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In order to predict unsteady flow fields one can use the
Reynolds Averaged Navier-Stokes Equations (RANS) with a
statistical turbulence model or Large Eddy Simulation (LES)
in conjunction with a subgrid-scale model. Since the flow field
in rotating machinery, internal combustion engines ezc., is
often strongly three-dimensional and unsteady, the calcula-
tion with LES and RANS are similar in terms of cpu-time
providing the grid resolutions are similar.

The turbulence models used with RANS have been
designed in order to capture all the turbulence effects since
a steady state calculation cannot resolve any fluctuation. If
one wants to perform an unsteady calculation, then a fraction
of the turbulent fluctuations is already resolved by the
numerical scheme, depending on the temporal and spatial
resolution, and therefore the turbulence model must only
model the unresolved part of the turbulence. The standard
turbulence models used today cannot be used for such
simulations, since they model always the whole turbulence
spectrum.

On the other hand, the subgrid-scale models for LES
model only a fraction of the turbulent spectrum, but they fail
to model the turbulence in the limit of high cell Reynolds
numbers (Speziale, 1998). A new adaptive turbulence model
based on the popular two-equation models will be proposed
which can be used for all cell Reynolds numbers in the
unsteady case. It has the property that it reduces to a Direct
Numerical Simulation (DNS) if the temporal and spatial
resolution of the flow field is in the order of the Kolmogorov
micro scale. If one does not resolve fluctuations (steady state)
then the model reduces to a standard two-equation model. In
between these two extremes it automatically adapts itself to
the resolved turbulent fluctuations.
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The flow in a turbomachine is strongly three-dimensional
and unsteady. Nevertheless, the majority of the Navier—
Stokes calculations conducted so far have been done as
steady state computations due to the high computational
effort needed for such a flow field. The inability of this
approach to predict the pressure losses in accordance with
the experimental observations has stimulated research in
unsteady calculations (BRITE-EURAM, 1997). Another
reason for an unsteady calculation is the prediction of the
large scale vortices generated by thick trailing edges of
turbine blades. It has been found that unsteady simulations
predict the flow field in better agreement with experiments
(Chen & Leschziner, 1999; Magagnato, 1999) than steady
state calculations. The turbulence models used where not
modified in order to account for unsteady effects.

BACKGROUND

Turbulent flows are characterized by a wide range of
length- and time-scales for Reynolds numbers of practical
interest. The statistical approach uses the idea of a
decomposition in mean values and fluctuations. Inserting
this decomposition into the Navier—Stokes equations
yields the averaged equations plus the unknown Reynolds
stresses which have to be modeled. For the calculation of
steady state solutions one usually solves the RANS-
equations together with a statistical turbulence model in
order to model the total turbulence fluctuations which have
been filtered out during the averaging process. For a DNS
one needs to resolve all length- and time-scales, this means
performing a time-dependent and three-dimensional calcu-
lation with very high temporal and spatial resolution
(Piomelli, 1997). In between the statistical approach and
the direct approach stands LES which is still three-
dimensional and time-dependent. Here the instantancous
flow field is also decomposed, but now into a resolved and
an unresolved part with an characteristic space and time
filter. LES still requires fairly fine meshes, but with the help



176 F. MAGAGNATO AND M. GABI

of parallel computers it can be applied to more realistic
flow fields of technological interest.

Traditionally LES has been done for fairly complex flow
fields with a relatively high resolution of the turbulent
scales and at relatively low Reynolds numbers. For these
kind of computations, algebraic turbulence models (sub-
grid scale models) (Smagorinsky, 1963; Germano et al.,
1991) suffice for modeling the unresolved turbulent effects
since the large scales, which contain most of the energy, are
numerically resolved, and the small scales are believed to be
more universal in character so that they can be modeled by
a simple isotropic model.

For the prediction of high Reynolds number flows in
complex geometry’s one cannot effort to resolve the flow
field in the same way as in the simulations mentioned
above, since than one had to solve a computational grid on
the order of 10’—10® points with hundreds of thousands
of time steps. This is not feasible in most technological
applications, so one has to reduce the number of points at
least one order of magnitude in order to be computable
with a state-of-the-art supercomputer.

It is clear that with lower resolution the fraction of the
turbulence spectrum which has to be modeled became
larger, and so the contribution of the turbulence model
becomes more important. It is believed by the authors that
for such a coarse resolution a model based on transport
equations for the turbulent kinetic energy and a turbulent
timescale (or dissipation rate of the turbulent Kkinetic
energy) is a better candidate than an algebraic model since
it accounts also for the transport of the turbulence field.

