
Research Article
FPGA Implementation of Reconfigurable Finite State Machine
with Input Multiplexing Architecture Using Hungarian Method

Nitish Das and P. Aruna Priya

Department of ECE, SRM University, Kattankulathur, Chennai 603203, India

Correspondence should be addressed to P. Aruna Priya; arunapriya.p@ktr.srmuniv.ac.in

Received 25 July 2017; Revised 27 October 2017; Accepted 16 November 2017; Published 10 January 2018

Academic Editor: Michael Hübner

Copyright © 2018 NitishDas and P. Aruna Priya.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

The mathematical model for designing a complex digital system is a finite state machine (FSM). Applications such as digital
signal processing (DSP) and built-in self-test (BIST) require specific operations to be performed only in the particular instances.
Hence, the optimal synthesis of such systems requires a reconfigurable FSM. The objective of this paper is to create a framework
for a reconfigurable FSM with input multiplexing and state-based input selection (Reconfigurable FSMIM-S) architecture. The
Reconfigurable FSMIM-S architecture is constructed by combining the conventional FSMIM-S architecture and an optimized
multiplexer bank (which defines the mode of operation). For this, the descriptions of a set of FSMs are taken for a particular
application. The problem of obtaining the required optimized multiplexer bank is transformed into a weighted bipartite graph
matching problem where the objective is to iteratively match the description of FSMs in the set with minimal cost. As a
solution, an iterative greedy heuristic based Hungarian algorithm is proposed. The experimental results from MCNC FSM
benchmarks demonstrate a significant speed improvement by 30.43% as compared with variation-based reconfigurable multiplexer
bank (VRMUX) and by 9.14% in comparison with combination-based reconfigurable multiplexer bank (CRMUX) during field
programmable gate array (FPGA) implementation.

1. Introduction

Designing a complex digital system requires an efficient
method that includes modeling a control unit (i.e., a con-
troller). The operational speed of such systems depends on
the speed of their controllers. The mathematical model for
designing a controller for applications such as microproces-
sor control units, circuit testing, and digital signal processing
(DSP) is a finite state machine (FSM). Consequently, design-
ing such systems requires an efficient synthesis technique
for high-speed FSM [1, 2]. Applications such as DSP [3, 4]
and built-in self-test (BIST) [5] require specific operations
to be performed only in the particular instances. Different
control units are required to complete each operation. Hence,
to optimally perform these operations, a single control unit
is defined which can configure itself depending upon the
applied mode of operation; it is also known as reconfigurable
FSM [1].Themode of operation for such FSM is controlled by
a counter, timer, or any user-defined control signals based on
the application requirements. An example of a reconfigurable

FSM is given in [1] as a test chip for wireless sensor
network. In this example, Transition-Based Reconfigurable
FSM (TR-FSM) [1] is configured into one of the MCNC
FSM benchmark circuits (i.e., dk15, s386, or cse) at different
instances. Moreover, any application which requires sequen-
tial processing can be broken down into a series of instances
(i.e., multistage reconfigurable signal processing) where at
each instance only a particular operation is performed [3].
Hence, for such applications, efficient architectures can be
created using reconfigurable FSM. These emerging trends in
the research necessitate a framework for optimal synthesis of
high-speed reconfigurable FSM.

Conventional LUT-based architectures have been
used for FSM implementation on a FPGA platform [6].
Similarly, ROM-based architectures are investigated for FSM
implementations. Due to the area and speed advantages,
they act as an excellent alternative to their conventional
LUT-based counterparts [7]. In such implementations, a
considerable reduction in power consumption is obtained by
disabling embedded memory blocks (EMBs) during the idle

Hindawi
International Journal of Reconfigurable Computing
Volume 2018, Article ID 6831901, 15 pages
https://doi.org/10.1155/2018/6831901

http://orcid.org/0000-0002-3920-0304
http://orcid.org/0000-0002-5612-3312
https://doi.org/10.1155/2018/6831901

2 International Journal of Reconfigurable Computing

states [8, 9].The fundamental framework for FSMwith input
multiplexing (FSMIM) is made in [7] whose prime objective
is to shorten the depth of ROM memory. In their approach,
an input selector (which consists of a multiplexer bank) is
used. The basic idea that has been implemented is to select
only a specific set of inputs for a particular state. FSMIM
with state-based input selection (FSMIM-S) is proposed in
[10], which further reduces the ROMmemory size.

Another approach for implementation of reconfig-
urable FSM is RAM-based architectures. In literature,
there are two underlying RAM-based architectures, that is,
variation-based reconfigurable multiplexer bank (VRMUX)
and combination-based reconfigurable multiplexer bank
(CRMUX) [11]. The RAM-based architectures do not serve
as a novel tool for implementation of complicated FSM
structures such as parallel hierarchical finite state machines
(PHFSM) [12] or reversible FSM [13]. Due to significant
advantages of FSMIM-S architecture over other architectures,
it is used to create a framework for the high-speed Reconfig-
urable FSMIM-S architecture.

The Reconfigurable FSMIM-S architecture is constructed
by combining the conventional FSMIM-S architecture [10]
and an optimized multiplexer bank (which defines the mode
of operation). For this, the descriptions of a set of FSMs are
taken for a particular application. Hence, the problem is to
obtain the optimized multiplexer bank for the given set of
FSMs. It can be solved by mapping all the FSMs into one
large FSM (called base ckt) in that set. The objective of this
process is to perform optimalmatching between base ckt and
the other FSMs in the set so that a minimum number of
bits are changed by changing the mode of operation. This
situation (i.e., performing one-to-one mapping) transforms
the problem into a weighted bipartite graph matching prob-
lem where the objective is to match the description of FSMs
in the set to base ckt with minimal cost [14]. As a solution,
an iterative greedy heuristic based Hungarian algorithm
is proposed. In this algorithm, the weights are assigned
based on the input combinations, state code, and the output
combinations to form a cost matrix. A cost matrix reduction
based technique, that is, Hungarian algorithm [15, 16], is
used for matching. A greedy based heuristic (GBH) search
technique [17] is combined with the Hungarian algorithm
to optimize the augmenting path search. At every iteration,
descriptions of two FSMs (i.e., base ckt and one of the FSMs
in the set) are taken as inputs. It produces the modified
descriptions of the FSMs of the same dimension as outputs.
At the end of the algorithm, a mutual XOR operation is
performed among the modified descriptions, which provides
the required optimized multiplexer bank.

The experimental results from MCNC FSM benchmarks
illustrate the advantages of the proposed architecture as
compared with VRMUX [11], as operating speed is enhanced
at an average of 30.43% and LUT consumption is reduced
by an average of 5.16% in FPGA implementation. It also
shows that the operating speed is improved at an average
of 9.14% in comparison with CRMUX [11] during FPGA
implementation. The limitation of the proposed technique is
the requirement of higher LUTs, as it requires an average of

88.65% more LUTs in comparison with CRMUX [11] during
FPGA implementation.

The rest of the paper is outlined as follows. Section 2
consists of the Reconfigurable FSMIM-S architecture and
the proposed iterative greedy heuristic based Hungarian
algorithm. The experimental evaluation of the proposed
algorithm, implementation of the Reconfigurable FSMIM-S
architecture, and comparison with other proposals from the
literature are presented in Section 3. The concluding remarks
are devised in Section 4.

2. Proposed Method

As most of the FPGA platforms use synchronous EMBs,
Mealy machines with synchronous outputs are used in this
paper. Let a Mealy FSM be described by the following
columns: 𝑎𝑚 is a code of current state (𝑎𝑚 ∈ 𝐴, where
𝐴 = {𝑎1, . . . , 𝑎𝑀} is a set of states); 𝐾(𝑎𝑚) is a code of state
𝑎𝑚 ∈ 𝐴; ℎ is the number of transitions per state (ℎ ∈ 𝐻, where
𝐻 = {𝑡1, . . . , 𝑡𝑀} is a set of number of transitions per state
corresponding to𝐴); 𝑎𝑠 is a state of transition (the next state);
𝐾(𝑎𝑠) is a code of state 𝑎𝑠 ∈ 𝐴; 𝑋 = {𝑥1, . . . , 𝑥𝐿} is the set of
input variables,𝑌 = {𝑦1, . . . , 𝑦𝑁} is the set of output variables;
and𝐷 = {𝑑1, . . . , 𝑑𝑅} is defined as excitation functions for the
flip-flops, where𝑅 is the number of flip-flops (i.e., the number
of bits in internal state codes), 𝑅 ∈ {⌊log2𝑀⌋,𝑀}.

