,
each board receives particle information from the previous
board, then calculates the interaction with local particle
information, and finally sends the result to the next board
in the ring network. For each particle’s information, when it

flows through the whole boards in the ring, the calculation of
interaction with all other particles is finished. The advantages
of this solution are as follows:

(1) In RP-ring, when the whole working set flows through
the ring network once, the calculation of interaction
is completed. The amount of data that needs to be
transported between FPGA boards is reduced, and
the demand for communication bandwidth is also
reduced.

(2) The ring network topology is simpler than the tree
network in GRAPE cluster. There is no need for
additional network board.

(3) The interconnection protocol is quite simple. It
requires little overhead to implement protocols no
matter the software or hardware. Thus, we can save
more resources to construct potential calculation
pipeline.

3.2. Potential Pipeline. Potential pipeline is designed based on
Poisson equation (4). To make each stage of the pipeline have
similar latency, (4) is rewritten as

0 (7i) = miz

— 2, 2
j#i (Rij+€)

m; (RIZJ + 1.562)
(3/2)

m; Rl.zj + 1.5¢2
= miz PR
iR te \/W
(5)
m, R} +1.5¢” —
:mizR.z.+62 TR Rj+e
J#Fiij ij

|
=,
+ |3
o
[3S]
*
)
[0
+
m
[\S]
*
/
R o
<&
m [\)
(8]
~_

International Journal of Reconfigurable Computing

<—
< —

0
i

;

%

=

I I
| |
| |
Xi Yi Zi | |
I I
I I
| |
/L | |
*j o ; X
I I
| |
| |
| E |
() H H
y] W ! X !
| |
I I
I I
AN i
Zj =) X]
| |
I I
i i
m; FIFO

Potential pipeline

FIGURE 6: Potential pipeline’s detail.

Figure 6 shows the design of potential pipeline. Accord-
ing to the complexity of different operation, the addition,
substraction, and multiplication units are set to the same
latency cycle as the division and square root units. In our
design, x, y, z, m are presented in IEEE 754 floating-point
format.

3.3. System Optimization. From the above, the ring network
may result in the slowest board dragging the overall per-
formance down, so it is important to balance the time-
consumption (7;) of particle’s information flowing through
each board. Processing capacity of each board varies, but
by decomposing the workload based on their own capacity
we can adjust T; to improve the whole system’s performance
efficiently. (See suitable work set i in Figure 5.) The following
section will discuss this problem in detail with a mathematical
model.

4. Model

The purpose of this mathematical model is, given multiple
FPGA boards with known parameters, how to decompose
the workload among them and choose their parameters of
potential calculation pipeline, so that the whole system’s
maximum throughput can be obtained.

4.1. Symbol Conventions. Assume that the scale of simulation
is N, and we have n FPGA boards.

N = iN,.. (6)

N; is the workload assigned to the ith FPGA board. It can
be seen from the RP-ring’s architecture that each board’s
processing capacity depends on the number of potential
calculation pipelines and their operating frequency. Suppose
that the ith FPGA board contains s; pipelines and their

operating frequency is f;; then the performance of the board
P, has

Piocs;t f;. (7)

In order to maximize the whole system’s throughput, we
just need to allocate the workload among the FPGA boards
in a proportional way according to their processing capacity,
so the problem is converted to how to choose s; and f;, s.t.
P =}, P, maximum. Additionally, f; is a function of s;; that
is,

fi=4g(s)- (8)

Therefore, in this model, s; is the only free variable.
Finally, the problem is rewritten as

b sifi _
Lk X

st. P= ZP,-,P,» maximum.
i

s;-g(s;)
i 9(s;)

Ni :(xiN, (Xi =

€

4.2. Constraint. Furthermore, there are three constraints in
this model:

(1) FPGA logic resource constraint,
(2) memory access bandwidth constraint,

(3) communication bandwidth constraint.

