
International Journal ofRotating Machinery
1995, Vol. l, No. 2, pp. 83-116
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1995 OPA (Overseas Publishers Association) Amsterdam B.V.
Published under license by Gordon and Breach Science Publishers SA

Printed in the United States of America

Modal Testing of Rotors with Fluid Interaction

AGNES MUSZYNSKA
Bently Rotor Dynamics Research Corporation, Minden, NV 89423

Modal testing of rotating structures has specific aspects, and it requires a specialized approach. Classical modal testing when
applied to active (rotating) structures does not provide complete results. These aspects, and specific application of sweep
frequency circular input force perturbation testing of rotors rotating in fluid environment, are discussed in this paper.

Emphasis is placed on nonsynchronous perturbation ofshafts rotating at aconstant rotative speed. The results are presented in
the direct and quadrature dynamic stiffness versus perturbation frequency formats, which permits the separation ofcomponents
for easy evaluation. This perturbation technique provided new results: 1) identification of solid/fluid interaction modes;
2) identification of fluid dynamic forces in lightly loaded bearings and seals; and 3) multimode identification ofrotor systems.
Results of several laboratory rig experiments, the identification algorithm, and data processing techniques are discussed. A
comparison with other testing methods is given.
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modes

XPERIMENTAL modal analysis has become a pop-
ular method for studying practical vibration prob-

lems of mechanical structures. Application of modal test-
ing for parameter identification of rotating machines,
which represent an important class of mechanical struc-
tures, has several specific aspects and requires a special-
ized approach. The results and predictions obtained by
applying the classical "passive structure" modal testing to
a rotating machine are usually incomplete, and not suf-
ficiently accurate for the most important lateral modes,
while providing information not significant for the rotat-
ing machine operating performance.

SPECIFIC ASPECTS OF MODAL
TESTING OF ROTATING MACHINES

Most of the modal identification methods and conven-
tional procedures of modal analysis deal with structures
with assumed linear behavior. The structures are modeled
by self-adjoint differential operators, and discretized by
symmetric matrices. Rotating machines have an inherent
nonsymmetric nature, due to rotation-related factors, such
as gyroscopic effects, and fluid dynamic forces in bear-

ings and seals, which provide feedback-like effects. The
dynamic behavior of rotating machines can adequately be
represented only by the nonself-adjoint differential oper-
ators. The discretization yields nonsymmetric matrices.
The modal analysis must not only determine all classical
modal parameters (for example, eigenvalues, eigenfunc-
tions constituting the right eigenvectors and form ofeigen-
functions yielding generalized/modal masses associated
with each eigenmode), but also the parameters provided by
the left eigenfunctions. Decoupling of rotor precessional
mode components requires the utilization of additional
relations (such as biorthogonality) between left and right
eigenvectors (Childs 1976], Glasgow et al. 1980], Bigret
[1984], Andrews [1985], Zhang et al. [1985]).

Rotating machines can be modeled by linear equations
in very limited ranges of deflections and velocities. The
classical modal analysis, based on the assumption of lin-
earity, has to be completed by taking nonlinearities into
consideration. Significant nonlinear effects of geometric
and physical origin in rotating machines can introduce
large errors on the classical modal tests (Black et al.
[1980], Fillod et al. [1985], Sullivan [1985]).

All dynamic phenomena occurring during the perfor-
mance of a rotating machine are closely related to the ro-
tative motion of the rotor (Fig. 1). The continuous supply
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FIGURE Perturbation technique for modal testing of rotating ma-
chines at their operational conditions.

of rotative energy makes the system "active," containing a
feedback loop. Numerous vibrational phenomena in rotat-
ing machines occur due to the transfer of energy from ro-
tation (main performance) to vibration (undesirable side
effects). Rotation of the shaft with all mechanical parts
attached to it, as well as involvement in rotation of the
working fluid (in fluid-flow machines, in seals, and in bear-
ings), causes important modifications in modes and natural
frequencies. In large turbomachines, additional changes
can be generated by thermal effects, foundation deforma-
tions, and misalignment. All these factors cause the results
of modal testing of rotating machines "at rest" ("passive
structure" approach) to differ significantly from the results
of testing during machine operational conditions ("active
structure" approach).

Rotors, which represent the main parts of rotating ma-
chines, are similarly constrained in two lateral directions;
therefore, they exhibit vibrational motion which always
has two inseparably coupled, two-orthogonal lateral com-
ponents (conventionally called "vertical" and "horizon-
tal"). The lateral vibrations result in two-dimensional pre-
cessional motion of the rotor. Widely used unidirectional
impulse testing, when applied to a rotating shaft, results in
a response containing vertical and horizontal components,
and an undetermined tangential input force components.

In practical performances of rotors, the precessional
motion can contain multi-frequency, two-dimensional
components, with definite relations to the direction of ro-
tation. In the most general case, each individual compo-
nent can be either forward (direction of precession the
same as direction of rotation) or backward (direction of
precession opposite to rotation). The direction of preces-
sional motion is vital to the rotor integrity, as it deter-
mines the rotor stress/deformation pattern. The net defor-
mation frequency of the rotor is equal to the difference
between rotative and precessional frequencies, with their
signs taken into account. During backward precession the
shaft is therefore subject to high frequency deformation
(sum of both frequencies). When measuring rotating ma-

chine vibrations, it is important to identify each vibrational
frequency component, whether it is forward or backward.
Narrow band filtering, and time base/orbit analysis, are
extremely helpful for this purpose. In classical modal test-
ing, "negative" frequencies have no meaning. Applied to
rotating machines, the "negative" frequency has a direct,
and very significant physical interpretation related to rotor
backward precession.
Most important vibrational phenomena of rotating ma-

chines are associated with rotor lateral vibrations. Each
mode of rotor lateral vibration contains two components
(vertical and horizontal), the characteristics of which are,
usually, slightly different as a result ofelasticity/mass non-
symmetry of the rotor, and supporting structure, in two
orthogonal lateral directions. Modal testing of structures
with closely spaced modes presents numerous difficulties.
Rotating machines belong to this category. An alleviation
ofthe problem is offered by consideration of "pair modes"
in rotating machines (for example, "first mode vertical"
and "first mode horizontal").

Classical modal testing usually, though not always,
deals with a large number of modes of a structure over
a broad frequency range. In the performance of rotating
machines, the most important are the lowest modes, and
low-frequency precessional phenomena. This is because:
first, the stiffness/mass characteristics of a rotor are al-
ways located in a lower range of frequencies than those of
the supporting structure. The lowest modes of the rotating
machine correspond, therefore, to the modes of the rotor
itself. Second, the rotating machine has its own continu-
ously active forcing function--the unbalance, which is an
inseparable feature of the rotating system. The frequency
of this force is equal to the rotor’s actual rotative speed.
The resulting motion is referred to as a "synchronous"
precession. The operating speed of a single-span machine
train, even if it represents dozens of thousands of rpm, sel-
dom exceeds the third balance resonance frequency (third
lateral natural frequency); therefore, main interest should
be concentrated on investigating the rotor’s first two or
three lateral/bending modes, because the rotating machine
has to survive resonant conditions ofthe lowest modes dur-
ing each start-up and shutdown. The amplitudes of rotor
deformations at low modes are the highest, and the low
modes are usually poorly damped; therefore, they are of
the greatest concern.

There is one more aspect of importance, focused on
the rotor lowest modes. Almost all self-excited vibra-
tional/precessional phenomena occurring during the per-
formance of a rotating machine are characterized by
low frequencies that are always located in the subsyn-
chronous region (frequencies lower than the synchronous
frequency). The self-excited vibrations usually occur
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when rotative speed is sufficiently high, and when there
exists a mechanism that transfers rotative energy into self-
excited vibrations. The latter are often referred to as "rotor
instabilities" (instability of the pure rotative motion after
an onset of instability, with an immediately following,
limit cycle of self-excited vibrations). The frequency of
self-excited vibrations is either equal to a fraction of the
actual rotative speed, with the same ratio to rotative speed
maintained if the rotative speed varies (for example, oil
whirl, partial rub) or it is rotative speed independent, and
close to any rotor bending mode natural frequency (for
example, oil whip, full annular rub). Most often, due to a
specific role of rotor internal/structural friction, the sub-
synchronous vibrations of rotating machines are charac-
terized by much higher amplitudes than supersynchronous
vibrations.
When dealing with a high number ofmodes during clas-

sical modal testing, the accuracy of the phase angle read-
ings is usually low. In rotating machines the phase angle
represents an extremely important parameter. It not only
gives information on the force/response relationship, but
also relates the shaft lateral vibration to its rotative motion.
It also yields significant information in modal parameter
identification procedures. By limiting modal testing to the
lowest modes, it is possible to increase the accuracy of
phase angle measurements.