The descriptions of a set of FSMs are taken for a particular
application.The fundamental idea is to obtain the description
of a single FSM by mapping all the FSMs into one large FSM
(called base ckt) in that set. The inputs, states, and outputs of
an FSM in the set aremapped into base ckt in their respective
order. The mode bits are applied through a 2 × 1 multiplexer
in those positions where the polarity of bit differs (i.e., 1 in
place 0 and vice versa) to perform such mapping. Hence,
the resultant FSM operates in two modes, where base ckt
mode is the default mode of operation. Similarly, all other
FSMs in the set are mapped into base ckt. In this way, a
single FSM (i.e., base ckt) combined with a multiplexer bank
(which defines the mode of operation) acts as reconfigurable
FSM. It can be configured into a particular FSM in the set by
applying the specific mode bits. Due to numerous advantages
mentioned in the literature, FSMIM-S architecture [10] is
chosen to implement the FSM (i.e., base ckt) part. Therefore,
the Reconfigurable FSMIM-S architecture is constructed by
combining the conventional FSMIM-S architecture [10] and
multiplexer bank for mode based reconfiguration as shown
in Figure 1.

It encounters the following two major difficulties:

(i) The complexity of the resultant multiplexer bank is
very high.

(ii) It becomes difficult to define the dummy states and
dummy transitions. Dummy states and dummy tran-
sitions are such states and transitions which are not
present in base ckt but exist in the other FSMs in the
set and vice versa.These states and transitions lead the
system to failure.

International Journal of Reconfigurable Computing 3

Input
selector

bank
Group

encoder

Multiplexer
bank for

mode based
reconfiguration

ROM

Input

Output

Mode of operation

L

N

Mode bits

Conventional
FSMIM-S

architecture

Figure 1: Reconfigurable FSMIM-S architecture.

As a solution, an iterative greedy heuristic based Hun-
garian algorithm is proposed. In this algorithm, the descrip-
tions of a set of FSMs (i.e., [ℎ,𝑋, 𝑎𝑚, 𝑎𝑠, 𝑌]) are taken
as inputs. It provides the optimized multiplexer bank for
mode based reconfiguration as output. It also provides
the updated description (i.e., description without dummy
states and dummy transitions) of base ckt, which is used
to construct the conventional FSMIM-S part of the pro-
posed architecture. Let (𝐵 + 1) be the set of FSMs for
a particular application. Based on the complexity of the
description of FSM, the largest FSM is selected from the
set. It is called base ckt. The rest of the FSMs are called
recon ckt 1, recon ckt 2, . . . , recon ckt 𝐵, respectively.

Each input, state, or output of a recon ckt 𝑏 ∈
{recon ckt 1, recon ckt 2, . . . , recon ckt 𝐵} can be mapped
into any one of the inputs, states, or outputs, respectively,
of base ckt; that is, there exists a one-to-one mapping.
Thesemappings cannot be performed independently because
inputs, states, and outputs of an FSM are interdependent.
Consequently, mapping an input or state of recon ckt b
into base ckt is transformed into a weighted bipartite graph
matching problem or linear assignment problem (LAP) [14]
as shown in Figure 2. In this LAP, the weights are assigned
based on the input combinations, state code, and the output
combinations to form a cost matrix. The objective of this
process is to perform matching with a minimal cost so that a
minimum number of bits are changed by changing the mode
of operation. Therefore, the complexity of the multiplexer
bank is reduced.

In the literature, the following approaches are proposed
to solve a LAP:

(i) Modified Hungarian algorithm [16]
(ii) Simple greedy heuristic based algorithm [17]
(iii) Evolutionary heuristic algorithm [18].

Themaximumnumber of inputs or states does not exceed
100 in MCNC FSM benchmarks or FSMs used in real-
world applications. So, the number of vertices used in the
resultant weighted bipartite graph is always low which results
in small LAP. But, the number of LAPs formed in this process
is enormous because input matching and state matching
are performed together as shown in Figure 2. Hence, the
primary requirement of the algorithm to solve LAP becomes
the fast convergence. Therefore, a cost matrix reduction
based technique, that is, Hungarian algorithm [15, 16], is
used for matching. A greedy based heuristic (GBH) search
technique [17] is combined with the Hungarian algorithm to
optimize the augmenting path search.The pseudocode of this
technique is summarized in Algorithm 1. (Note: subscripts
“base” and “recon” denote the parameters of base ckt and
recon ckt, respectively, throughout the paper.)

At every iteration ∈ {1, . . . , 𝐵}, descriptions of two
FSMs, that is, base ckt and recon ckt b, are taken as inputs.
The major contributing factors for power consumption and
LUT requirement in FSM are the number of inputs and
the internal states [8, 19]. In any FSM, input variable and
states are interdependent. Thus, input and state matching are
performed together between base ckt and recon ckt.

If 𝐿 base ≥ 𝐿 recon, then 𝐸 = 𝐿 base𝑃𝐿 recon combinations
of input lines for base ckt are generated to match with input
lines of recon ckt b. (𝐿 base − 𝐿 recon) input lines act as
don’t cares while the system operates in recon ckt b mode.
Otherwise, 𝐸 = 𝐿 recon𝑃𝐿 base combinations of input lines
for recon ckt b are generated to match with input lines of
base ckt. In this case, (𝐿 recon − 𝐿 base) input lines act as
don’t cares while the system operates in base ckt mode.

Now, for each combination of input lines, state matching
is performed (Algorithm 2). This situation can be seen as a
LAP where the objective is to match the states of recon ckt b
to the states of base ckt with minimal cost [14, 17]. For this,

4 International Journal of Reconfigurable Computing

In
pu

t &
 st

at
e

m
at

ch
in

g

O
ut

pu
t

m
at

ch
in

g

D
um

m
y

st
at

e
&

 p
os

iti
on

re
pl

ac
em

en
t

U
pd

at
e t

he
de

sc
rip

tio
ns

 o
f F

SM
s

Flow chart
for

algorithm

h
Input PS NS Output

- -
1.
2.
-- --

1.
-- --

-- --
-- --
1.
-- --

ba
se

_c
kt

Input PS NS Output
-

re
co

n_
ck

t

In
iti

al
iz

at
io

n
(d

efi
ne

ba
se

_c
kt

 an
d

re
co

n_
ck

t)

Weighted-
bipartite graph
matching using

Hungarian
method

h: transitions
Input & output bits ∈ {‘‘0’’, ‘‘1’,’ ‘‘-’’}

PS: present state; NS: next state

Matching
using

Bitwise-
XOR

operations

t1

t2

tM

h

1.
2.
--

1.
--

--
--
1.
--

t1

t2

tM

x1 x2 xL
x1 x2 xL

a1
a1

a1
a2

a2

aM

aM

--

--

--
--

--

a1
a1

a1
a2

a2

aM

aM

y1 y2
yN -y1 y2

yN

NS, as ∈ A, where A = {a1, a2, . . . , aM}

Figure 2: Flow chart for iterative greedy heuristic based Hungarian algorithm.

the number of states in both the FSMs is equalized. Thus,
if 𝑀 base ≥ 𝑀 recon, then (𝛼 − 𝑀 recon, where 𝛼 =
𝑀 base) dummy states are added in recon ckt b. Otherwise
(𝛼 − 𝑀 base, where 𝛼 = 𝑀 recon) dummy states are added
in base ckt.

All LAP solving algorithms require a cost matrix
as an input to perform an optimal assignment. So, to
form a cost matrix for this problem, a procedure named
weight assignment is proposed.

In this procedure, the combinations of input lines, 𝑎𝑚
and ℎ, for base ckt and recon ckt b are taken as inputs.
It provides the cost matrix to map recon ckt b states into
base ckt states. An array is created at each transition in both
base ckt and recon ckt b by combining [input combination
∈ {𝑥1, 𝑥2, . . . , 𝑥𝐿}, 𝑎𝑚].

The basic idea that has been implemented is as follows:
(i) replace the recon ckt b state with the base ckt state
sequentially in the recon ckt array; (ii) evaluate the weight

by performing Bitwise-XORoperation (i.e., transitionmatch-
ing) for that particular replacement; (iii) then, construct the
cost matrix.