FPGA logic resource constraint: in each FPGA, the
logic resource consumption of FIFO, DMA, memory con-
troller, input/output interconnection, and potential pipeline
is smaller than the maximum amount of resources that FPGA
can provide. Suppose that LUT’, FF, BRAM’, and DSP’
are the amounts of LUT, Flip-Flop, BRAM, and DSP Slice
that the ith FPGA provides; we use vector R' to present
them, R! = (LUT, FF,, BRAM', DSP'), RiFIFO is the resource
consumption of the ith board’s FIFO, and so on. Then we have

1. pi i i i i
R* 2 Rypo + Rpyia + Ryemcnt + Riocut + Rpipetine: (10)

International Journal of Reconfigurable Computing

XC6VLX365T

SMA

connector -7-

On-board
interconnection

Gemini-1 board

XC6VLX365T

SMA

- - connector

FIGURE 7: Top-level view of Gemini-1.

Apparently, Rijpo, Rpyas R;’ipeline’ R\temcut and Rigey
depend on the pipeline needed data bandwidth and can be

seen as a function of s;. That is to say,

R > h;IFO (s;) + hi)MA (s;) + h;\demCtrl (s:) a

+ hiocm (s;) + hi’ipeline (s;)-

Memory access bandwidth constraint: the input data of
potential pipeline come from previous board’s result and local
memory’s particle information. We fixed the data from the
previous board and traverse the local particle information, so
half of the potential pipelines’ input bandwidth is borne by
the memory access bandwidth. That is to say,

i 1
BW, > —-BW

Mem_max = 2

(12)

i
pipeline*

In (12), BW} e max 1S the maximum memory access

bandwidth of the ith board, and BW;ipeline is the input data

bandwidth summation of all the potential pipelines in the ith

board. Apparently, BW;ipeline is proportignal to the number
of potential pipelines. That is to say, BW’pipeline

can be written as

o< s;, 50 (12)

BW! > Lpwi

Mem_max = 2 pipeline

- %k s, (13)

where k is a constant.

Communication bandwidth constraint: as described in
memory access bandwidth constraint, the ith board’s com-
munication bandwidth between previous board and next
board should be greater than one over N; of the half of

BW;ipeline. That is to say,
: 11)
BWIInputmax - ﬁ ' EBW;’ipeline = m k- S;
11 1 1 (14)
i j
BWOutput,max 2 ﬁ : 5 pipeline = mk .S
1

1

In conclusion, based on the target function and the
three constraints, when the parameter of the boards and the
needed functional relation are given, solving the optimization

problem can guide us on how to decompose the work load
among the boards and how to choose their parameters of
potential calculation pipeline.

5. Implementation

In this section, we will demonstrate our implementation
under RP-ring solution and its performance parameters in
our MOND theory numerical simulation project.

Table 1 shows our existing boards and their parameters.
The experiment demonstrates that under RP-ring solution,
we can,

(1) based on the boards’ feature, select software or hard-
ware to implement the interconnection protocol,

(2) according to the boards’ resource, choose different
interconnection media.

Thus, this solution has good flexibility and scalability and
is compatible with heterogeneous multi-FPGA.

In Table 1, Jetson-TK1 is a NVIDIA Application Processor
board, which is used as host computer. Zedboard, KC705, and
XUPVS5 are Xilinx Evaluation Kits for Zynq-7000, Kintex-7,
and Virtex-5. Gemini-1 is our design FPGA board for pro-
totyping. Figure 7 shows the top-level structure of Gemini-
1. Gemini-1 has two pieces of XC6VLX365T Virtex-6 FPGA;
they are connected through PCB trace. Each Virtex-6 FPGA
chip has SMA connector to transport data.

5.1 Topology. Figure 8 shows connection between the boards
and connection between chips. In the ring network, Tegra
Kl is used as host computer, and XC7Z2020, XC7K325T,
XC5VLXI110T, and XC5VLX365T are connected through
ethernet, SMA cable, or PCB trace. Figure 9 is the picture of
real product.

5.2. Data Structure. The provisions of the RP-ring’s particle
information format are as shown in Figure 10. The location,
mass, and potential field store the particle’s three-dimensional
coordinates, mass, and the provisional result of potential,
as well as the field of Tag record FPGA boards that the
particle information has passed. Once the information passes
an FPGA board, the corresponding position in Tag filed is set.