Finally, the most important aspect: the results of the
modal testing of rotors at their operational conditions
reveal the existence of specific modes, unknown in "pas-
sive" structures. These modes are generated by solid/fluid

interaction, activated by the shaft rotation, such as in fluid-
lubricated bearings and seals. During the rotating machine
performance, these modes exhibit their activity through
rotor self-excited vibrations (for example, "oil whirl" is
the rotor/bearing system self-excited vibration; "oil whirl
resonance," "oil whirl natural frequency," and "oil whirl
mode" are modal parameters of the rotor/bearing system
revealed by perturbation testing, as discussed by Bently et
al. [1982b, 1985c], and Muszynska [1986].

In summary, modal analysis of rotating machines pro-
vides a significant computational complexity due to the
nonsymmetric nature ofrotating structure dynamic behav-
ior. Modal testing of rotating machines should be focused
on the rotor lowest bending modes, and applied to the ro-
tor during normal operational conditions of the rotating
machine.
The classical modal testing, as used in case of "passive"

structures, is not the most efficient for this purpose. Bet-
ter results can be obtained by applying limited frequency
sweep, circular-force, perturbation testing, which will be
discussed in the next section.

INPUT FUNCTIONS USED IN MODAL
TESTING OF ROTATING MACHINES

Classical modal testing uses unilateral exciting forces,
such as provided by hammer impacting or shaker sinu-
soidal excitation. Static structures exhibit symmetry (in
terms of the mathematical model, all matrices are sym-
metric), which results in reciprocity of the cross-data: ac-
celerance at point "p" when force is applied at point "r" is
equal to the accelerance at point "r" when force is applied
at point "p".

Rotors are not symmetric. Nonsymmetry in the sys-
tem matrices results from rotation-generated tangential
forces. The natural frequencies and lateral modes are dif-
ferent for each direction of rotation. They are referred to
as "forward" and "backward" modes. Their corresponding
natural frequencies differ in values, and these differences
are functions of rotative speed. Some other operational
factors may also contribute to the differences.
When the classical unilateral excitation is applied to a

rotating shaft, the forced response consists of both for-
ward and backward modes, which are difficult to sepa-
rate. The best excitation for rotating shaft modal testing
during machine operational conditions is a rotating cir-
cular force with distinct direction: forward (same as ro-
tation) or backward (opposite to rotation). This type of
nonsynchronous excitation allows for the easy separation
of the forward and backward lateral modes, and the iden-
tification of rotation-generated terms (Stone et al. 1947];
Hull [1955]; Bently et al. [1979, 1982a,b, 1983, 1984,
1985a,b,c, 1986]). Muszynska [1986]). The term "non-
synchronous" refers to the perturbation frequency which
is different from the rotative speed.
The use of a circular rotating input force perturbation

system has further advantages, namely, and ease of con-
trolling the frequency, force magnitude, and phase, by us-
ing, for instance, a controlled unbalance.

Various types of perturbation systems generating rotat-
ing forces can be applied, such as: A) an unbalanced ro-
tating free spinner mounted on the shaft and driven by
a compressed air jet flow; B) an unbalanced auxiliary
shaft attached to the end of the rotating machine rotor
through a pivoting bearing, and driven by a separate mo-
tor; both A) and B) allow for shaft "nonsynchronous" per-
turbation (Fig. 2). Two electromagnetic actuators in XY
configuration generating sinusoidal forces with 90-degree
phase shift can also be applied as input circular force
perturbators. Another device which provides a perturba-
tion frequency-independent input force amplitude consists
of radial spring-like elastic elements attached from one
end to the rolling element bearing mounted on the rotor.
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FIGURE 2 Perturbation testing of rotating machines using sweep frequency circular forces generated by rotating unbalance at (a) free spinner; or
(b) rigid auxiliary rotor. Rotative speed of the main shaft (2) maintained constant.

On the other ends the springs are mounted in a nonsyn-
chronously rotating and (due to its eccentricity) oscillating
ring (Fig. 3). This device provides a good resolution in low
frequency range testing.

In all these systems, the frequency (angular speed) ofthe
perturbing force is entirely independent from the rotative
speed of the main shaft: the latter rotates at a chosen con-
stant speed, while the perturbator provides the input rotat-
ing force with sweep frequency. The shaft can be perturbed
either in a forward or a reverse direction. These perturba-
tion systems also yield very good results in "passive".

In all above-mentioned methods, as well as other pop-
ular modal testing routines (such as impulse testing), the
input into the system is a force; the output is a measured
response in terms of mechanical displacement, velocity,

or acceleration. There exists a method applied in rotating
systems with fluid interactions, in which a displacement
is used as an input, and the force is measured at the out-
put (Iwatsubo et al. [1980, 1988], Ohashi et al. [1984,
1988], Jery et al. [1984], Adkins et al. ([986], Childs
et al. [1986, 1988], Kanki et al. [1986], Adams et al.
[1988], Brennen et al. [1988]). The forced circular dis-
placement in an orbital form is generated by a cam mech-
anism on the shaft rotating in a fluid environment. The
output fluid dynamic force is calculated from the pressure
transducer or load cell readings (Fig. 4). This method pro-
vides nonsynchronous perturbation; it is used for identifi-
cation of fluid dynamic forces in seals and fluid-handling
machines. A comparison ofresults yielded by this method,
and the input force/output displacement method is given
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FIGURE 3 Constant force amplitude perturbation device (eccentricity exaggerated).

FIGURE 4 Rotating displacement input and fluid pressure (a) or load cell; (b) output perturbation method.

in the section where perturbation results are compared
(see p. xxx).

RESPONSE MEASUREMENTS

Accelerometers are the most popular transducers used
in classical modal testing. The testing results are pre-
sented in terms of accelerances (or "inertances") which
are the ratios of response acceleration vectors to input
force vectors ("vector" means amplitude and phase of a
harmonic variable). Accelerometers are the most appro-
priate instruments for modal testing of passive structures,
which deals usually with high number of modes, with nat-

ural frequencies located in a relatively broad frequency
range.

In a rotating machine the modes of highest interest are
those of the rotor itself. Most often the rotor modes cor-
respond to the lowest modes of the entire machine struc-
ture. The first natural frequency may occur in the range
of 5 to 15 Hz. In this range of frequencies accelerometers
perform very poorly. The best transducer in the low fre-
quency range is the displacement proximity probe. When
mounted in casings or bearings, the proximity probe pro-
vides relative measurements (shaft motion relative to sup-
port motion). For machines with very soft supports the
proximity probe can be complemented by a seismic probe
providing casing absolute measurements (for instance, a
dual transducer).
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FIGURE 5 Modal testing of a rotating shaft using circular forward and backward perturbation forces and displacement noncontacting proximity
transducers for vibration response measurements.

Results of modal testing using displacement transduc-
ers are usually presented in terms of receptances (there
exists in the literature equally used names, such as "ad-
mittances," "compliances," "dynamic flexibilities"). The
receptances are the ratios of the displacement response
vectors to input force vectors. Receptance vectors are
widely used, for instance, in rotor balancing. (They are
often called "influence coefficients," but the more proper
name should be "influence vectors.")
The use of accelerometers, velocity pickups, or prox-

imity transducers in measurements of mechanical struc-
ture vibrations is not only a matter of rational choice,
corresponding by matching the best to the type of en-
countered conditions, it is also a matter of philosophical
usage--although popular in modal analysis applications,
accelerometers are not widely used in on-line monitoring
and diagnostics ofrotating machinery malfunctions. Rotor
displacements, not accelerations, are the most meaningful
signals for the operating personnel.

Specific changes in rotor displacements (vibration am-
plitudes, as well as static positions) relative to machine
casing directly indicate what type of malfunctions the ma-
chine develops. Changes in the static positions indicate
changes in the alignment state. These data assist in pre-
diction of fluid whirl/whip self-excited vibrations, as well
as shaft crack prevention. A specific content of vibration
signals indicates presence of unbalance, misalignment,
rotor-to-stator rubs, loose parts, shaft crack propagation,
and other malfunctions of the rotating machine.
The most harmful vibrations for the integrity of the ro-

tating machine are low frequency, subsynchronous vibra-
tions, resulting usually from an instability action transfer-

ring rotational energy into vibrations. Acceleration ampli-
tudes are proportional to the square of vibration frequency.
This means that when measuring rotor vibration by using
accelerometers, the higher frequency components become
dominant, indicating high amplitudes. The low frequency
components look insignificantly small, even though they
might have very high amplitudes in terms ofrotor displace-
ments. In addition, accelerometers are most often installed
outside the rotor casing; thus they measure vibrations of
the outside structure, not the vibrations of the rotor, which
is the main source of vibration. During transmission from
the source through the structure, vibration becomes atten-
uated, the degree ofattenuation depending on the structure
transmissibility.