For each transition in recon ckt array (i.e., ℎrecon ∈
{1, 2, . . . , 𝑡𝑚 recon}), transition matching is performed. This
situation can be seen as a LAPwhere the objective is to match
the transition of recon ckt b to the transition of base ckt with
minimal cost [14, 17]. For this, the number of transitions for
the particular state is equalized in both the FSMs. Therefore,
if 𝑡𝑚 base ≥ 𝑡𝑚 recon, then (𝛽 − 𝑡𝑚 recon, where 𝛽 =
𝑡𝑚 base) dummy transitions are added in the recon ckt array.
Otherwise (𝛽 − 𝑡𝑚 base, where 𝛽 = 𝑡𝑚 base) dummy transitions
are added in the base ckt array. Thus, for each transition
in base ckt array (i.e., ℎbase ∈ {1, 2, . . . , 𝑡𝑚 base}), a Bitwise-
XOR operation is performed between the arrays for that
particular transition. The total number of 1’s in the Bitwise-
XOR operations is counted to create a cost matrix for
transition matching.Then, optimal assignment of transitions

International Journal of Reconfigurable Computing 5

Input. The descriptions of the FSMs (i.e. [ℎ, 𝑋, 𝑎𝑚, 𝑎𝑠, 𝑌])
Output. The optimized multiplexer bank for mode based reconfiguration
begin
select the largest FSM from the set based on the description;
base ckt← largest FSM;
recon ckt 1, recon ckt 2, . . . , recon ckt 𝐵 ← rest of the FSMs in the set;
for each recon ckt b ∈ {recon ckt 1, recon ckt 2, . . . , recon ckt 𝐵} do

if (L base ≥ L recon) then /∗ performing the input matching ∗/
generate, 𝐸 ← 𝐿 base𝑃𝐿 recon combinations of input lines for base ckt to match with
input lines of recon ckt b;
go to state matching; /∗ calling the function- “state matching” ∗/

else if (𝐿 base < 𝐿 recon) then
generate, 𝐸 ← 𝐿 recon𝑃𝐿 base combinations of input lines for recon ckt b to match
with input lines of base ckt;
go to state matching; /∗ calling the function- “state matching” ∗/

end
select combinations of input lines with min{assignment cost1, . . . , assignment cost𝐸}
&min{total cost1, total cost2, . . . , total cost𝐸};
perform binary state assignment in base ckt & recon ckt b i.e. apply 𝐾(𝑎𝑚) & 𝐾(𝑎𝑠);
weight assignment(); /∗creating arrays by [selected input combination, 𝐾(𝑎𝑠), 𝐾(𝑎𝑚)]∗/
go to dummy replacement; /∗ calling the function- “dummy replacement” ∗/
if (𝑁 base ≥ 𝑁 recon) then /∗ performing the output matching ∗/

generate, 𝐺 ← 𝑁 base𝑃𝑁 recon combinations of output lines for base ckt to match
with output lines of recon ckt b;
go to output matching; /∗ calling the function- “output matching” ∗/

else if (𝑁 base < 𝑁 recon) then
generate, 𝐺 ← 𝑁 recon𝑃𝑁 base combinations of output lines for recon ckt b to match
with output lines of base ckt;
go to output matching; /∗ calling the function- “output matching” ∗/

end
select combinations of output lines with min{XOR count1, . . . ,XOR count𝐺};
update the description of base ckt;

end
for each recon ckt b ∈ {recon ckt 1, recon ckt 2, . . . , recon ckt (𝐵 − 1)} do

go to dummy replacement; /∗ calling the function- “dummy replacement” ∗/
update the description of recon ckt b;

end
perform a mutual (i.e. 𝐵𝐶2) Bitwise-XOR operations between the updated descriptions of FSMs;
obtain the optimized multiplexer bank for mode based reconfiguration;
end

Algorithm 1: Iterative greedy heuristic based Hungarian algorithm.

is performed by greedy based heuristic Hungarian algo-
rithm (GBH hungarian algorithm) between base ckt array
and recon ckt array. Let match count be a variable defined
as

match count =
𝛽

∑
𝑖=1

𝛽

∑
𝑗=1

𝐶𝑖𝑗𝜆𝑖𝑗,

where, 𝐶𝑖𝑗 ←󳨀 cost matrix, 𝜆𝑖𝑗 ←󳨀 decision variable.

(1)

In this way, by using match count (from (1)), the cost
matrix formation to map recon ckt b states into base ckt
states is completed. The pseudocode of the procedure,
weight assignment, is summarized in Algorithm 5.

Let 𝑉 and 𝑈 represent the set of vertices (i.e., transitions
or states) for recon ckt and base ckt, respectively. 𝜇 = (𝑉 ∪

𝑈, 𝜉) is defined as a balanced weighted bipartite graph, where
|𝑉| = |𝑈| = 𝜂.𝐶 is the cost matrix. A number𝐶𝑖𝑗 ≥ 0 for each
edge [𝑖, 𝑗] ∈ 𝜉 is called the cost (or weight) of the edge [𝑖, 𝑗].

In GBH hungarian algorithm, the cost matrix 𝐶 is taken
as input. It provides an optimal assignment between 𝑉 and
𝑈 as output. GBH in [17] is an iterative cost matrix reduction
based approach to solve the LAP. At each iteration, a single
vertex is eliminated from either 𝑉 or 𝑈 until the advent of
some stopping conditions. Let 𝑘 be the last iteration (whereas
𝑘 is a positive integer). Therefore, either 𝑘 or (𝑘 − 1) vertices
are eliminated from 𝜇 at the last iteration.

Let V𝑘 ⊆ 𝑉 and 𝑢𝑘 ⊆ 𝑈 be the subsets of the remaining
vertices in 𝑉 and 𝑈, respectively, at iteration 𝑘. At the first
iteration, that is, 𝑘 = 1, V1 = 𝑉, and 𝑢1 = 𝑈, respectively,
the objective of the LAP is to assign 𝜂 resources to 𝜂 tasks in
such a way that optimal total cost should be obtained for the

6 International Journal of Reconfigurable Computing

Input. Combinations of input lines, the descriptions of base ckt & recon ckt b (i.e. [ℎ,𝑋, 𝑎𝑚, 𝑎𝑠, 𝑌])
Output. Assignment cost𝑒, total cost𝑒, modified description of recon ckt b
begin
for all (combinations of input lines) do

if (𝑀 base ≥ 𝑀 recon) then /∗ equating the number of states in both the FSMs ∗/
add (𝑀 base −𝑀 recon) dummy states in recon ckt b;
𝛼 ← 𝑀 base;

else if (𝑀 base < 𝑀 recon) then
add (𝑀 recon −𝑀 base) dummy states in base ckt;
𝛼 ← 𝑀 recon;

end
weight assignment(); /∗ calling the procedure- “weight assignment” ∗/
GBH hungarian algorithm(); /∗ performing present state matching ∗/

assignment cost𝑒 ← ∑
𝛼
𝑖=1∑
𝛼
𝑗=1 𝐶𝑖𝑗 ⋅ 𝜆𝑖𝑗; where 𝑒 ∈ {1, 2, . . . , 𝐸};

total cost𝑒 ← ∑
𝛼
𝑖=1∑
𝛼
𝑗=1 𝐶𝑖𝑗; where 𝑒 ∈ {1, 2, . . . , 𝐸};

replace all states of recon ckt b by their corresponding states of base ckt obtained
from GBH hungarian algorithm;
corresponding to 𝑎𝑚 base order, arrange all the complete arrays of recon ckt b;

end
end

Algorithm 2: State matching.

assignment. The LAP can be mathematically formulated as
follows:

𝑓𝑘 ≡ 𝜑 (V𝑘, 𝑢𝑘) = min
𝜂

∑
𝑖=1

𝜂

∑
𝑗=1

𝐶𝑖𝑗𝜆𝑖𝑗; (2)

s.t.
𝜂

∑
𝑗=1

𝜆𝑖𝑗 = 1,

where ∀𝑖 = 1, . . . , 𝜂;

(3)

𝜂

∑
𝑖=1

𝜆𝑖𝑗 = 1,

where ∀𝑗 = 1, . . . , 𝜂;

(4)

𝜆𝑖𝑗 ∈ {0, 1} ,

where ∀𝑖, 𝑗 = 1, . . . , 𝜂.
(5)

Equation (2) represents the objective function for LAP. If
resource 𝑖 is allocated to task 𝑗 then the decision variable 𝜆𝑖𝑗 =
1 and 0 otherwise as depicted in (5). One-to-one mapping
should be practiced between resources and tasks. Equations
(3) and (4) ensure these criteria.