NEW TURBULENCE MODEL

The idea for an adaptive turbulence model was motivated
by the work of Speziale (1998) and Germano (1992). They
suggested developing a combined methodology for the
computation of complex turbulent flows. The filtering
process of a chaotic flow field for the traditional Reynolds
averaging and the implicit filter of the spatial filter in a LES
are in principle different, but it was assumed that the
implicit filtering process for LES becomes, in the limit
of high cell Reynolds numbers, similar to the Reynolds
averaging (Speziale, 1998).

An interesting new approach has been proposed by
Spalart (Spalart et al., 1997). He estimates the computa-
tional costs of a high Reynolds number flow around an
airfoil with a conventional LES. He concluded that such
a calculation would be to expensive, so he proposed a
Detached-Eddy Simulation (DES) which offers RANS in
the boundary layers and LES after massive separation,
within a single formulation. For this he modified the
Spalart/Allmaras one equation model for the eddy
viscosity (Spalart & Allmaras, 1994) by replacing the
length scale in their destruction term by the minimum

between the local distance from the wall and the grid
spacing. This model adapts automatically according to the
spatial resolution.

An other approach will be proposed in this paper. In
contrast to Spalart we base our approach on two-equation
transport models, because we want to include a stochastic
backscatter model based on the unresolved turbulent kinetic
energy. Similar to Spalart we have tried to formulate a
turbulence model which (1) converges asymptotically
towards a statistical model in the limit of high cell Reynolds
numbers, and, (2) in the other limit, approaches a direct
numerical simulation when the length of the cell Reynolds
number is on the order of the Kolmogorov length scale.

In order to achieve this, we propose to split the total
turbulent kinetic energy k and the total dissipation rate of
the turbulent kinetic energy ¢ (or the turbulent timescale )
into a resolved and an unresolved part.

e=¢+¢ 1]
k=K +k 2]

The resolved turbulent kinetic energy must not be
modeled since it is part of the solution, while the unresolved
part must be modeled with a transport equation for k’. In
contrast, the resolved dissipation rate is not part of the
solution and will be modeled by a relation for isotropic high
Reynolds number flows. With this, the mean dissipation
rate of the turbulent kinetic energy is proportional to the
unresolved turbulent kinetic energy k' divided by the filter
length scale L due to the numerical resolution,

k3 /2
La

£= 3]

The unresolved dissipation rate will be calculated by
a transport equation for . The same can be done with
the resolved turbulent time scale 7/. Here the resolved
turbulent time scale becomes

La

\//?

Once we accept this, we are left with the determination of
a suitable filter length scale. In many LES solutions the grid
spacing is used as an implied filter width, although this may
mask numerical errors. We choose also the grid spacing
as an appropriate spatial length scale provided that the
temporal filter is less or equal to the spatial resolution.
Therefore we must choose the maximum filter length scale
resulting from the spatial and the temporal filter width. For
the spatial filter we use the common filter width

Ly=2-3/Ax-Ay- Az 5]

[4]

T =
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where Ax, Ay and Az is the cell size in the different co-
ordinate direction, while for the temporal filter we use

for each cell, with |u| being the velocity in the node and A¢
is the time step. Taking the maximum results in

Ln— max{ Z } 7]

This enables us to introduce this splitting into any
turbulence model that contains a transport equation for &k
and ¢ or 7. We choose a slightly modified nonlinear (cubic)
two-equation model proposed by Craft/Launder/Suga
(1995) but transform it mathematically into an equivalent
k—7-formulation for numerical reasons (Magagnato,
1999). This model gives reasonable results for a wide
range of flow fields including turbomachinery flow. It
reads:
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With the constants (see Table I).

The boundary conditions for this model must also reflect
the combined methodology mentioned above in that they
must reduce to the standard boundary conditions used for
the statistical model and to the specification of fluctuations
in the limit of a direct numerical simulation. This will be
accomplished with the following approximation.

The resolved part of the turbulent kinetic energy is
applied in the simulation as disturbances of the freestream
velocity field with a random white noise while the unre-
solved part is used as the boundary condition of the trans-
port equation of k’. The splitting is done assuming that
the energy spectrum of the turbulent kinetic energy in the
freestream is represented by the Kolmogorov law propor-
tional to k>3, Then the splitting will be done between the
two limits of the wavenumber of the Kolmogorov micro-
scale s, = /L, and the wavenumber of the characteristic-
scale k7 = /L7, built with the usual characteristic turbulent
length scale used for a conventional two-equation model.
The split point is given by the wavenumber of the grid scale
ka=m/La, were La is given above.

Now the splitting will be done by integrating the
spectrum of the turbulent kinetic energy between k; and
k, with a linear weighting of the split point ka (see
Figure 1). This results in:

—2/3 _ ,.—2/3
Ky KA

k' =koo—m—~
0 -2/3 -2/3
K,n/fliL/

]

where the wavenumber of the Kolmogorov micro-scale is
approximated by:

—3/4
pooLT koc /
oy = pip 5TV ) [10]
Moo
TABLE I Constants of the adaptive model
C, C C, Cs Cy Cs Ce (&
0.09 —0.1 0.1 026  —0.081 0 0.0405 —0.0405
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FIGURE 1 Spectrum of the turbulent kinetic energy.