In summary, in the rotating machine perturbation test-
ing, the most useful instruments to measure rotor re-
sponses are displacement transducers mounted in XY
configuration (Fig. 5), with a Keyphasor(R) once-per-turn
marker for phase reference.

NONSYNCHRONOUS SWEEP
FREQUENCY PERTURBATION
TESTING AND DYNAMIC STIFFNESS
IDENTIFICATION ALGORITHM

In the classical modal testing, identification of the struc-
ture modal parameters is usually based on curve fitting
of results presented in the form of receptances (Ewins,
[1984], Fig. 6). Much better identification results are
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FIGURE 6 Identification of modal parameters: (a) curve fitting of receptances (Ewins 1984])’ (b) straight-line fitting of dynamic stiffness results
(Muszynska [1986]).

obtained, however, when a Dynamic Stiffness approach
is applied. Straight lines of dynamic stiffness components
are definitely the best to fit. A dynamic stiffness algorithm
for identification of modal parameters of a rotating ma-
chine rotor using nonsynchronous sweep frequency per-
turbation testing is outlined below.

Rotor responses to rotating force excitation bring mean-
ingful data for identification ofthe system parameters. The
identification procedure involves matrix inversion, thus a
computer is necessary for experimental data acquisition
and processing.

Consider a modal of a nonsymmetric (laterally
anisotropic), anisotropically supported, flexible 2n degree
of freedom (2n lateral mode) rotor rotating at a constant
speed f2 (Fig. 5):

[[D1][D12]]r[M1 ][M12]] [,] 4- []
L[M2]][M2]J DZl][D2]J

[[[K1][K12]]q
K21][K2]

[Z] [F] d/dt (1)

where Z col[xl Xp xn,Yl yp Yn]
represents rotor deflections at its p n axial lo-
cations in two orthogonal directions x and y. The system
parameters are represented by the matrices"

[Mq], [Mq,3_q] [Dq], [Dq,3_q] [gq], [gq,3-q],
q= 1,2,

which are inertia, damping, and stiffness matrices corre-
spondingly. The matrices Dq,3_q contain "cross" damp-
ing terms, matrices [Kq,3_q] contain elements of the
"cross" stiffness type. Both these matrices usually depend
on the rotative speed 9. The vector [F] contains con-
trolled perturbation (excitation) forces. For identification
of the system parameters, a controlled rotating perturba-
tion force is applied consecutively at "r" (r 1,..., n)
axial locations of the rotor in either forward (s 1) or
backward (s 2) direction. The "n" pairs of displace-
ment transducers in an XY configuration are mounted at
"p" (p n) axial locations of the rotor (Fig. 5).
When the force is applied at the rth location, the excitation
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vector used in nonsynchronous perturbation is, therefore,

[F] col[0 O, Fsr cos(cot + tsr), 0 O, (-1)s+l

Fsr sin(cot + tsr), 0 ,0], s 1, 2 (2)

where

/qsll

[Aqs]

Lqsnl

Aqsln

[aqspreJtqspr],
qsnn (6)

where co is perturbation frequency, Fsr and tsr are the
perturbation force amplitude and phase, respectively. Note
that the perturbation frequency w is entirely independent
from the rotative speed
The rotor forced response to exciting force (2) based on

model (1) is as follows:

[Z] col[Alslr cos(cot + 0tlslr )

Alsnr cos(cot + Otlsnr), A2slr sin(wt + Ct2slr

A2snr sin(cot + Ot2snr)] (3)

where Aqspr, Otqspr are amplitudes and phases of the
responses, narrow-band filtered to the perturbation fre-
quency. All phases are measured from the same once-per-
rotation marker. By substituting (3) into Eqs. (1), elimi-
nating time-related functions, and using Euler’s complex
number transformations, the algebraic set of 2n equations
is obtained"

I[A lspreJalspril FsreJsr {col O, 1,[tO]
L[A2sprejtzwr j- 0 O, (-1)s+l,

o o]}
(4)

where j and

[K1]+jw[D1]_oo2[Ml

j ([K21]+"jw[D21 ]-o2 M21 ])

-j ([K12]+jto[D12]-o92[M12]) ]K2]+joo[D2]-ro2 M2

is the system complex dynamic stiffness matrix. The
nonzero components at the right side of Eq. (4) are at
the rth and (n + r)th rows.

For the sequence of n experiments, in which the force
is applied consecutively at r 1, 2 n locations, first
in forward (s 1) then in backward (s 2) directions,
the set of 2n equations is obtained:

[[All] [A12]] [[F1] [F2] ][to]
[a21] [A22] [F1] [-F2]

(5)

Fs diag[Fslej$*’ Fsnej$*n ],
q,s= 1,2

In Eq. (6) qspr Aqsprejqspr, q, s 1, 2, p, r
n represent response vectors (in complex number

sense), components of the response nonsingular matrix.
Note that the number of tests (2n) must correspond to the
number of identified modes, thus certain knowledge on
the system behavior is required ahead of time, to avoid
singularity of the matrix [Aqs]. Equation (5) yields the
main equation for identification of the system parameters"

[[F1] [F2] ] [[All] [A12]]
-l

[x]=[_[Fl] [-F21 L[A21] [A221
(7/

The identification procedure is reduced to the following
expressions, representing the rotor dynamic stiffness com-
ponents:

[gq] -co2[Mq] -Re{[(-1)q[F2] + [HI]][H2]};

ro[Oq] -Im{[(-1)q[F2] + H]][H2]}; (8)

oo[O3_q,q] Re{[(-1)q[F2] [H1]][H2]};

[K3-q,q] co2[M3-q,q] Im{[(-1)q[F2]

[H1]][H2]}; q l, 2 (9)

where

[HI] [F1][A3-q,1]-I[A3-q,2],

[H21 [[Aq,2] [Aq,1][A3-q,1]-l[A3_q,2]]-1

With the frequency sweep excitation (co variable from zero
to a selected value covering the range ofn natural frequen-
cies of the system the results (6) to (9) are eventually
graphically presented versus co or o92 for the easiest curve
fitting of straight lines.

Note that the model (1) takes into consideration 2n ro-
tor/bering/seal system coupled modes. The vector Z con-
tains multimode modal coordinates, discussed on p. xxx.
Using this approach, the identification provides parame-
ters of the coupled system, not only modal parameters of
decoupled modes. The method is very effective for sys-
tems with a low number of modes (Muszynska [1986],
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Muszynska et al. [1989b]), and is extremely useful if the
knowledge on all connecting masses and stiffnesses in the
system is required. If the number of modes in the chosen
frequency range is not known ahead oftime, the additional
measurements may serve for modal correction factor
calculations, as discussed by Muszynska et al. [1989b].

APPLICATION OF SWEEP FREQUENCY
ROTATING FORCE
NONSYNCHRONOUS PERTURBATION
TO THE ONE-MODE ROTOR/BEARING
SYSTEM. IDENTIFICATION OF WHIRL
RESONANCE AND FLUID DYNAMIC
FORCES

The nonsynchronous frequency swept rotating force in-
put perturbation method has proved to be very efficient
for identification of bearing and seal fluid dynamic forces.
As a result of over ten years of testing and research, an
improved model of fluid dynamic forces in lightly loaded
bearings, in seals and fluid-handling machines, has been
proposed (Muszynska 1988a]). The model was identified
experimentally using the perturbation technique. A similar
fluid force model was previously developed theoretically,
and has existed in a simplified version in rotordynamic lit-
erature for at least 25 years (Bolotin [1963]; Black [1969,
1980]). It has not, however, been fully exploited.
The most important result of perturbation testing iden-

tification of the fluid forces was introduction of the "fluid
circumferential average velocity ratio," k, as a function
of shaft eccentricity. It has replaced the assumed constant
"1/2" widely used in other fluid force models.
The results of perturbation testing also, yielded, con-

clusions regarding modal behavior of mechanical systems
with fluid interactions. It was shown that the value "kf2"
(fluid circumferential average angular velocity) represents
(with approximation related to damping) arotor/bearing or
rotor/seal system natural frequency (Muszynska 1986]).
It is associated with the specific "fluid whirl" mode of the
rotor.