At each iteration, there are two options to eliminate a
vertex, that is, from either𝑉 or𝑈. For each 𝑖 ∈ V𝑘 and 𝑗 ∈ 𝑢𝑘,
the following parameters are defined to select one of the above
options:

𝐶𝑉𝑘 =
1
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨
⋅ ∑
𝑖∈V𝑘

∑
𝑗∈𝑢𝑘

𝐶𝑖𝑗,

𝐶𝑈𝑘 =
1
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨
⋅ ∑
𝑖∈V𝑘

∑
𝑗∈𝑢𝑘

𝐶𝑖𝑗;
(6)

𝑓𝑉𝑘 = min
𝑖∈V𝑘
𝜑 (V𝑘, 𝑢𝑘) ; (7)

𝑓𝑈𝑘 = min
𝑗∈𝑢𝑘
𝜑 (V𝑘, 𝑢𝑘) . (8)

In (6), 𝐶𝑉𝑘 and 𝐶
𝑈
𝑘 can act as “potential cost contribution”

[17] of vertices 𝑖 ∈ V𝑘 and 𝑗 ∈ 𝑢𝑘 to 𝑓𝑘 in (2). Thus, the
potential cost contribution is evaluated for the vertices, and if
it exceeds the corresponding removal cost, then such vertices
are eliminated.

If 𝐶𝑉𝑘 ≤ 𝐶
𝑈
𝑘 , then an attempt is made to remove one of

the vertices from V𝑘 ⊆ 𝑉. From (7), if 𝑓𝑉𝑘 ≤ 𝑓𝑘−1, that is, the
objective function value is improved by eliminating 𝑖𝑘, then
V𝑘+1 is set to V𝑘 and the next iteration is executed.

Otherwise, one of the vertices from 𝑢𝑘 ⊆ 𝑈 is eliminated.
From (8), if 𝑓𝑈𝑘 ≤ 𝑓𝑘−1, that is, the objective function value
is improved by eliminating 𝑗𝑘, then 𝑢𝑘+1 is set to 𝑢𝑘 and the
next iteration is executed.

In this case, when the objective function value is not
improved by eliminating either 𝑖𝑘 or 𝑗𝑘, then algorithm halts
and the obtained solution is 𝑓𝑘−1. Furthermore, if 𝐶𝑉𝑘 > 𝐶

𝑈
𝑘 ,

then the above steps are repeated in the opposite order. The
pseudocode of this approach is devised in Algorithm 6.

Therefore, after obtaining the cost matrix from
weight assignment for state matching, GBH hungarian
algorithm is applied to obtain the following parameters:

assignment cost𝑒 ←󳨀
𝛼

∑
𝑖=1

𝛼

∑
𝑗=1

𝐶𝑖𝑗 ⋅ 𝜆𝑖𝑗,

where 𝑒 ∈ {1, 2, . . . , 𝐸} ;

total cost𝑒 ←󳨀
𝛼

∑
𝑖=1

𝛼

∑
𝑗=1

𝐶𝑖𝑗,

where 𝑒 ∈ {1, 2, . . . , 𝐸} .

(9)

International Journal of Reconfigurable Computing 7

Input. The descriptions of base ckt & recon ckt b (i.e. [ℎ,𝑋, 𝑎𝑚, 𝑎𝑠, 𝑌])
Output. The descriptions base ckt & recon ckt b without dummy states and dummy transitions.
begin
if (𝑀 base ≥ 𝑀 recon) then /∗ replacing the dummy states ∗/

replace dummy states in recon ckt b by Proposition 1; /∗ by considering states in place of
transitions in the modified cost matrix ∗/

else if (𝑀 base < 𝑀 recon) then
replace dummy states in base ckt by by Proposition 2;

end
for each (matched state, 𝑎𝑚 recon ∈ recon ckt b) do /∗ replacing the dummy transitions ∗/

for each (transition in recon ckt b, ℎrecon ∈ {1, 2, . . . , 𝑡𝑚 recon}) do
if (𝑡𝑚 base ≥ 𝑡𝑚 recon) then

replace dummy transitions in recon ckt b by Proposition 1;
else if (𝑡𝑚 base < 𝑡𝑚 recon) then

replace dummy transitions in base ckt by Proposition 1;
end

end
end
end

Algorithm 3: Dummy replacement.

Thus, all the recon ckt b states are replaced by their
assigned base ckt states, and all the complete arrays of
recon ckt b are arranged corresponding to 𝑎𝑚 base order.
Hence, from (9), the combinations of input lines are selected
with min{assignment cost1, . . . , assignment cost𝐸} &
min{total cost1, total cost2, . . . , total cost𝐸}.

Now, binary state codes 𝐾(𝑎𝑚) and 𝐾(𝑎𝑠) are applied
in base ckt and recon ckt b. As it changes the weights of
cost matrix, weight assignment is again applied to construct
a modified cost matrix. In this case, arrays are created
by combining [selected input combination, 𝐾(𝑎𝑠), 𝐾(𝑎𝑚)].
Dummy states are replaced in matched states of base ckt and
recon ckt b by using Propositions 1 and 2. Then, dummy
transitions are replaced by using Proposition 1. The dummy
replacement algorithm is shown in Algorithm 3.

Proposition 1. Dummy transitions in a matched state of
base ckt or recon ckt b should be replaced with one of the
existing transitions in that particular state with a minimum
cost.

Proof. For each matched state (or assigned state after match-
ing) ∈ recon ckt b, if (𝑡𝑚 base ≥ 𝑡𝑚 recon) then (𝑡𝑚 base −
𝑡𝑚 recon) dummy transitions are present in recon ckt b state.

Hence, there are (𝑡𝑚 base − 𝑡𝑚 recon) transitions, present in the
corresponding state of base ckt which are unassigned. These
unassigned transitions in base ckt will lead the system to fail-
ure while operating in recon ckt bmode. As a solution, these
unassigned transitions of base ckt are assigned to the existing
transitions of recon ckt bwith the least cost by looking at the
particular column of the modified cost matrix.

Similarly, for each matched state (or assigned state after
matching) ∈ recon ckt b, if (𝑡𝑚 base < 𝑡𝑚 recon) then (𝑡𝑚 recon −
𝑡𝑚 base) dummy transitions are present in base ckt state.
Hence, there are (𝑡𝑚 recon − 𝑡𝑚 base) transitions, present in
the corresponding state of recon ckt bwhich are unassigned.
These unassigned transitions in recon ckt b will lead the sys-
tem to failurewhile operating in base cktmode. As a solution,
these unassigned transitions of recon ckt b are assigned to
the existing transitions of base ckt with the least cost by
looking at the particular row of the modified cost matrix.

Let 𝑀 𝐶𝑖×𝑗 represent the modified cost matrix for a
matched state, where rows (𝑈𝑖) and columns (𝑉𝑗) denote the
base ckt and recon ckt b transitions, respectively. Thus, the
unassigned transitions in base ckt state can be assigned by
(10) as follows:

unassigned 𝑈𝑖 󳨀→ 𝑉𝑗: min (𝑀 𝐶1𝑗,𝑀 𝐶2𝑗,𝑀 𝐶3𝑗, . . . ,𝑀 𝐶𝑖𝑗) . (10)

Similarly, the unassigned transitions in recon ckt b state
can be assigned by (11) as follows:

unassigned 𝑉𝑗 󳨀→ 𝑈𝑖: min (𝑀 𝐶𝑖1,𝑀 𝐶𝑖2,𝑀 𝐶𝑖3, . . . ,𝑀 𝐶𝑖𝑗) . (11)

8 International Journal of Reconfigurable Computing

Proposition 2. If𝑀 base < 𝑀 recon, then dummy states are
replaced by splitting the matched state in base ckt.