International Journal of Reconfigurable Computing

RELREIG — — — — — 210D pIeNY) STV X9310D) Y eaday, (19yndwod 350Y) 1 I-U0sIdf
VINS oea /gD 871 U282 9/5 o3 QN 9/6FT UOBI 0¥0°SSH UOBD ZE0F9E ON TX LS9EXTA9DX [RIED)

VINS Pue 3oy s/gDTE 8¥ QI 8TL 008°8T 080°9% ON LOTTXTASDX SAINX
VINS Pue jousag /gD 8Tl 0¥8 I000¥ 009%20¥% 080°9z€ oN LSTENLOX SOLOY
JouIaylg /gD '8 07T 1095 00¥°901 00068 210D [en(6V X2110D 0207.L0X pIeoqpayz
UOI}29UU0)) ([eo132109}) YIpIMPpUEq $S900€ ATOWIN OIS dSA JNVY N20[d doy difg S[[92 2180 NdD preH dryo urepy preog

"spIeoq a1 Jo s1a)owrered ay7, ;[4T4V],

International Journal of Reconfigurable Computing

Board connection Swt
= - - =
m = = 23]
m m
\ x x l
Jetson TK1 Zedboard KC705 ML505

[%2] [%2]

= =

T 7T

Gemini-1
Chip connection
—Ethernet Tegra K1 Ethernet XC5VLX50T SMA-
XC77020 XC6VLX365T
LEthernet . XC7K325T SMA:- XC6VLX365T PCB trace—

(i) UTP: ethernet

(ii) SMA: subminiature version A

FIGURE 8: The experiment’s connection.

Zedboard XUPV5

Gemini-1

FIGURE 9: Boards.

10

International Journal of Reconfigurable Computing

Particle information

(i) Location (x, y, z)

(ii) Mass
(iii) Potential
(iv) Tag
Board|Board Board
0 1 n-—1

FIGURE 10: The data structure of particle information.

ARM

Input Computing Output

>

i
i

!

! Cortex-A9
! B

i

i

'l process process process !,

DDR3
controller

AXI-HP

N
Input- | | Pipeline 0 if
FIFO | ||
] Pipeline 2
DMA-
=l DMA I "mrro [
1
Output-
FIFO
N

FIGURE 11: Protocol’s software implementation.

When all of the bits are set, the potential field contains the
final result.

5.3. Protocol

5.3.1. Software Implementation. For the FPGA with inte-
grated CPU, like Zynq-7000, the interconnection proto-
col can be implemented with software as Figure 11 shows.
Figure 11 shows its system architecture: multiple pipelines
are instantiated in FPGA; two input ports of each pipeline
are connected to Input-FIFO and DMA-FIFO; the output
port of each pipeline is connected to Output-FIFO. The CPU
creates three processes: Input Process, Computing Process,
and Output Process.

Input Process. Control Gigabyte Ethernet receives particle
information from previous board and stores it to Input-
FIFO. Moreover, Input Process handles the situation of
retransmission, Input-FIFO’s fullness, and so on.

Computing Process. Control DMA traverses local particle
information from DDR3. Control pipelines compute the
potential based on the particle information in Input-FIFO
and local information in DMA-FIFO and then write the result
to Output-FIFO.

Output Process. Control Gigabyte Ethernet Sends the result
in Output-FIFO to the next board. Moreover, Output Process
handles the situation of retransmission, next board’s Input-
FIFO’s fullness, and so on.

5.3.2. Hardware Implementation. For the FPGA without
integrated CPU, like XC7K325T, the interconnection protocol
can be implemented with hardware as Figure 12 shows.
Because the interconnection media can be ethernet cable,
SMA cable, or PCB trace, the input/output connection can
be ethernet controller, SMA controller, or SelectIO controller.
In Figure 12, a protocol FSM replaces the role of CPU. It
controls the input connection, receives the data from previous
board, stores the message in the Input-FIFO, and controls the
DMA traverse local data, and pipelines finish the calculation,
control the output connection, and send the result in Output-
FIFO to the next board.