In the section that follows, the results of sweep fre-
quency rotating force perturbation identification method
applied to a rotor/bearing system, and the improved fluid
force model in lightly loaded bearings and seals will be
outlined.
The experimental rig (Fig. 7) to perform the perturba-

tion test consisted of the main well-balanced light rotor
supported in one relatively rigid bronze bushing bearing,
and one oil-lubricated bearing. The main mass of the ro-

VECTOR FILER
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ORBITS PHASE
MEBASE PERTURBATION

SPEED
DATA TO COMPUTER

COMPUTER
NUMERICAL DATA
GRAPHS
STORAGE

FIGURE 7 Perturbation testing rig for fluid dynamic force identifica-
tion.

tor was concentrated at the journal. An auxiliary light ro-
tor was connected concentrically with the previous one
through a pivoting rolling element bearing mounted in-
side the journal (Fig. 2b). The main rotor was rotating
at a selected constant rotative speed. The auxiliary rotor
carrying a light disk with a controlled unbalance weight
was driven by a separate electric motor in the sweep fre-
quency fashion. The unbalance provided the excitation
force to the main rotor. The force phase was controlled
by a Keyphasor(R), once-per-turn marker transducer. The
main rotor response was measured by two displacement
transducers mounted in XY configuration at the lubricated
bearing. The eccentricity of the journal inside the bearing
was adjustable by using additional radial springs. In the
"oil whirl resonance" experiment the journal initial ec-
centricity was zero, so the rotor forced X and Y responses
were matching. The lubricant, T10 oil, was fed to the
bearing by a supply system with controlled inlet and ambi-
ent outlet oil pressure. Four symmetrically situated radial
channels, and a circumferential groove evenly distributed
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FIGURE 8 Typical plots of phase and amplitude of rotor response to forward and reverse nonsynchronous perturbation versus perturbation speed
(0 original rotor/bearing system, S added springs, M added rotor mass, SM added springs and mass). Oil whirl resonance occurs at
frequency close to f2/2, identified as .f2 (f2 constant rotative speed). Increase of the system mass causes an increase of the oil whirl resonant
response amplitude, as margin of stability is reduced (Bently et al. [1982b]; Muszynska et al. [1990]).

the oil inside the bearing. The oil temperature was main-
tained constant. Both electric motors were equipped with
speed control devices.
The data acquisition system consisted of the vector fil-

ter and computer. The rotor responses were continuously
monitored on the oscilloscope and spectrum analyzer.
The results of perturbation testing brought the following
conclusions:

Fluid whirl resonancefrequency. The journal X and
Y responses filtered to the perturbation frequency w, and
displayed in the Bode format (Figs. 8 and 9) exhibit res-

onances at forward perturbation frequency equal nearly
half of the constant rotative speed . More precisely, the
resonance occurs at o .f2 (Muszynska [1986]). At
this perturbation frequency the response amplitude has a
peak, and the phase angle sharply changes values through
zero degree. This yields the conclusion that )g2 is the ro-
tor/bearing system natural frequency (Muszynska 1986]).
This resonance has a "quadrature" character, and became
known as "oil whirl resonance" or, more generally, as
"fluid whirl resonance?’ Such resonance does not occur
for the reverse perturbation.
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FIGURE 9 Phase and amplitude ofrotor response versus perturbation-
to-rotative speed ratio for various values of rotative speeds, 2. Increase
of amplitudes with increases of 2 due to decrease of margin of stability
(Bently et al. [1992a, b]; Muszynska [1986, 1990]).

Dynamic stiffness format. Using the dynamic stiff-
ness algorithm (Eqs. (7) to (9)), the force/response data
was then processed, and presented in the dynamic stiff-
ness format. For the isotropic single complex degree of
freedom system (x -t- jy z; j Sf) the journal lat-
eral response was z A exp[j (cot + c0], where A and ot

are response amplitude and phase filtered to perturbation
frequency co. The Direct (DDS) and Quadrature (QDS)
dynamic stiffnesses were obtained as

mrco2
DDS cos( or),

A

mrco2
QDS sin(a ) (10)

A

where m, r, are the input perturbation force unbalance
mass, radius, and angular orientation, respectively.
The dynamic stiffness components versus perturbation

frequency are presented in Fig. 10. The direct dynamic
stiffnesses are parabolas; the quadrature ones are straight
lines, thus the identification of their parameters is rela-
tively easy.

Fluid force model. The curve fitting of the dy-
namic stiffness components allowed identification of the
fluid force model applicable for lightly loaded bearings
and seals (Muszynska [1986, 1988a]; Muszynska et al.

FIGURE l0 Rotor/bearing direct and quadrature dynamic stiffnesses
versus perturbation speed. Identification of fluid force parameters.
(Higher rotative speeds caused an increase of oil temperature, thus a
decrease of fluid radial damping reflected in quadrature dynamic stiff-
ness graphs with lower slopes) (Muszynska [1986, 1990]). K, M are
rotor stiffness and mass, respectively.

[1990]). The following fluid force model

F [g0 + jD(co- kf2) My(co- ))2]Aejt (11)

was provided directly from the dynamic stiffness graphs;
DDS Ko Mf(co- ))2, QDS D(co- kfa). (Note
that the raw data in Fig. 10 also contain, the mechanical
system parameters K and M which were subtracted, and
do not appear in the fluid force model (11).)
The differential form of the fluid force model in coor-

dinates rotating with angular velocity Lfa is (Muszynska
[1988a]):

F KOZr + D.r + M.l’,r z x at- jy zrej’t

(12)

In stationary coordinates z x + jy the fluid force model
becomes:

F KOZ + D(. j.faz) + Mf( 2jkf2. .22z)

(13)

In Eqs. (11) to (13) K0, D, and Mf are fluid radial stiff-
ness, radial damping, and inertia effect, respectively, all of
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stiffness d, consequently, of the stability margin for higher pressure (Muszynska [1986, 1990]).

them at zero eccentricity of the shaft inside the bearing or
seal. o
The most dominant parameter of the fluid force is the -1 oo, , E

fluid radial damping D. The total quadrature dynamic stiff-
-o

>’aness value is usually much higher than the direct dynamic t 2stiffness. The rotational character of the fluid radial damp- u u.
=:g

3ing force results in an appearance ofthe component known
as the "cross stiffness," "Kxy." The results of perturbation
testing proved that this term is directly proportional to the 8

damping, D, and to the fluid circumferential average ve-
locity ratio, ,k. The latter provides an efficient way to con-
trol the value of this "cross stiffness" term, thus to control
the stability of the rotor/bearing/seal system (Bently et al.
[1988], Muszynska et al. [1989a]).

Fluid whirl mode. When the rotor is rigidly supported
at one end, as it was in the case of the described experi-
ment, the fluid whirl mode is conical. The shaft vibrates in
phase with thejournal, as a rigid body (Muszynska 1986,
1988c]).

Fluid force parameters as functions of various fac-
tors. Variations of the rotative speed, including zero
speed (squeeze film damper), yielded the most important
conclusion regarding rotational character of the fluid dy-
namic force, and provided some insight into the fluid in-
ertia effect (Figs. 9 and 10). Variations of the lubricant
pressure and temperature allowed to identify the influ-
ence of these factors on the separate parameters of the
fluid force model. As it is shown in Fig. 11, an increasing
lubricant pressure increases the fluid radial stiffness, K0.

100 200 300 400

-209 rad/sec

rn =7g
T=22C 1=59 cpoise

35 31
49

rad/s

00 200 300 400 (
PERTURBATION SPEED rad/s

FIGURE 12 Rotor bearing direct and quadrature dynamic stiffnesses
versus perturbation speed for three values of oil temperature. Results
indicate modifications of fluid radial damping, D (Bently et al. 1982b];
Muszynska [1986]).

An increased lubricant temperature (decreasing viscosity)
causes a decrease of the fluid radial damping (Fig. 12).
Variations of the perturbation force amplitude provided
results which helped to identify nonlinearities of the fluid
radial stiffness and damping versus eccentricity (Figs. 13,
14, and 15).
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FIGURE 13 Direct dynamic stiffnesses with nonlinear effects.
(perturbation by increasing perturbation force magnitude, rn
controlled input unbalance weight mass) (Bently et al. [1985a, 1986a]"
Muszynska et al. 1990]).
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FIGURE 14 Quadrature dynamic stiffness with nonlinear effects (per-
turbation by increasing perturbation force magnitude, m controlled
input unbalance weight mass) (Bently et al. [1985a, 1986a]; Muszynska,
et al. 1990]).