Proof. In FSM, splitting a state with high transitions results in
low power consumption [8, 19]. It also improves the operating
speed [2, 20]. If𝑀 base> 𝑀 recon, then there are (𝑀 base −
𝑀 recon) states, present in base ckt which are unassigned.
These unassigned states in base ckt will lead to failure in
the system while operating in recon ckt bmode. As base ckt
is the largest FSM in the collection and its transitions per
state are greater than recon ckt b, splitting recon ckt b states
are insignificant for the system performance. So, these unas-
signed states of base ckt are assigned using Proposition 1.

If𝑀 base < 𝑀 recon, then (𝑀 recon−𝑀 base) dummy
states are replaced by splitting the matched state in base ckt.
Let Ψ(𝑎𝑚 base) = 𝑄(𝑡𝑚 base − 𝑡𝑚 recon), where 𝑄 is a positive
integer. Only the states for which |Ψ(𝑎𝑚 base) > 1| can be split
[19]. Each state can be split into nonoverlapping subsets of
(𝑡𝑚 base−𝑡𝑚 recon) transitions. Algorithm 7 is proposed to split
a base ckt state.

At this stage, the states and the input lines of both the
FSMs are completely matched and fixed. Hence, the output
matching is performed by performing a Bitwise-XOR opera-
tion and selecting the combination with the least count of 1’s.
If𝑁 base≥ 𝑁 recon, then𝐺 = 𝑁 recon𝑃𝑁 base combinations of
output lines for base ckt are generated to match with output
lines of recon ckt b. Otherwise, 𝐺 = 𝑁 recon𝑃𝑁 base combina-
tions of output lines for recon ckt b are generated to match
with output lines of base ckt. Then, for each combination of
output lines, Bitwise-XOR operation is performed between
corresponding output lines of base ckt and recon ckt b. Let
XOR count𝑔, where 𝑔 ∈ {1, 2, . . . , 𝐺} represents the total
number of 1’s in the Bitwise-XOR operation for a particular
combination of output lines. Therefore, the combinations
of output lines with min{XOR count1, . . . ,XOR count𝐺} are
selected.

At the end of every iteration, the description of
base ckt is updated to operate on the next iteration.
At the end of 𝐵th iteration, for each recon ckt 𝑏 ∈
{recon ckt 1, recon ckt 2, . . . , recon ckt (𝐵 − 1)}, replace-
ment of dummy transitions and states is performed and
updated descriptions of recon ckt 1, recon ckt 2, . . .,
recon ckt (𝐵 − 1) are obtained. In this way, descriptions of
all FSMs are optimally matched, having the same dimension.
Therefore, a mutual (i.e., 𝐵𝐶2) Bitwise-XOR operation
between the updated descriptions of FSMs is conducted
which provides the optimized multiplexer bank for mode
based reconfiguration.

3. Experimental Evaluation

Experiments have been conducted to illustrate the advantages
of the proposed architecture using the FSM benchmark
circuits fromMCNC/LGSynth [21] as shown in Table 1.

The proposed iterative greedy heuristic based Hungar-
ian algorithm has been implemented in MATLAB (2016b)
environment. MATLAB HDL Coder tool is used to generate
the Verilog HDL code for multiplexer bank for mode based

Table 1: Benchmark circuits fromMCNC/LGSynth [21].

Benchmark
circuits

Number of
states

Number of
inputs

Number of
outputs

s1494 48 8 19
sand 32 11 9
styr 30 9 10
planet 48 7 19
s832 25 18 19
cse 16 7 7
s386 13 7 7
ex6 8 5 8
mc 4 3 5
planet1 48 7 19
s1488 48 8 19
s208 18 11 2

reconfiguration. The Reconfigurable FSMIM-S architecture
is described in Verilog HDL and implemented on a Xilinx
xc6vlx75t Speed Grade-3 device (Virtex-6) by using Xilinx
ISE 14.6 [15]. All computations are performed using a com-
puterwith an Intel(R)Core(TM) i5, 8GBRAM, and 2.67GHz
CPU.

Let 𝑥1, 𝑥2, 𝑥3, . . . be the input lines, 𝑦1, 𝑦2, 𝑦3, . . . be the
output lines, and 𝑆1, 𝑆2, 𝑆3, . . . be the states of an FSM. In
the proposed algorithm, at the first stage, input matching is
performed along with the state matching; after that, dummy
states and transitions are replaced. Then, output matching is
performed (Algorithm 4).

As the number of inputs or outputs exceeds 8, it requires
the generation of more than 8𝑃8 = 40320 combinations for
matching, which exhausts the simulation resources. Hence,
the excess input lines are discarded from input matching,
which contains the maximum number of don’t cares out of
the total number of transitions. Similarly, the excess output
lines are discarded from outputmatching, which contains the
minimumnumber of 1’s out of the total number of transitions.
Therefore, the complexities of input selector bank and group
encoder are reduced because the information content of these
lines is minimum.

The FSM “s1494” has been considered as base ckt,
because it consists of 48 states, 8 inputs, 19 outputs, and
250 transitions which are of higher values as compared
with any of the FSMs in the collection. Hence, “s1494”
is considered as an FSM included in the design at the
0th iteration. In this case, state splitting is never used for
dummy state replacement, because base ckt contains the
highest number of states. All dummy states and transitions
are replaced by using Proposition 1. For output match-
ing, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦9, 𝑦10, 𝑦16, and 𝑦18 are discarded
because they contain 62, 12, 13, 8, 6, 6, 38, 4, 16, 46, and 78
instances of 1’s, respectively, out of a total of 250 transitions.

In the 1st iteration, an FSM, “sand,” is included in the
design. For input matching, 𝑥6, 𝑥7, and 𝑥9 are discarded
because they contain 178, 150, and 182 don’t cares, respectively,
out of a total of 184 transitions. All states arematchedwith the

International Journal of Reconfigurable Computing 9

Input. Combinations of output lines
Output. XOR count𝑔
begin
for all (combinations of output lines) do

perform Bitwise-XOR operation between corresponding output lines of base ckt &
recon ckt b;
XOR count𝑔 ← the total number of 1’s in the Bitwise-XOR operation;

where, 𝑔 ∈ {1, 2, . . . , 𝐺};
end
end

Algorithm 4: Output matching.

states of base ckt in respective order. For output matching, 𝑦8
is discarded because it contains 3 instances of 1’s, out of a total
of 253 transitions.

In the 2nd iteration, an FSM, “styr,” is included in
the design. For input matching, 𝑥9 is discarded because it
contains 160 don’t cares, out of a total of 166 transitions. States
𝑆3, 𝑆4, 𝑆15, and 𝑆16 are matched with 𝑆4, 𝑆3, 𝑆16, and 𝑆15,
respectively, of base ckt. The rest of the states are matched
with the states of base ckt in respective order. For output
matching, 𝑦4 and 𝑦9 are discarded because they contain 5 and
6 instances of 1’s, respectively, out of a total of 254 transitions.

In the 3rd iteration, an FSM, “planet,” is included
in the design. All states are matched with the states
of base ckt in respective order. For output matching,
𝑦4, 𝑦10, 𝑦11, 𝑦12, 𝑦13, 𝑦14, 𝑦15, 𝑦16, 𝑦17, 𝑦18, and 𝑦19 are dis-
carded because they contain 19, 5, 2, 26, 13, 3, 4, 2, 4, 4, and 23
instances of 1’s, respectively, out of a total of 255 transitions.

In the 4th iteration, an FSM, “s832,” is included
in the design. For input matching, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6,
𝑥6, 𝑥11, 𝑥12, 𝑥13, 𝑥14, and 𝑥15 are discarded because
they contain 240, 228, 239, 234, 241, 224, 230, 235, 241,
and 241 don’t cares, respectively, out of a total of 245
transitions. All states are matched with the states of
base ckt in respective order. For output matching,
𝑦3, 𝑦4, 𝑦6, 𝑦9, 𝑦10, 𝑦12, 𝑦13, 𝑦14, 𝑦16, 𝑦17, and 𝑦18 are discarded
because they contain 3, 5, 2, 2, 2, 6, 2, 4, 2, 4, and 6 instances
of 1’s, respectively, out of a total of 259 transitions.