The boundary condition for 7 will be given by
La
/

v

With this boundary condition the limits k'=k., for
ka=#kr and k' =0 for k5 =k, are recovered.

It is well known (Schumann, 1995) that the energy
exchange between large scale motion and small scale motion
is not unidirectional. Energy is exchanged in both directions,
but in the mean it cascades towards the small scale motion
until it is dissipated by the viscous process. The exchange
process from the large scales to the small scales is called
forward scatter while the opposite direction is called back-
scatter. The forward scatter is dissipative in nature and is
usually modeled with an eddy viscosity model, for example
Smagorinsky-Lilley (Lilley, 1967) or the above mentioned
model. In contrast, the backscatter is stochastic in nature.
There were only a few attempts to use a backscatter model
in the past (Leith, 1990), (Mason and Thomson, 1992),
(Schumann, 1995), but it appears to be very important to
include such a model into a LES. Schumann proposed a
backscatter model which gives good results for decaying
isotropic turbulence. We use his model as a basis to derive a
backscatter model based on the unresolved turbulent kinetic
energy k' and the unresolved turbulent timescale 7’ from our
new model which should have the correct asymptotical
behavior. This means in the limit of a DNS its velocity
disturbances should disappear and in the limit of a RANS
they should become constant. In between it should have
a monotonic behavior with a maximum in the inertial
subrange. This backscatter model reads:

[11]

_ 2
—(pul)p = —pviv; + 3 Pk 6. [12]

The random velocities v/ are then calculated at each time
step using a Langevin-type equation,

o = oy (1-2)

1/2
+ E 2 _ﬂ %k’ 7"
7—/ 7—/ 3 1

were k' is the unresolved turbulent kinetic energy and Z;
is an independent random number in the range (—1,1).
With the initialization at the first time step the random
disturbance becomes:

[13]

1/2
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nn 72 ’
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Here At is again the time step of the numerical scheme
and 7' as defined in Eq. [11]. One can immediately
recognize that this model gives the correct asymptotical
results. In the limit of a DNS k'=0 and v; = 0. On the
other side if L, =00 then 7 =00 and (v))" = (v})° for all
time steps and the stochastic stresses of the backscatter
model are zero.

The complete model for the Reynolds stresses or
subgrid-scale stresses now are applied in the following
way. The Reynolds (subgrid-scale) stresses for a k—7
model are calculated according to:

—— 2 2
—puﬁuj’- = pC#k,T/S,'j - g,ok’é,;, - pV;V]/- + gﬂk’éy [16}
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For a k—e model:

2

- 2 2
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NUMERICAL METHOD

The numerical method used is a block structured finite
volume cell centered scheme (Magagnato, 1998). A 4th order
Runge—Kutta scheme is used for integration in time, while
in space a 4th order cell centered scheme has been used. A
number of different turbulence models are available ranging
from simple algebraic models to non-linear two equation
models. The compressible Navier —Stokes equations can be
solved as a RANS, LES or a DNS. The additional com-
putational time for the new model is negligible (1-2%)
compared to a conventional two-equation turbulence model
if one calculates the filter length L, once at the initialization
and store it into an extra permanent array. The code is very
carefully parallelized with message passing interface (mpi) in
order to speed up the computation efficiently. Calculations
have been made mostly on a IBM SP2 using 64 processors
in parallel (efficiency 93%). For more details please refer
to Magagnato, 1998.

RESULTS

Two flow fields have been investigated in order to study the
new turbulence model and compared with the standard
turbulence models. The first test case is the flow around a
circular cylinder. Measurements have been conducted by
Cantwell and Coles (1983).

The Reynolds number of this flow field is Re = 140,000
based on the diameter of the cylinder and the freestream
velocity of u=21.2m/s. The turbulence level is Tu=0.6%.
Since the characteristic turbulence length scale in the
freestream is not known, the common practice is to choose
the turbulence length scale such that the resulting eddy
viscosity in the freestream is on the order of the laminar
viscosity. The turbulence level then is used for the
specification of the total turbulent kinetic energy and the
turbulent length scale in the freestream for the statistical
models. For the LES with the adaptive model the above
mentioned boundary conditions have been used.

An O—H-type grid has been generated with a total of
approximately 18,000 points in the symmetry plane and 97
points in the spanwise direction (see Figure 2), giving a
total of approximately 1,700,000 points. In the three
dimensional computation the cylinder has been extended
three diameters in the spanwise direction in order to resolve
the crossflow correlations sufficiently.