COMPARISION OF THE RESULTS OF
PERTURBATION TESTING USING
ROTATING FORCE INPUT AND
ROTATING DISPLACEMENT INPUT

There are two main perturbation techniques of nonsyn-
chronous one-mode testing used for identification of fluid
force models in rotor/bearing, rotor/seal systems, and in
fluid handling machines (mainly pumps). The basic ad-
vantage of these methods is the rotational character of the

input function, in forward or reverse direction (the same
or opposite to rotor rotation). This allows for independent
identification offorward and backward modes ofthe rotat-
ing system. The two perturbation techniques differ by the
input/output functions (Figs. 2 and 4). They are follows:

FORCE: FeJt

DISPLACEMENT: Aejt FORCE: (Fr+jFt)ejwt

where A is rotor displacement amplitude, ot is rotor re-
sponse phase (also c arctan(- Ft/Fr)), w is rotor
perturbation (excitation) precessional frequency (usually
varying from zero to some Wmax), and Fr, Ft are radial
and tangential forces, acting on the rotor. These forces are
obtained by integrating the fluid pressure or measuring
forces outside an elastically supported seal or bearing; F
is the input force amplitude.

In both techniques the objective is identification of the
transfer function of the system. More precisely, the func-
tions sought are x(w) Complex dynamic stiffness, or
/-)(w) x(-log)_= Transfer function Complex dynamic
compliance or- the system. The result most often obtained
from either technique is the complex dynamic stiffness:

Fr + jFt
x (09) when inputting displacement (14)

A

F jcx(w) --e- when inputting force (15)
A

The complex dynamic stiffness components for both tech-
niques are as follows:

Direct dynamic stiffness _= DDS
A

Quadrature dynamic stiffness QDS
A

F cos ot

A

(16)

F sinot

A

(17)

By limiting the input to a circular periodic function, both
methodologies should yield exactly the same results, pro-
vided that the system is linear, and the instrumentation
allows for comparable signal-to-noise ratios.

Both techniques are known in mechanics as "force ex-
citation" and "kinematic excitation," respectively. They
both serve well for identification of the lowest mode gen-
eralized (modal) parameters of the system.

Figures 8, 9, 10, 16 and 17 illustrate the basic re-
suits obtained by various researchers who used either of
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FIGURE 15 Identification of fluid radial stiffness nonlinearity (Muszynska et al. 1990]). Stiffness nonlinear function results from subtraction of
dynamic stiffnesses for nonlinear and linear cases.

the nonsynchronous perturbation techniques. Following
Eqs. (14) and (15), the dynamic stiffness graphs versus
perturbation frequency (Figs. 10 and 17) are similar for
both techniques. The response vectors versus perturba-
tion frequency are presented in Figs. 8, 9 and 16, in the
form ofBode plots. Note that, in the technique which uses
force input, the displacement response vector to forward

perturbation has a form characteristic for responses of a
one-mode system to a periodic excitation with sweep fre-
quency (Figs. 8 and 9). The occurrence of a resonance is
obvious. The peak amplitudes may become very high if
the shaft rotative speed approaches the 1/. value of the
rotor "mechanical" natural frequency, corresponding to its
first bending mode ( is the fluid circumferential average
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FIGURE 16 Force response phase and amplitude versus perturba-
tion frequency (perturbation by displacement). Courtesy of T. Iwatsubo
[1988].

velocity ratio), as discussed by Muszynska [1986, 1990].
In fact, instability occurs when both direct and quadrature
dynamic stiffnesses are nullified at the same frequency.
In comparison to the response of a classical mechanical
system, the response phase is, however, ahead of the in-
put force. This indicates the "quadrature" nature of this
particular resonant phenomenon. The resonant frequency
has been identified as if2. (In machinery it was some-
times called "bearing resonance?’). The occurrence of the
resonance suggests that if2 represents one of the system
natural frequencies. This natural frequency is generated
purely by the fluid/solid interaction. The rotating shaft
drags the fluid into circumferential motion, generating the
fluid rotating forces which act on the shaft in a feedback
loop. This fluid-related quadrature resonance was docu-
mented by Stone & Underwood in 1947, and again by
Hull in 1955, but these excellent works were not immedi-
ately pursued.

3-D impeller

2-D impeller

-1.5 -1 -0.5 0 0.5
PERTURBATION FREQUENCY TO ROTATIVE SPEED RATIO {d/

10 -" Ft
3-D impeller -"
2-D impeller .a...,.....

-1.5 -1 -0.5 0 0.5 1.5

PERTURBATION FREQUENCY TO ROTATIVE SPEED RATIO d/

FIGURE 17 Direct and quadrature dynamic stiffness versus perturba-
tion frequency for the system with input circular displacement, and
output force (see Eq. [14]). Courtesy of H. Ohashi [1988].

By inputting a constant circular displacement, and mea-
suring the output in terms of forces, the accuracy of the
results is lower (mainly due to poor phase resolution), and
there is no clear physical interpretation of the results. The
plot of force response amplitude versus perturbation fre-
quency has an "anti-resonance" shape, a concave curve,
like a mirror image of displacement response amplitude
versus frequency (Fig. 16). The phase is the same in both
techniques. It is obvious, because by definition, the phase
represents the angle between the input vector and output
vector, independently of the nature of the input and output
functions. Note that the dip point of the response force
amplitude and phase drop occur around one half of the ro-
tative speed, i.e., the fluid circumferential average velocity
ratio I is equal to about one half. The notion of the "force
resonance," or rather "anti-resonance," is not known in
mechanics. That is why the researchers who have used the
input force methodology, and adopted direct physical in-
terpretation of the results, have been more fortunate than
those who use forces as outputs.

Note the advantage of the circular perturbation, as op-
posed to unilateral perturbation, in impulse testing. The
results of forward perturbation (rotation and precession in
the same direction), and backward perturbation (opposed
direction) are significantly different (Fig. 8). The reso-
nance occurs only for the forward perturbation, that is,
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the "quadrature" natural frequency Lf2 of the system has
only the plus sign (classical "direct" natural frequencies
governed by stiffness and mass have + and signs).

the direction opposite to shaft rotation makes dramatic
changes in the fluid circumferential average velocity ratio
values, considerably lowering them, and improving rotor
stability features.

ANTISWIRL SEAL TESTING

The sweep.frequency rotating force nonsynchronous per-
turbation method was applied to identify the fluid force
parameters in antiswirl seals equipped with radial and
tangential inlet ports (Grant [1991]). The results provide
clear effects ofthe input flow pattern on fluid force compo-
nents. Water was used for series ofexperiments. Figure 18
illustrates an example of the data presented in terms of dy-
namic stiffness components for the seal input flow through
radial or antiswirl ports for three rotative speeds. Based
on this type of data, the identified fluid force parameters,
namely, circumferential average velocity ratio ., radial
stiffness, and damping reduced from approximately 70
runs covering the range from 3 to 80 psi water pressure,
are presented in Figure 19. The graphs clearly show gen-
eral trends of these parameters for radial and antiswirl
inlets (Muszynska et al. 1992]).

Figure 20 illustrates fluid circumferential average ve-
locity ratio versus anti-swirl port pressure drop for several
cases of mixed radial and tangential inlets. As seen in
Figures 19 and 20, the antiswirl input fluid injection in

..st! K0- Mtv2- Mf(ta--Af)

r /

_
PERTURBATION, ..= | FREQUENCY, w [kcpm]

:Sb radi n 2 krpm
o raM fl 4 krpm/ antiswirl
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PERTURBATION FREQUENCY ,[kcpm]

FIGURE 18 Direct and quadrature dynamic stiffnesses versus pertur-
bation frequency of the seal with either radial or antiswirl inlet ports
(Grant [1991]; Muszynska et al. [1992]).