In the 5th iteration, an FSM, “cse,” is included in the
design. All states of “cse” are matched with the states of
base ckt in respective order. In the 6th iteration, an FSM,
“s386,” is included in the design. All states of “s386” are
matched with the states of base ckt in respective order. In
the 7th iteration, an FSM, “ex6,” is included in the design.
All states of “ex6” are matched with the states of base ckt
in respective order. In the 8th iteration, an FSM, “mc,” is
included in the design. All states of “mc” are matched with
the states of base ckt in respective order.

In the 9th iteration, an FSM, “planet1,” is included
in the design. All states are matched with the states
of base ckt in respective order. For output matching,
𝑦4, 𝑦10, 𝑦11, 𝑦12, 𝑦13, 𝑦14, 𝑦15, 𝑦16, 𝑦17, 𝑦18, and 𝑦19 are dis-
carded because they contain 19, 5, 2, 26, 13, 3, 4, 2, 4, 4, and 23
instances of 1’s, respectively, out of a total of 279 transitions.

In the 10th iteration, an FSM, “s1488,” is included
in the design. All states are matched with the states
of base ckt in respective order. For output matching,
𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦8, 𝑦10, 𝑦11, 𝑦14, and 𝑦17 are discarded
because they contain 6, 7, 4, 13, 6, 38, 10, 16, 42, 61, and 64
instances of 1’s, respectively, out of a total of 281 transitions.

In the 11th iteration, an FSM, “s208,” is included in the
design. For input matching, 𝑥3, 𝑥4, and 𝑥5 are discarded
because they contain 153, 153, and 153 don’t cares, respectively,
out of a total of 153 transitions. All states are matched with
the states of base ckt in respective order. The input matching
and output matching among FSMs are shown in Tables 2 and
3, respectively, along with the minimum assignment cost,
total cost, and XOR count (as defined in Algorithm 1).

At the end of the proposed algorithm, optimized mul-
tiplexer bank for mode based reconfiguration is formed
by performing a mutual Bitwise-XOR operation between
the updated descriptions of FSMs. Hence, to evaluate the
individual hardware contribution of FSMs in the Recon-
figurable FSMIM-S, architecture is evaluated as follows: (i)
the Bitwise-XOR operation is performed iteratively between
the updated description of base ckt and the FSM included
in that particular iteration. (ii) The Verilog HDL code for
the required multiplexer bank is generated at every iteration
to implement in Xilinx xc6vlx75t-3 device. (iii) Thus, the
number of LUTs occupied by the particular FSM is measured
by the difference between the numbers of LUTs in the current
iteration and previous iteration of the system. The iterative
implementation of the Reconfigurable FSMIM-S architecture
onVirtex-6 is shown inTable 4.Therefore, at the last iteration,
the total number of LUTs required and the average speed of
operation are obtained for the proposed architecture.

The experimental results from MCNC FSM benchmarks
illustrate the advantages of the proposed architecture as
compared with VRMUX [11]. As a result, operating speed is
enhanced at an average of 30.43%, and LUT consumption is
reduced by an average of 5.16% in FPGA implementation. It
also shows that the operating speed is improved at an average
of 9.14% in comparison with CRMUX [11] during FPGA
implementation. The limitation of the proposed technique
is the requirement of higher LUTs, as it requires an average
of 88.65% more LUTs in comparison with CRMUX [11]
during FPGA implementation.The comparisons of hardware

10 International Journal of Reconfigurable Computing

Ta
bl
e
2:
In
pu

tm
at
ch
in
g
am

on
g
FS
M
s.

Ci
rc
ui
ts

s1
49
4

ba
se

ck
t

sa
nd

re
co
n
ck
t1

sty
r

re
co
n
ck
t2

pl
an
et

re
co
n
ck
t3

s8
32

re
co
n
ck
t4

cs
e

re
co
n
ck
t5

s3
86

re
co
n
ck
t6

ex
6

re
co
n
ck
t7

m
c

re
co
n
ck
t8

pl
an
et
1

re
co
n
ck
t9

s1
48
8

re
co
n
ck
t1
0

s2
08

re
co
n
ck
t1

1
𝑥 1

𝑥 4
𝑥 7

𝑥 6
𝑥 9

𝑥 5
𝑥 4

𝑥 3
-

𝑥 5
𝑥 1

𝑥 1
𝑥 2

𝑥 2
𝑥 4

𝑥 3
𝑥 1
6

𝑥 2
-

𝑥 4
𝑥 3

𝑥 1
𝑥 5

𝑥 8
𝑥 3

𝑥 1
𝑥 5

𝑥 4
𝑥 1
8

-
𝑥 2

-
𝑥 1

𝑥 6
𝑥 3

𝑥 6
𝑥 4

𝑥 1
0

𝑥 3
𝑥 2

𝑥 1
7

𝑥 3
𝑥 7

𝑥 1
-

𝑥 3
𝑥 4

𝑥 9
𝑥 5

𝑥 5
𝑥 8

𝑥 5
𝑥 8

𝑥 4
𝑥 1

𝑥 2
𝑥 2

𝑥 4
𝑥 8

𝑥 1
1

𝑥 6
𝑥 3

𝑥 6
𝑥 7

𝑥 7
𝑥 1

𝑥 5
-

-
𝑥 2

𝑥 7
𝑥 2

𝑥 7
𝑥 8

𝑥 1
𝑥 1

𝑥 5
𝑥 6

𝑥 6
𝑥 5

-
𝑥 7

𝑥 2
𝑥 1
0

𝑥 8
𝑥 1
1

𝑥 2
-

𝑥 1
0

𝑥 7
𝑥 3

-
-

-
𝑥 6

𝑥 7
M
in
im

um
as
sig

nm
en
t c

os
t

0
0

0
0

0
0

0
0

0
2

0

M
in
im

um
to
ta
l c
os
t

11
50

14
22

19
31

6
1

17
42

33

International Journal of Reconfigurable Computing 11

Ta
bl
e
3:
O
ut
pu

tm
at
ch
in
g
am

on
g
FS
M
s.

Ci
rc
ui
ts

s1
49
4

ba
se

ck
t

sa
nd

re
co
n
ck
t1

sty
r

re
co
n
ck
t2

pl
an
et

re
co
n
ck
t3

s8
32

re
co
n
ck
t4

cs
e

re
co
n
ck
t5

s3
86

re
co
n
ck
t6

ex
6

re
co
n
ck
t7

m
c

re
co
n
ck
t8

pl
an
et
1

re
co
n
ck
t9

s1
48
8

re
co
n
ck
t1
0

s2
08

re
co
n
ck
t1

1
𝑦 8

𝑦 4
𝑦 5

𝑦 2
𝑦 1
9

-
𝑦 6

𝑦 5
𝑦 4

𝑦 6
𝑦 1
8

-
𝑦 1
1

𝑦 6
𝑦 6

𝑦 6
𝑦 1
5

𝑦 7
𝑦 1

𝑦 8
𝑦 2

𝑦 7
𝑦 7

𝑦 1
𝑦 1
2

𝑦 2
𝑦 7

𝑦 8
𝑦 2

𝑦 3
𝑦 3

𝑦 4
𝑦 5

𝑦 1
𝑦 1
3

-
𝑦 1
3

𝑦 9
𝑦 8

𝑦 9
𝑦 8

𝑦 5
𝑦 4

𝑦 1
𝑦 1

𝑦 8
𝑦 1
9

-
𝑦 1
4

𝑦 7
𝑦 3

𝑦 5
𝑦 7

𝑦 1
-

𝑦 6
𝑦 3

𝑦 2
𝑦 9

𝑦 2
𝑦 1
5

𝑦 3
𝑦 2

𝑦 3
𝑦 1

𝑦 4
𝑦 7

𝑦 7
-

𝑦 5
𝑦 1
5

-
𝑦 1
7

𝑦 5
𝑦 1

𝑦 1
𝑦 1
1

𝑦 6
𝑦 5

𝑦 2
-

𝑦 3
𝑦 1
2

-
𝑦 1
9

𝑦 1
𝑦 1
0

𝑦 7
𝑦 5

𝑦 2
𝑦 2

𝑦 3
-

𝑦 9
𝑦 1
6

-
XO

R
co
un

t
95

16
3

10
6

76
13
4

15
4

86
72

14
2

10
3

13
6

12 International Journal of Reconfigurable Computing

Input. Combination of input lines for base ckt, 𝑎𝑚 base, ℎbase,
combination of input lines for recon ckt b, 𝑎𝑚 recon, ℎrecon;