6. Experimental Result

6.1. Logical Resource Consumption. Table 2 shows the
resource utilization of each FPGA board. Particularly, Zynq
FPGA has hard DDR3 controller and Gigabit Ethernet
controller, and Virtex-5 FPGA has hard DDR2 and MAC.
Thus, these modules do not require extra logic resource.
Virtex-5 does not have existing DMA IP, so we design a
simplified version.

6.2. Communication Bandwidth Consumption. In order
to measure the communication bandwidth consumption
between boards, we add counters to record the data traffic
on the interconnection. Figure 13 shows the counters in the
system and the interconnection’s notation. These counters
will work after each packet passes through the path. At the

International Journal of Reconfigurable Computing

TABLE 2: Resource consumption.

1

Gemini-1 KC705
LUT REG BRAM DSp LUT REG BRAM DSP
FIFO 265 129 4 0 265 112 4 0
DMA 2753 4078 8 1322 1680 8 0
IN/OUT 450 530 0 1479 2082 0 0
MEM 5889 5882 0 14016 9019 2 0
PIPELINE 209493 301565 5 480 185509 273149 5 736
TOTAL 227520 455040 416 576 203800 407600 445 840
Zedboard XUPV5
LUT REG BRAM DSP LUT REG BRAM DSP
FIFO 265 112 4 0 47 57 4 0
DMA 0 0 0 0 777 516 0 0
IN/OUT 0 0 0 0 2226 2307 0 0
MEM 0 0 0 0 0 0 0 0
PIPELINE 45014 80403 2 171 10552 15945 0 64
TOTAL 53200 106400 140 220 69120 69120 128 64
Protocol
FSM
Input [Input-
connection FIFO
|
comene [P RS Ppdinco
] Pipeline 1 —
] Pipelinen — 1 —
Output [Output- |
connection FIFO |

FIGURE 12: Protocol’s hardware implementation.

2 2 2 2
Fthernet 0— £ Tegra K1 £ FEthernet_2- £ XC5VLX50T E——SMA_I
[: : : : |
Counter
Counter
XC77Z020
XC6VLX365T
Counter
Counter
o 0 o 0]
Ethernet_1—— g XC7K325T § —SMA_0— g XC6VLX365T! g ——PCB trace
(¢} (¢} (2} (¢}
= = — =

FI1GURE 13: Counters’ location and interconnection’s notation.

12 International Journal of Reconfigurable Computing
o Time to calculate potential
1 ' r
g
L
£
=
10° 10* 10° 10°
Simulation scale
*—+ Intel Xeon E5-2660
*x— NVIDIA Tesla K80
+—+ RP-ring
FIGURE 14: Software performance comparison.
TaBLE 3: Communication bandwidth consumption.
Interconnection Data traffic (MB) Time (ms) Bandwidth measured (MB/s) Bandwidth theory (MB/s)
Ethernet 0 15.733 12972 12.128 1000
Ethernet 1 15.641 12972 12.057 1000
Ethernet 2 15.847 1297.2 12.216 1000
SMA 0 291 1297.2 2.244 3125
SMA'1 2.926 1297.2 2.256 3125
PCB trace 2.903 1297.2 2.238 6400
TaBLE 4: The number of potential pipelines. and their performance. The conversion between GFlops and
Board T . Grl Pai MPair/s is based on Atsushi Kawai’s work [16]. Based on
oar [peiine rrequency ops air/s the above results, we calculate the whole system’s theoretical
Zedboard 8 200 MHz 32.9 866.6 parameters. Finally, we list the system’s experimental result.
KC705 32 3449 MHz 2272 5977.8
XUPV5 2 224.3MHz 9.234 242.9 6.3.1. Comparison with Software. We choose CPU and GPU
Gemini-1 32x2 2661MHz 1753 %2 4612.0 * 2 solutions as the control groups of our work. Fabian’s RAMSES
Total (theory) 106 — 620.1 16311.3 code is a widely used method for MOND simulation [11].
Total (experiment) 106 o 503.5 13244.7 Therefore, we choose their method as the reference software

end of the whole experiment, we can read out the value
of each counter and divide it by the time of calculation.
By this way, we can confirm that our data has no loss in
the communication and give out the specific throughput
bandwidth of each FPGA boards.