ROTOR/BEARING SYSTEM
IDENTIFICATION COVERING WHIRL
AND WHIP MODES

In the tests for identification of the fluid whirl resonance,
the main rotor was deliberately rigid and light, so that
its first natural frequency of the bending mode (conven-
tionally called here "whip") was well above the range
of perturbation frequencies. The next series of tests con-
cerned the rotor/bearing system, covering both whirl and
whip modes. The main rotor was made more elastic, and a
heavy disk was mounted at rotor mid-span (Fig. 21). The
main rotor first natural frequency became much lower, and
placed in the range of the applied perturbation frequen-
cies. Since more modes were involved, the test required
additional data. Perturbation, therefore, was applied ei-
ther at the journal (as previously), or at the rotor disk
(using an unbalanced, pulley-driven spinner). Each time,
the response data was collected from XY proximity trans-
ducers mounted at the bearing, and at the disk. Following
the identification algorithm (7) to (9), the 2 2 matrix
of complex dynamic stiffness components was identified.
The results are presented in the form of Bode plot matri-
ces from the experimental data, as well as from calculated
analytical data based on the identified parameters of the
system. The system model (Fig. 22) is as follows (Bently
et al. [1985c]):

Md,d + Dsd + (K1 + K2)zd K2ffZb

Fdej)t for the first test

/ 0 for the second test

Mb,b + Mf(,b 2j.f2ib ,2f22Zb) + D(b

j,2Zb) + (Ko + K3)zb + K2(crZb Zd)

0 for the first test
(18)

Fbejwt for the second test

where Md, Mb are disk and journal modal masses corre-
spondingly, K1 and K2 are the main shaft partial modal
stiffnesses, cr is modal correction factor, K3 is the exter-
nal supporting spring stiffness, Ds is rotor external modal
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FIGURE 19 Identified fluid radial stiffness (K0), fluid circumferential average velocity ratio (X), and damping (D) of the antiswirl seal versus
measured mass flow rate (Grant [1991]" Muszynska et al. 1992]).

viscous damping, Mf, D, Ko are, as previously, the fluid
force parameters, Fd and Fb are perturbation force am-
plitudes (Fd mpdrW2, Fb mpbrw2). The results
presented in the form of Bode plot matrix exhibit two
resonant ranges: the whirl resonance at lower perturba-
tion frequency discussed on p. xxx, and the "whip" reso-

nance corresponding to the rotor first bending mode. Using
the dynamic stiffness algorithm (Eqs. (7) to (9)), the sys-
tem parameters were identified. As it can be seen from
the corresponding experimental (Fig. 23) and analytical
(Fig. 24) results, the identification process provided very
good agreement, and proved the model adequacy.



100 A. MUSZYNSKA

:RADIAL PORT
PRESSURE: DROP

pst

ANTI SWIRL PORT PRESSURE DROP [PSI]
FIGURE 20 Fluid circumferential average velocity ratio () versus antiswirl port pressure drop.

SQUEEZE FILM PERTURBATION
TESTS, STEADY-STATE LOAD TESTS,
AND IMPULSE TESTS OF
ROTOR/BEARING SYSTEMS

Squeeze film tests of bearings are circular force perturba-
tion tests of a rotor at rest, and usually performed at zero
initial journal eccentricity of a rotor, so the results are
isotropic. The fluid force (13) for the squeeze film tests
does not contain terms depending on f2. When the dy-
namic stiffness components of the tested bearing are plot-
ted versus perturbation frequency (QDS), or versus per-
turbation frequency squared (DDS), the parameters D, K0
and My can easily be identified from resulting straight

lines. Figure 25 presents Direct Dynamic Stiffness of a
bearing fluid obtained from the squeeze film test. The data
exhibit very high fluid inertia effect, practically indepen-
dent from fluid inlet pressure.

Steady-state load test of a rotor/bearing system is ac-
complished by applying a constant radial force to the ro-
tating journal, and measuring the journal displacements
in two orthogonal directions. These displacements are
presented in the eccentricity ratio polar format for sev-
eral values of the rotative speeds and input radial forces
(from 2 to 15 lbs) (Fig. 26). The journal displacements
exhibit two distinctly different patterns of behavior. In the
low eccentricity range, the dominant component of the
fluid force has a quadrature nature: displacement is almost
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FIGURE 21 Test rig (Bently el al. [1985c]). (1) main motor; (2) elastic coupling; (3) rigid pivoting bearing; (4) main shaft, (5) disk XY
noncontacting probes; (6) main rotor disks; (7) disk perturbation motor; (8) perturbation driving system; (9) Keyphasor(R) probe; (10) disk with
perturbation unbalance; (11) bearing XY noncontacting probes; (12) rotor weight balancing springs; (13) main rotor journal; (14) oil-lubricated
bearing with radial clearance 25/zm; (15) pivoting bearing connecting auxiliary shaft to the journal; (16) auxiliary perturbing shaft; (17) disk with
perturbation unbalance; (18) Keyphasor(R) probe; (19) rigid bearing; (20)elastic coupling; (21) perturbation motor.

Zd= :d+JY d
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x b + JYb
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m pb

M b

ro2

FIGURE 22 Model of the isotropic rotor/bearing system, taking into account two complex modes.

perpendicular to the applied force, that is, the tangential
(quadrature) component of the fluid force, Dkf2, is domi-
nant. For a high rotative speed the angle between the input
force and journal response is even larger than 90 which
indicates a high fluid inertia effect opposing the fluid film
radial stiffness* (Bently et al. 1985a]).

In order to identify the fluid force parameters, the in-
put force vector was divided by the response vector, split

*The fluid dynamic force for this test is F (Ko- Dj,kf-
Mf,k22)z (see Eq. (13)); the force balance is F Pejx where P, y
are amplitude and angular orientation of the input constant radial force.
By measuring "z," the fluid force can be identified.

into collinear and perpendicular to the input force com-
ponents, and presented versus eccentricity ratio (Fig. 27).
While the quadrature components identified as kD (ro-
tative speed eliminated) exhibit classical, quite regular
form, the fluid film dynamic stiffness in the direction of
load, namely, K Mf22 confirms the existence of
the strong fluid inertia effects, and exhibits two distinct
patterns of behavior characteristic for the low and high
eccentricities.
A similar steady-state load test was performed on a low-

pressure oil bearing (Fig. 28). While the fluid inertia effect
was smaller, similar behavior patterns in the two ranges of
eccentricity were observed. In both cases (Figs. 26 and 28)
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FIGURE 25 Direct Dynamic Stiffness of a cylindrical beating (l/d
0.74) obtained from the squeeze film test (Bently et al. [1985a]).
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FIGURE 26 Pressurized cylindrical bearing journal centerline re-
sponse to constant vertical force for several values of rotative speeds
and input force amplitudes (Bently et al. [1985a]).

the quadrature stiffness dominance ceases at lower eccen-
tricity, when rotative speed is higher.

Different dynamic behavior of the journal at low and
high eccentricities corresponds to significant changes in
the flow patterns: at low eccentricities the flow pattern is
predominantly circumferential, due to shaft rotation, and
DLf2 > K0. In this range the fluid force model (12), (13) is
adequate. At high eccentricities the circumferential flow
is suppressed by increasing axial flow pattern, DLf2 <
K0.
The changes offlow patterns were eventually confirmed

by impulse testing. The shaft (rotating at a constant speed
in a fluid-lubricated bearing at one end and in a rigid bear-
ing bushing on the other end) was impacted by a calibrated
hammer. The XY proximity probes mounted in the bear-
ing, observed the journal transient responses. The data
acquisition and processing system recorded the frequen-
cies of the transient responses at different original journal
eccentricities. These frequencies were then divided by cor-
responding constant rotative speeds. The results identified
as fluid circumferential average velocity ratio (*) are pre-
sented in Figure 29 for two different bearings.
The circumferential pattern of flow at low eccentric-

ity is evident, which produces the rotor/bearing system
natural frequency ,f2, which was previously discovered
by nonsynchronous perturbation testing. The average cir-
cumferential velocity first slightly decreases with increas-
ing eccentricity, then collapses at higher eccentricity. In-
teresting enough is that when the rotative speed is high,
the range of low eccentricity where circumferential flow
pattern is present appears narrower than for low rotative
speeds. The similar result regarding direct stiffness behav-
ior (see Fig. 27) was obtained from the static load test.

PARAMETER IDENTIFICATION OF A
ROTOR WITH STRONG GYROSCOPIC
EFFECT

The overhung isotropic rotor rig schematically shown in
Figure 30 was used for identification of rotor parameters
by applying lateral nonsynchronous forward and back-
ward circular force perturbation testing (Bently et al.
[1986b]). The rotor natural frequencies were identified
as resonant frequencies of rotor responses filtered to per-
turbation frequency. The sequence of polar plots of rotor
vertical and axial responses for the forward and backward
perturbation is shown in Figure 31. Figure 32 presents the
rotor natural frequencies as functions of rotative speed,
that is the well-known relationship for rotors with strong
gyroscopic effect.
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FIGURE 27 Cylindrical pressurized bearing (e/d 0.74) fluid film dynamic stiffness components versus eccentricity ratio (Bently et al. [1985a]).