Output. Cost matrix C /∗ cost matrix formation to map recon ckt b states into base ckt states ∗/
begin
base ckt array← create an array at each transition in base ckt by combining

[input combination ∈ {𝑥1 base, . . . , 𝑥𝐿 base}, 𝑎𝑚 base];
recon ckt array← create an array at each transition in recon ckt b by combining

[input combination ∈ {𝑥1 recon, . . . , 𝑥𝐿 recon}, 𝑎𝑚 recon];
for each (state, 𝑎𝑚 recon ∈ recon ckt array) do

C[1, 1] ← match_count;

C[1, 2] ← match_count;

 ← match_count;

for each (transition in recon_ckt_array,) do

end

perform Bitwise-XOR operation between the arrays for that particular
transition;

end
end
GBH_hungarian_algorithm();
arrange the recon_ckt_arrays based on assignment obtained from
GBH_hungarian_algorithm;

match_count ←

replace a1_＜；Ｍ？ ← a1_Ｌ？＝ＩＨ ;

replace a2_＜；Ｍ？ ← a1_Ｌ？＝ＩＨ ;

go to transition_matching; /

replace aM_＜；Ｍ？ ← a1_Ｌ？＝ＩＨ ;
/∗calling the function- “transition_matching”

go to transition_matching; /

go to transition_matching; /∗

/∗calling the function- “transition_matching” ∗

/∗calling the function- “transition_matching” ∗

/ /∗ ∗calling the procedure-“GBH_hungarian_algorithm”

C[1,M_base]

∗∗∗transition_matching∗∗∗
∈ {1, 2, . . . , tm_Ｌ？＝ＩＨ}

for each (transition in base_ckt_array,) do∈ {1, 2, . . . , tm_＜；Ｍ？}

if (tm_＜；Ｍ？ ≥ tm_Ｌ？＝ＩＨ) then

(tm_＜；Ｍ？ < tm_Ｌ？＝ＩＨ) thenelse if

 ← the total number of 1’s in the Bitwise-XOR operation; C[ℎＬ？＝ＩＨ, ℎ＜；Ｍ？]

∑

i=1 ∑


j=1 Cijij;

) dummy transitions in the recon_ckt_array;
 ← tm_base;
add (tm_＜；Ｍ？ − tm_Ｌ？＝ＩＨ

 ← tm_recon;
) dummy transitions in the base_ckt_array;add (tm_Ｌ？＝ＩＨ − tm_＜；Ｍ？

ℎ＜；Ｍ？

ℎＬ？＝ＩＨ

end
end

Algorithm 5: Weight assignment.

requirement and operating speed are presented in Figures 3
and 4, respectively.

The operating speed of the proposed system is maximum
(i.e., 810.17MHz) and its LUT requirement is minimum (i.e.,
42 LUTs) in the 0th iteration.The operating speed is reduced,

and the LUT requirement is increased successively by adding
an FSM at each iteration as shown in Table 4. Therefore,
the proposed architecture acts as an ideal candidate for such
applications where the similarity between the sets of FSMs
is high (i.e., fewer differences in their descriptions). Many

International Journal of Reconfigurable Computing 13

Input. Cost matrix C
Output. Optimal assignment between 𝑉 and 𝑈
begin
V1 ← 𝑉, 𝑢1 ← 𝑈, 𝑓0 ← 𝜑(V1, 𝑢1) and 𝑘 ← 1 /∗ Initialization ∗/
while ((𝑓𝑉𝑘 > 𝑓𝑘−1) && (𝑓𝑈𝑘 > 𝑓𝑘−1)) do

𝐶𝑉𝑘 = (1/|𝑢𝑘|) ⋅ ∑𝑖∈V𝑘 ∑𝑗∈𝑢𝑘 𝐶𝑖𝑗;
𝐶𝑈𝑘 = (1/|V𝑘|) ⋅ ∑𝑖∈V𝑘 ∑𝑗∈𝑢𝑘 𝐶𝑖𝑗;
𝑓𝑉𝑘 = min𝑖∈V𝑘𝜑(V𝑘, 𝑢𝑘);
𝑓𝑈𝑘 = min𝑗∈𝑢𝑘𝜑(V𝑘, 𝑢𝑘);
if 𝐶𝑉𝑘 ≤ 𝐶

𝑈
𝑘 then /∗ performing vertex elimination from set V ∗/

if 𝑓𝑉𝑘 ≤ 𝑓𝑘−1 then /∗ identify whether vertex elimination from 𝑉 is “profitable” ∗/
𝑓𝑘 ← 𝑓𝑉𝑘 , V𝑘+1 ← V𝑘, 𝑢𝑘+1 ← 𝑢𝑘;

else if 𝑓𝑈𝑘 ≤ 𝑓𝑘−1 then /∗ identify whether vertex elimination from 𝑈 is “profitable” ∗/
𝑓𝑘 ← 𝑓𝑈𝑘 , V𝑘+1 ← V𝑘, 𝑢𝑘+1 ← 𝑢𝑘;

end
else if 𝐶𝑉𝑘 > 𝐶

𝑈
𝑘 then /∗ performing vertex elimination from set U ∗/

if 𝑓𝑈𝑘 ≤ 𝑓𝑘−1 then /∗ identify whether vertex elimination from 𝑈 is “profitable” ∗/
𝑓𝑘 ← 𝑓𝑈𝑘 , V𝑘+1 ← V𝑘, 𝑢𝑘+1 ← 𝑢𝑘;

else if 𝑓𝑉𝑘 ≤ 𝑓𝑘−1 then /∗ identify whether vertex elimination from 𝑉 is “profitable” ∗/
𝑓𝑘 ← 𝑓𝑉𝑘 , V𝑘+1 ← V𝑘, 𝑢𝑘+1 ← 𝑢𝑘;

end
end
𝑘 ← 𝑘 + 1;

end
end

Algorithm 6: GBH hungarian algorithm.

Input. 𝑎𝑚 base,𝑀 base,𝑀 recon, ℎ
Output. Resultant states to replace dummy states in base ckt
begin
while ((matched state, 𝑎𝑚 base ∈ base ckt) && (𝑀 base ≥ 𝑀 recon)) do

for each (transition in base ckt, ℎbase ∈ {1, 2, . . . , 𝑡𝑚 base}) do
if (𝑡𝑚 base − 𝑡𝑚 recon) ≥ 1 then

split the state, |Ψ(𝑎𝑚 base) = 𝑄 > 1|;
end

end
𝑚 base← 𝑚 base + 1;

end
if (𝑀 base > 𝑀 recon) then

replace dummy states in recon ckt b by Proposition 1;
end
end

Algorithm 7: Base ckt state splitting.

FPGA families such as Altera stratix-IV, stratix-V, or MAX-
II do not contain RAM blocks, and hence CRMUX cannot be
used. The proposed architecture is preferred in such cases.

Moreover, in the proposed algorithm, the next state
function is partially included in matching, and binary state
encoding is used. The experimental results from [22–24]
show that the evolutionary state encoding algorithms such as
[23] or [24] outperform the binary or random state encoding
techniques by an average of 59.72% and 64.06%, respectively.

Therefore, the LUT requirement for the proposed architec-
ture can be further reduced by 20 to 30% by using the
evolutionary state encoding techniques.

4. Concluding Remarks

This paper presents a high-speed reconfigurable FSM with
input multiplexing and state-based input selection (Recon-
figurable FSMIM-S) architecture. The creation of such

14 International Journal of Reconfigurable Computing

Table 4: Iterative implementation of the Reconfigurable FSMIM-S architecture on Virtex-6.

Iteration FSM included in the
particular iteration

#LUTs occupied in the
particular iteration

Maximum operating
frequency

Maximum path
delay

#LUTs occupied by the FSM
(#LUTs in the current iteration
− #LUTs in the previous

iteration)
0th s1494 42 810.17MHz 4.571 ns 42
1st sand 79 779.271MHz 4.778 ns 37
2nd styr 105 775.164MHz 4.455 ns 26
3rd planet 137 728.704MHz 4.609 ns 32
4th s832 199 725.005MHz 5.381 ns 62
5th cse 230 722.335MHz 5.140 ns 31
6th s386 249 720.643MHz 5.662 ns 19
7th ex6 255 715.231MHz 4.967 ns 6
8th mc 269 706.889MHz 4.526 ns 14
9th planet1 303 676.338MHz 5.098 ns 34
10th s1488 330 671.760MHz 4.486 ns 27
11th s208 349 665.181MHz 3.014 ns 19
Note. #LUTs denotes the number of LUTs in ISE.