Table 3 shows the communication bandwidth consump-
tion result during calculating 131,072 particles’ potential, the
time of which is 1297113 ms. Because of the solution’s ring
topologies, the consumption of communication bandwidth is
very low.

6.3. Performance Comparison. Table 4 shows the number of
potential pipelines in each FPGA board, operation frequency,

implementation and use Intel Xeon E5-2660 to run different
scale test. Based on RAMSES’s QUMOND method and Nitin’s
direct N-body kernels to simulate the same work set on
NVIDIAs Tesla K80 GPU, Figure 14 shows the time taken
to calculate potential in different platform. The benefit from
the structure of FPGA is that RP-ring is faster than other
solutions at the beginning. In the right-end, the NVIDIA
results appear to be better than the RP-ring, because as the
number of particles increases, our platform is approaching its
theoretical maximum performance (503.5 of 620.1 GFlops),
and Tesla K80 has not reached its limits. As for the CPU
solution, it uses much more time compared to RP-ring and
GPU, limited by its poor capability of parallel computing.
When simulating a system with 131072 particles, our work
is 193 times faster than Xeon E5-2660 CPU and can achieve
similar performance to Tesla K80.

International Journal of Reconfigurable Computing

TABLE 5: Hardware performance comparison.

Implement Main chip GFlops
GRAPE-4 cluster [7] ASIC 1080
GRAPE-6 cluster [9] ASIC 1349
GRAPE-8 board [8] ASIC 960
Lienhart et al’s work [12] FPGA 39
Spurzem et al’s work [13] FPGA 4.3
Hamada et al’s Bioler-3 [4] FPGA 324.2
GPU cluster [14] GPU 781
Sozzo et al’s work [15] FPGA 46.55
Our Work FPGA 503.5

6.3.2. Comparison with Hardware. Table 4 shows a number
of hardware implementation details of N-body simulation.
Junichiro's GRAPE-4 cluster uses 1692 pipeline and achieves
1.08 TFlops [7]. And he builds a compute cluster with
GRAPE-6 chips whose peak performance is 1.349 TFlops [9].
Furthermore, his GRAPE-8 achieves 960 GFlops with just
one board [8]. Reference [14] showed a solution with GPU
whose performance is 781 GFlops.

Some FPGA solutions are also listed in the Table 5.
Lienhart et al. use FPGA to achieve 3.9 GFlops’ performance
[12]. Spurzem et al’s solution has the performance of 4.3
GFlops [13], Hamada et al’s work reaches 324.2 GFlops by a
board with 5 FPGA chips [4], and Sozzo et al’s work makes a
solution with 46.55 GFlops’ performance [15].

7. Conclusion and Discussion

In this paper, we proposed an extensible solution: RP-ring,
which is used for heterogeneous multi-FPGA-based direct-
summation N-body simulation, and a model to decompose
workload among each FPGA. RP-ring tries to use existing
FPGA boards rather than designing new specialized boards
to reduce cost. The solution can be expanded conveniently
with any heterogeneous FPGA boards and the commu-
nication bandwidth requirement is quite low, so that the
communication protocol could be designed to be simple and
consume few resource. The model considers the constraint
of FPGA’s logic resource, memory access bandwidth, and
communication bandwidth to divide workload reasonably
and optimize the whole system’s performance. We also build
a heterogeneous multi-FPGA system based on RP-ring and
use it for MOND theory’s numerical simulation. The exper-
imental result shows that the low cost multi-FPGA system
is 193 times faster than high-end CPU implementation and
achieves similar performance to high performance GPU.

Disclosure

An earlier version of this work was presented as a poster at
2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

13

Acknowledgments

This research was sponsored by Huawei Innovation Research
Program (YB2015090102); support from Huawei Technolo-
gies Co., Ltd., is gratefully acknowledged.

References

[1] S.Bhatt, M. Chen, C.-Y. Lin et al., “Abstractions for parallel N-
body simulations,” in Proceedings of the Scalable High Perfor-
mance Computing Conference (SHPCC-92), pp. 38-45, IEEE.