Since the simple two-mode model of the rotor contains
at least eight parameters, the lateral perturbation only was
not sufficient to identify all of them, without additional
assumptions. Assuming, however, the disk transverse mo-
ment of inertia is known, the remaining parameters were
identified (Bently et al. [1986b]).

IDENTIFICATION OF MULTIMODE
PARAMETERS OF ROTORS USING
SYNCHRONOUS PERTURBATION
TECHNIQUE

Practical application of nonsynchronous perturbation in
rotating machines may encounter difficulties due to lim-
ited access to the rotor for instrumentation (input force
actuators and response measuring transducers).
The synchronous perturbation technique is simpler, al-

though providing useful, but limited information. This
technique uses shaft rotation as sweep frequency, and con-
trolled unbalance weights as input perturbation forces. In
the easiest application, the controlled unbalances may be
introduced into balancing planes of the machine.

In the nonsynchronous perturbation methodology, dis-
cussed in the previous sections, the rotating force can be
applied in either forward or backward directions. The con-
trolled unbalance can rotate only in the forward direction,

FIGURE 28 Journal centerline response to a sequence of constant ver-
tical forces P (numbers in pounds) for two values ofrotative speeds. The
sketch presents the axially fed oil bearing used in this test.

since it is attached to the rotor. This means that the syn-
chronous perturbation will not provide enough data for
the entire system modal parameter identification. It may
bring, however, some useful information about the ma-
chine dynamics, especially when the data are taken in a
time-trend sequence and, consequently, are reduced into
the dynamic stiffness formats. This information may pro-
vide evidences of machine deterioration, such as wear, ro-
torjoint looseness, rotor-to-stator rubbing, shaft cracking,
and so on.

In order to eliminate the effects of other synchronous
forces that possibly exist in the system, each synchronous
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FIGURE 29 Impulse testing of rotors in fluid-lubricated beatings. (a) Example of rotor vertical and horizontal responses, a picture from the
spectrum analyzer screen; synchronous vibrations (1 x), whirl and "whip" natural frequencies present in the spectrum (Grant et al. 1992]); (b) Fluid
circumferential average velocity ratio (,k) versus eccentricity ratio identified by impulse testing for the bearing illustrated in Fig. 28.; and (c)for the
externally pressurized bearing (Muszynska 1988a]).
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FIGURE 30 Gyroscopic rotor perturbation test rig and disk angular/axial displacement relation (Bently et al. [1986b]).
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FIGURE 33 Two-mode rotor model.

perturbation test is performed twice. In the first start-up
test the perturbation controlled weight is introduced to the
balancing plane at certain angle ;. In the second run, the
same controlled weight is moved into + 180 angular
location at the same radius. The x responses from these
two runs are then vectorially subtracted, through the entire
rotative frequency range. This eliminates the possible un-
known 1 x components. The resulting differential data are
then used for the system identification. An example of the
synchronous perturbation application for two-mode rotor
identification is outlined later in this section (Muszynska
1986, 1989b]).
Two-mode and, generally, coupled multimode ap-

proach, offer several advantages in comparison with the
classical identification of separate mode parameters. The
multimode identification provides parameters which more
closely represent the structure parameters, and thus de-

scribe the system more adequately. The identification al-
lows locating of the physical position of specific parame-
ters most responsible for given modes. This, for instance,
makes system modifications more efficient, especially
when nonlinear modifications are considered. An example
offormal transformation ofmodal variables to multi-mode
modal coordinates is given at the end of this section.
The two-lateral-mode model of an isotropic rotor,

the subject of synchronous perturbation, is as follows
(Fig. 33):

0 M2 2 -D21 D22 2

q-
K2 K2 -k- K3 z2

where My, Dye, Kv, v, e 1, 2 are rotor multimode
modal masses, damping coefficients, and stiffnesses, re-
spectively. Note that they represent partial modal param-
eters of the two-mode rotor. [F] is the controlled syn-
chronous perturbation force matrix. Theperturbation force
is applied at the first disk location in the first experiment,
and at the second disk location in the second experiment
(the forces and responses in the identification equations
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A C D E F G H j K L

FIGURE 34 Rotor rig used for synchronous perturbation testing (Muszynska et al. [1989b]). A---electric motor, B--flexible coupling, C, L--
inboard and outboard bronze bearing, D., Jminboard and outboard XY displacement probe mounts, E. Iminboard and outboard disks, F, G, H,
Kmadditional displacement probes.

are actually net differential data, thus the number of nec-
essary rotor runs is four). The matrix of the input forces
resulting from two experiments is, therefore,

Imlrl2eJ(2t+l) O l[F] 2 (20)
0 m2r222ej(rat+62)

where my, rv, ;v, v 1, 2 are unbalance weight mass,
radius, and angular orientation, respectively, and the mul-
tiplier "2" results from the differential procedure of 7ecto-
rial subtraction described above. The matrix of the system
1 net responses to controlled unbalance weights for two
experiments is

A21eJt21 A22eJt22
where Ave, otve, v, e 1, 2 are 1 amplitudes and
phases, respectively, where v represents a number of
the disk where transducers are located, e a number of
experiment.

Following Eqs. (1) to (7), the dynamic stiffness matrix
of the system (19) is calculated as

KI+K2WjDll-MI -K2-jD12

-K2-jD21 KE+K3+jD2292-MK22

2f22 (22)
0 tn2r2eja2

[]-1

A flexible isotropic shaft carrying two disks, and supported
in relatively rigid isotropic bearings (Fig. 34) was run with
low acceleration up to 6,000 rpm. The controlled unbal-
ance ofmr 0.5 x 30.5 gram xmmwas installed at the in-
board disk for the first run, and at the outboard disk for the

second run. The rotor was equipped with one Keyphasor(R)

probe and twelve XY proximity, shaft displacement ob-
serving probes at six axial locations of the shaft. The data
for modal parameter identification was taken from two
vertical probes only. The horizontal probes (X) served for
checking the lateral isotropy ofthe rotor. The data acquisi-
tion and processing system consisted of a vector tracking
filter, and the specially designed computer software. An
oscilloscope and a spectrum analyzer, for additional ref-
erence checking, completed the instrumentation.
The measurements were taken at the inboard and out-

board vertical locations "D" and "J" (Fig. 34). The net
data resulted from vectorial subtraction of 180 and 0
controlled unbalance responses taken at start-up runs
are illustrated in Figure 35 in the polar plot format. Figure
36 presents the direct dynamic stiffness components.
The identified values of the rotor two-mode modal pa-

rameters are as follows: K1 18900 N/m, K2 63700
N/m, K3 22600 N/m, M1 0.73 kg, M2 0.79
kg. The estimated modal functions, basing on forced re-
sponses, are ql 0.99 and Ckll -0.94. The reduc-
tion to two modal coordinates gives two uncoupled mode
modal parameters: For the first mode MI M1 + t#/2M2

1.5 kg, K1 K + g2 2g2qbl + (g2 + g3)l2
41000 N/m. These results coincide with the one-mode

identification performed on the same rotor (Muszynska et
al. 1989b]). For the second mode MI1 M1 + 49211M2
1.43 kg, KII K1 + K2 2Kzqbll Jr (K2 -}- K3)qb21i
279000 N/m.
Due to virtually low system damping, the quadrature

dynamic stiffness components did not provide enough res-
olution to identify the damping matrix components. The
modal damping coefficients DI, OlI were identified from
the polar plots (Fig. 35), using the half-power bandwidth
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FIGURE 35 Matrix of polar plots of the rotor net synchronous response to controlled unbalance. (a), (b) unbalance at inboard disk, measurements

by inboard and outboard probes, respectively, (c), (d) unbalance at outbord disk, measurements by inboard and outboard probes, respectively. Net
data compensated by differential subtraction (Muszynska et al. 1989b]). The modal damping ratios evaluated by the half-power bandwidth method

are ’# 0.030(D# 14.9 kg/s), ’#; 0.032(D## 40.4 kg/s).
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method. The coefficients Dye of the initial damping ma-
trix D were then calculated basing on the modal function
matrix qS:

D (bT)-1Dm-1 dp
(])I qbll

DI 0 ]Dm
0 DII

(23)

where Dm is the diagonal modal damping matrix with ele-
ments identified using the half-power bandwidth method.
The additional proximity transducers observing the ro-

tor served for evaluation of the modal correction factors,
/3. Since the two-mass rotor model (Fig. 33) is a rough
approximation of the rotor behavior, and since the per-
turbation unbalance weights, and measuring transducers
practically cannot be installed at antinodal locations, the
collected data carry an error. The additional data taken
from other transducers allowed for correcting this error

by introducing the modal correction factors/3 into the fi-
nal identification algorithms (Muszynska et al. [1989b]).