Variation-based reconfigurable multiplexer bank (VRMUX) [11]
Combination-based reconfigurable multiplexer bank (CRMUX) [11]
Proposed Reconfigurable FSMIM-S architecture

FSM

s1
49

4

sa
nd sty

r

pl
an

et

s8
32 cs

e

s3
86 ex

6

m
c

pl
an

et
1

s1
48

8

s2
08

0

10

20

30

40

50

60

70

80

#L
U

Ts
 u

til
iz

at
io

n

Figure 3: Comparison of hardware requirements during FPGA
implementation.

architecture leads to a problem of defining the optimized
multiplexer bank for mode based reconfiguration for the
set of FSMs in a particular application. This situation trans-
forms the problem into a weighted bipartite graph matching
problem where the objective is to match the description of
FSMs in the set with minimal cost. As a solution, an iterative
greedy heuristic based Hungarian algorithm is proposed,
which provides the required optimized multiplexer bank. By
using the proposed architecture, operating speed is enhanced
at an average of 30.43% and LUT consumption is reduced by
an average of 5.16% in FPGA implementation in comparison
with VRMUX [11]. It has also been shown that the operating
speed is improved at an average of 9.14% as compared with

Variation-based reconfigurable multiplexer bank (VRMUX) [11]
Combination-based reconfigurable multiplexer bank (CRMUX) [11]
Proposed Reconfigurable FSMIM-S architecture

FSM

s1
49

4

sa
nd sty

r

pl
an

et

s8
32 cs

e

s3
86 ex

6

m
c

pl
an

et
1

s1
48

8

s2
08

0

100

200

300

400

500

600

700

800

M
ax

im
um

 o
pe

ra
tin

g
fre

qu
en

cy
 (M

H
z)

Figure 4: Comparison of operating speeds during FPGA imple-
mentation.

CRMUX [11].The only trade-off of the proposed technique is
that it requires 88.65% more LUTs compared with CRMUX
[11] during FPGA implementation.

Further, the improvement on this work is focused on
reducing the LUT requirement to implement the proposed
architecture. In this study, a binary state encoding is used,
and next state function is partially included in matching.
However, evolutionary state encoding algorithms such as [23]
or [24] can be used to reduce the increased LUT requirement.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

International Journal of Reconfigurable Computing 15

References

[1] J. Glaser, M. Damm, J. Haase, and C. Grimm, “TR-FSM:
Transition-based Reconfigurable finite state machine,” ACM
Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 4, no. 3, article no. 23, 2011.

[2] A. Karatkevich, Design of Reconfigurable Logic Controllers, vol.
45, springer, Berlin, Germany, 2016.

[3] J. Wu, D. Yang, and Z. Chen, “Design and application of
multi-stage reconfigurable signal processing flow on FPGA,”
Computers and Electrical Engineering, vol. 42, pp. 1–11, 2015.

[4] E. De Lucas, M. Sanchez-Elez, and I. Pardines, “DSPONE48:
A methodology for automatically synthesize HDL focus on
the reuse of DSP slices,” Journal of Parallel and Distributed
Computing, vol. 106, pp. 132–142, 2017.

[5] M. Nandini Priya and R. Brindha, “An enhanced architecture
for high performance BIST TPG,” in Proceedings of the 2nd
IEEE International Conference on Innovations in Information,
Embedded and Communication Systems, ICIIECS 2015, pp. 1–6,
Coimbatore, India, March 2015.

[6] K. Mielcarek, A. Barkalov, and L. Titarenko, “Designing LUT-
based mealy FSM with transformation of collections of output
functions,” in Proceedings of the 5th International Conference on
Modern Circuits and Systems Technologies, MOCAST 2016, pp.
1–4, Thessaloniki, Greece, May 2016.

[7] R. Senhadji-Navarro, I. Garćıa-Vargas, G. Jiménez-Moreno,
and A. Civit-Ballcels, “ROM-based FSM implementation using
input multiplexing in FPGA devices,” IEEE Electronics Letters,
vol. 40, no. 20, pp. 1249–1251, 2004.

[8] A. Klimowicz, V. Solov’Ev, and T. Grzes, “Minimizationmethod
of finite state machines for low power design,” in Proceedings of
the 18th Euromicro Conference on Digital System Design, DSD
2015, pp. 259–262, Funchal, Portugal, August 2015.

[9] S. N. Pradhan and P. Choudhury, “Low power and high
testable Finite State Machine synthesis,” in Proceedings of the
International Conference and Workshop on Computing and
Communication, IEMCON 2015, pp. 1–5, Canada, October 2015.

[10] I. Garcia-Vargas and R. Senhadji-Navarro, “Finite state
machines with input multiplexing: A performance Study,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 5, pp. 867–871, 2015.

[11] R. Senhadji-Navaro and I. Garcia-Vargas, “high-speed and area-
efficient reconfigurable multiplexer bank for RAM-based finite
statemachine implementations,” Journal of Circuits, Systems and
Computers, vol. 24, no. 7, Article ID 1550101, 2015.

[12] V. Sklyarov and I. Skliarova, “Synthesis of parallel hierarchical
finite state machines,” in Proceedings of the 2013 21st Iranian
Conference on Electrical Engineering, ICEE 2013, Iran,May 2013.

[13] S. Gupta, V. Pareek, S. C. Jain, and D. Jain, “Realization of
sequential reversible circuit from finite state machine,” in Pro-
ceedings of the International Computer Science and Engineering
Conference, ICSEC 2014, pp. 458–463, Khon Kaen, Thailand,
August 2014.

[14] M. Barketau, E. Pesch, and Y. Shafransky, “Minimizing maxi-
mum weight of subsets of a maximum matching in a bipartite
graph,” Discrete Applied Mathematics, vol. 196, pp. 4–19, 2015.

[15] K. Date and R. Nagi, “GPU-accelerated Hungarian algorithms
for the linear assignment problem,” Parallel Computing, vol. 57,
pp. 52–72, 2016.

[16] J. Dutta and S. C. Pal, “A note on Hungarian method for solving
assignment problem,” Journal of Information and Optimization
Sciences, vol. 36, no. 5, pp. 451–459, 2015.

[17] V. Stozhkov, V. Boginski, O. . Prokopyev, and E. L. Pasiliao,
“A simple greedy heuristic for linear assignment interdiction,”
Annals of Operations Research, vol. 249, no. 1-2, pp. 39–53, 2017.

[18] S. K. Ramadoss, A. P. Singh, and I. K. G. Mohiddin, “An
evolutionary heuristic algorithm for the assignment problem,”
OPSEARCH, vol. 51, no. 4, pp. 589–602, 2014.

[19] T. N. Grzes and V. V. Solov’ev, “Minimization of power con-
sumption of finite state machines by splitting their internal
states,” Journal of Computer and Systems Sciences International,
vol. 54, no. 3, pp. 367–374, 2015.

[20] V. Salauyou, “Synthesis of high-speed finite state machines in
FPGAs by state splitting,” in Computer Information Systems and
IndustrialManagement: 15th IFIP TC8 International Conference,
CISIM 2016, K. Saeed and W. Homenda, Eds., vol. 9842
of Lecture Notes in Computer Science, pp. 741–751, Springer
International Publishing, Vilnius, Lithuania, 2016.

[21] https://people.engr.ncsu.edu/brglez/CBL/benchmarks/
LGSynth89/fsmexamples/.

[22] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State assign-
ment of finite state machines for optimal two-level logic
implementations,” in Proceedings of the 26th ACM/IEEE Design
Automation Conference, pp. 327–332, June 1989.

[23] A. H. El-Maleh, “Majority-based evolution state assignment
algorithm for area and power optimisation of sequential cir-
cuits,” IET Computers & Digital Techniques, vol. 10, no. 1, pp.
30–36, 2016.

[24] A. H. El-Maleh, “A probabilistic pairwise swap search state
assignment algorithm for sequential circuit optimization,” Inte-
gration, the VLSI Journal, vol. 56, pp. 32–43, 2017.

https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth89/fsmexamples/
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth89/fsmexamples/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