[2] T. Hamada, T. Narumi, R. Yokota, K. Yasuoka, K. Nitadori,
and M. Taiji, “42 TFlops hierarchical N-body simulations on
GPUs with applications in both astrophysics and turbulence,” in
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, (SC ’09), New York, NY, USA,
November 2009.

[3] S.Harfst, A. Gualandris, D. Merritt, R. Spurzem, S. P. Zwart, and
P. Berczik, “Performance analysis of direct N-body algorithms
on special-purpose supercomputers,” New Astronomy, vol. 12,
no. 5, pp. 357-377, 2007.

[4] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, A com-
parative study on ASIC, FPGAs, GPUs and general purpose
processors in the O(N?) gravitational N-body simulation,” in
Proceedings of the NASA/ESA Conference on Adaptive Hardware
and Systems (AHS "09), pp. 447-452, San Francisco, Calif, USA,
July 2009.

[5] N. Arora, A. Shringarpure, and R. W. Vuduc, “Direct n-body
kernels for multicore platforms,” in Proceedings of the 38th
International Conference on Parallel Processing, ICPP-2009, pp.
379-387, Austria, September 2009.

[6] I. Zecena, M. Burtscher, T. Jin, and Z. Zong, “Evaluating the

performance and energy efficiency of n-body codes on multi-

core CPUs and GPUs,” in Proceedings of the 2013 IEEE 32nd

International Performance Computing and Communications

Conference, IPCCC 2013, USA, December 2013.

J. Making, M. Taiji, T. Ebisuzaki, and D. Sugimoto, “Grape-4: A

massively parallel special-purpose computer for collisional n-

body simulations,” The Astrophysical Journal , vol. 480, no. 1, pp.

432-446, 1997.

[8] J. Makino and H. Daisaka, “GRAPE-8—an accelerator for grav-
itational N-body simulation with 20.5Gflops/W performance;
in Proceedings of the 24th International Conference for High
Performance Computing, Networking, Storage and Analysis (SC
’12), Salt Lake City, Utah, USA, November 2012.

[9] J. Makino, T. Fukushige, and M. Koga, “A 1.349 Tflops simula-
tion of black holes in a galactic center on GRAPE-6,” in Proceed-
ings of the 2000 ACM/IEEE Conference on Supercomputing, pp.
43-43 Dallas, Tex, USA, November 2000.

[10] B. Famaey and S. S. McGaugh, “Modified newtonian dynamics
(MOND): observational phenomenology and relativistic exten-
sions,” Living Reviews in Relativity, vol. 15, article 10, 2012.

[11] E Liighausen, B. Famaey, and P. Kroupa, “Phantom of RAMSES
(POR): a new Milgromian dynamics N-body code,” Canadian
Journal of Physics, vol. 93, no. 2, pp. 232-241, 2014.

[12] G. Lienhart, A. Kugel, and R. Ménner, “Using floating-point
arithmetic on FPGAS to accelerate scientific N-Body simula-
tions,” in Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM 2002,
pp. 182-194, USA, April 2002.

[13] R. Spurzem, P. Berczik, G. Marcus et al., “Accelerating astro-
physical particle simulations with programmable hardware

N

14

(14

(15]

(16]

(FPGA and GPU),” Computer Science - Research and Develop-
ment, vol. 23, no. 3-4, pp. 231-239, 2009.

A. Castellls, R. Mayo, and J. Planas, “Exploiting Task-
Parallelism on GPU Clusters via OmpSs and rCUDA Virtual-
ization Trustcom/BigDataSE/ISPA,” in Proceedings of the IEEE
Trustcom/BigDataSE/ISPA, pp. 160-165, 2015.

E. D. Sozzo, L. D. Tucci, and M. D. Santambrogio, “A highly
scalable and efficient parallel design of N-body simulation on
FPGA,” in Proceedings of the 31st IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPSW 2017,
pp. 241-246, USA, June 2017.

A. Kawai and T. Fukushige, “$158/GFLOPS astrophysical N-
body simulation with reconfigurable add-in card and hierarchi-
cal tree algorithm,” in Proceedings of the ACM/IEEE Conference
on Supercomputing (SC °06), 2006.

International Journal of Reconfigurable Computing

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