In many practical cases the limited access for installing
instrumentation on a rotating machine prevents one from
identifying the exact modal parameters. Very often, how-
ever, there is no need for accurate values of these param-
eters. Their approximate values obtained from regularly
collected synchronous data (without modal correction fac-
tors/3, and possible nonlinearity, and/or lateral anisotropy
taken into account) represent valuable information on the
machine dynamics. These values acquired in a time-trend
format during the machine operation, and showing succes-
sive changes in particular dynamic stiffness components,
will help in diagnosing the machine state, and in identi-
fying the malfunction area. In addition to Bode and polar
plot formats for filtered x vibration data reduction, the
observed dynamic stiffness formats, which use the same
raw data, provide invaluable information.

Synchronous perturbation testing is practically always
done on any rotating machinery during balancing rou-
tines. The valuable dynamic stiffness data are, however,
seldom appreciated, sorted out, and stored. The proce-
dure, called here "synchronous perturbation technique,"
is performed during routine calibration weight balancing.
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The 1 x response vectors during any transient start-up or
shutdown should be stored, and then processed into the
dynamic stiffness format versus f2, from which the ob-
served dynamic stiffness components, mass, stiffness, and
damping, can be evaluated. Ifbalancing is performed only
at one speed, the observed dynamic stiffness will provide
discrete values only.

This section will be completed with a discussion
on the development of the multi-mode modal models
(Muszynska, 1994]) The most often used models of me-
chanical structures are based on finite element grids. In
rotor modeling the transfer matrix method is also used.
One of the final results of these models is a set of the sys-
tem natural frequencies wv, v 2n and a set of
corresponding modal functions.
The uncoupled modal variables, associated with the nat-

ural frequencies, have very little immediate correlation to
the physical and geometric parameters of the system. The
idea of multi-mode modeling originated from the useful-
ness of better correspondence of modal masses and stiff-
nesses to the physical system masses (such as massive
disks on a rotor) and stiffnesses (such as provided by rel-
atively slim shafts). The multi-mode model is built from
the modal model. An example of its formal derivation for
the case of rotor/bearing system is presented below.
The modal model obtained, for instance, from the finite

element method, and possibly reduced to n modes, is as
follows:

[Mm][5] + [Kml[x] 0

following form:

[)] + {T diag (w2 COn2)}[y] 0 (26)

It is required that the matrix in parentheses of Eq. (26)
have symmetric tridiagonal form. This condition provides
additional (n2 3n + 2)/2 equations:

nweeeu 0 for [/z v[ >
e=l

The total number of obtained equations is n2 n + 1, thus
n of the unknown elements e remain arbitrary. An
additional condition, which assures that the off-diagonal
elements of the matrix {. in Eq. (26) are negative, should
be used:

n

Ewe2ezez+l < 0 for /z 1 n 1
e=l

Some complementary conditions regarding the choice
of matrix should come from the comparison of modal
deflection lines of the original model and the transformed
model (26). Here there is a place for an application of
optimization techniques.

PERTURBATION TESTING REVEALS
LATERAL-TORSIONAL MODE CROSS
COUPLING IN ROTORS

or
[] + diag(wl COn)[x] 0 (24)

where Ix] is an (n 1) rotor lateral displacement vector
and [Mm], [Km] are modal mass and stiffness diagonal
matrices. Assume that the new multi-mode modal model
of the rotor consists ofn masses and n + stiffnesses con-
necting the masses in a chain manner. An example of such
model is illustrated in Figure 33. A linear transformation
x y is applied to Eq. (24), with the condition that
the transformed mass matrix remains diagonal, and the
stiffness matrix is symmetric tridiagonal. The first con-
dition imposes the orthogonality of the (n n) matrix

n

/x, v n (25)

where tzv is the Kronecker’s delta. The condition (25)
results in n(n + 1)/2 equations for n: unknown elements
of the matrix . The transformed Eq. (24) will have the

The nonsynchronous sweep frequency lateral perturba-
tion technique has been used to investigate the lateral-
torsional cross coupling due to shaft anisotropy (Bently et
al. [1991]). The rotor of the experimental rig was driven
by a synchronous electric motor, connected through a lat-
erally flexible, torsionally rigid coupling. In order to sim-
ulate anisotropy of the shaft, a part of the shaft at mid-span
was machined to produce two flats. The shaft carried two
disks, with 36 gear teeth on each of them. The optical
pickups observed the disk gear tooth passing frequencies.
The data were then processed through a torsional signal
conditioner to obtain the dynamic twist (torsional vibra-
tions) of the shaft between two disks. The shaft lateral
vibrations were observed by two sets of two proximity
probes in XY configuration. The nonsynchronous pertur-
bation unbalanced disk driven by a separate motor was
attached through a rolling element bearing at the shaft
mid-span.
The lateral response of the shaft to the nonsynchronous

perturbation, presented in a form of the spectrum cas-
cade plot (Fig. 37), exhibited significant amounts of the
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FIGURE 37 Spectrum cascade of the rotor vertical response to lateral backward rotating force nonsynchronous perturbation (Bently et al. [1991]"
Muszynska et al. [1992]).
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FIGURE 38 Overall amplitude versus perturbation frequency and spectrum cascade of the anisotropic rotor torsional response to lateral backward
nonsynchronous perturbation (Bently et al. 1991 ]; Muszynska et al. 1992]). vt torsional natural frequency.

frequency difference components: 09 , o9 2, and
209 2 (Bently et al. [1991]; Muszynska et al. [1992]).
The existence of these components is due to the shaft
anisotropy, and can be used for its identification. The rotor
torsional responses are presented in the form of overall vi-
bration amplitude versus perturbation frequency (Fig. 38).

They exhibited high amplitudes at the excitation frequency
equal to the first torsional natural frequency vt. The lat-
eral/torsional coupling is related to the rotor residual un-
balance. The other peaks of the torsional vibrations occur
when the linear combinations of frequencies o9 and f2 are
equal to the torsional natural frequency vt and the half of



114 A. MUSZYNSKA

it (vt/2). These effects are due to the asymmetry of the
shaft plus radial sideload, and could also be further used
for identification of the shaft anisotropy, such as could be
generated by a propagating transversal crack on the shaft.

z=x+jy
Zr

Greek letters

rotor lateral displacement in stationary coordinates
rotor lateral displacement in rotating coordinates

FINAL REMARKS

The sweep frequency nonsynchronous circular input force
perturbation testing of rotors proved to be very powerful
and efficient, producing a number of results which had
not been known. The most important among them are: 1)
solid/fluid interaction modes of rotors rotating in fluid en-
vironment; 2) identification of the more adequate model
of fluid dynamic forces in lightly loaded bearings and in
seals; and 3) multimode parameter identification of ro-
tor/bearing/seal systems.
The nonsynchronous perturbation testing should soon

be used in the routing testing of rotating machines, at
first, at least, on the prototype stage. The results could
provide invaluable information on fluid interaction ef-
fects on the rotor, in order to assess the stability margins
from fluid whirl, whip, rotating stall, surge, and evaluate
other properties of rotating machinery. Less demanding
synchronous perturbation testing (known as "unbalance
testing"), which is now widely performed on machines,
should be accompanied by appropriate data acquisition in
order to extract information on "observed dynamic stiff-
ness." This invaluable information will greatly assist in
furthering machine malfunction diagnostics by using vi-
bration monitoring.

/, tr modal correction factors
e eccentricity ratio
( damping ratio
r/ fluid dynamic viscosity
x complex dynamic stiffness. fluid circumferential average velocity ratio
v natural frequency (torsional mode)
4 modal function
p transformation matrix; also: angular displacement

coordinate
o9 perturbation frequency
f2 rotative speed
fZST instability onset

Subscripts

b bearing
d disk
m modal
n number of measurement planes and number of

experiments
p measurement axial location, p n; also:

"perturbation"
q displacement in "x" direction (q 1) or "y"

direction (q 2)
r perturbation force axial location r n; also:

"radial"
s perturbation forward (s 1)or backward (s 2);

also: "shaft"; also: "steady state"
tangential; also: "torsional"

/z, v, e, n integers
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