\>V\g agg;gv{
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FIGURE 2 Computational grid of the circular cylinder.

Two unsteady and two-dimensional calculations have
been made with conventional two-equation models. In
order to demonstrate mesh independents a sequence of
coarser grids are solved. The coarse grid consisting of
about 1000 points showed no vortex shedding due to the
numerical damping of the fluctuations. In the middle grid
(about 4500 points) the flow field started to shed vortices,
also they were numerically damped after about four
diameters downstream of the cylinder. The mean pressure
distribution was almost equal to that obtained in the finest
grid indicating a mesh converged solution.

The comparison of the measured mean pressure
distribution with the results obtained with the linear model
of Launder/Sharma as well as the non-linear model of
Craft/Launder/Suga shows poor agreement (see Figure 3).
The reason is that the strongly three-dimensional vortices
in the wake of the cylinder are not resolved and hence the
strong non-linear vortex interaction is suppressed.

The LES with the adaptive model predicts a three-
dimensional flow field. In Figure 4 the three-dimensionality
of the flow field is visualized by showing the crossflow
components in the wake (the blue isosurface corresponds
to w=30m/s while the red isosurface to w=30m/s). The
mean pressure distribution predicted by the adaptive model
is compared with the observations of Cantwell/Coles in
Figure 5. The agreement with the measurements is greatly
improved.

Similar to the two dimensional case the flow field in
the coarse grid (about 28,000 points) showed no vortex
shedding and the maximum value of the ratio between the
eddy viscosity and the molecular viscosity was approxi-
mately v,= 130. In the middle grid (about 210,000 points)
the vortex generation process starts to develop but the flow
field remained essentially two dimensional. The maximum
value of the eddy viscosity ratio was in the order of v, = 50.
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FIGURE 3 Mean pressure distribution on the circular cylinder calculated with - - - - Speziale et al., model and —— Craft/Launder/Suga model [J [J [J

experiment.

FIGURE 4 Crossflow velocity isosurface in the wake of the circular cylinder calculated with the adaptive model (See Colour Plate at back of issue.).

On the finest grid the maximum eddy viscosity ratio
dropped below v, =20. The excessive damping of the flow
instabilities was reduced and a three dimensional flow field
established.

The new adaptive model has also been applied to the
unsteady flow field past the VKI-turbine blade (see
Figure 6) with a thick trailing edge and compared with
standard two-equation models. Again the flow was
calculated to a linear, a nonlinear and the adaptive model.
Measurements have been conducted by Ubaldi et al.
(1996). The Reynolds number Rey=1.6- 10° is based on

the chord length s=0.3m and the isentropic exit Mach
number Ma,;, =0.23. The measured turbulence level was
Tu=3%. No turbulence length scale has been measured.
The decay of the turbulent kinetic energy along the turbine
blade has been measured. In order to match these values,
a turbulence length scale of L,=0.018m was applied
at the upstream boundary. The grid has been generated
for this test case with about 72,000 points for a two
dimensional calculation. Only one blade has been calcu-
lated using periodic boundary conditions to simulate
the other blades. The calculations have been done using
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FIGURE 6 Mach number distribution for the VKI turbine blade with vortex shedding at the trailing edge (See Colour Plate at back of issue.).

a 2nd order as well as a 4th order cell centered
scheme.

Again a mesh convergence study has been made with a
total of four different grids (1,100, 4,500, 18,000 and 72,000
points). Due to the greater mesh resolution the vortex
shedding process started on the second coarsest grid (4,500
points) but with a very small extend in the near wake of the
trailing edge. The solution on the middle grid showed again
almost the same results as with the fine grid. The com-
parison of the mean pressure distribution between the
middle grid and the fine grid was practically undistin-
guishing from each other.

A vortex shedding frequency of f=1650Hz has been
calculated with the new model using the 4th order scheme
(see Figure 7). It is very close to the experimental value
(Ubaldi et al., 1996) of f=1700 Hz while the same model
gives f= 1560 Hz using the 2nd order scheme. The non-
linear two-equation model proposed from Craft/Launder/
Suga on the other hand predicts the vortex shedding
frequency of about f=1180 Hz with the 4th order scheme
while it gives f=1080 Hz with the 2nd order scheme.
The linear two-equation model of Launder/Sharma fails to
predict the vortex shedding completely with both numer-
ical schemes due to the very high eddy viscosity predicted
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FIGURE 8 Mean velocity profile calculated with the linear two-equation model at 30% chord on the suction side of the turbine blade.
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FIGURE 9 Mean velocity profile calculated with the adaptive
two-equation model at 30% chord on the suction side of the turbine
blade.

with these model suppressing completely the vortex
shedding mechanism.

The mean pressure distribution is not very sensitive in
this case. The results obtained with the different turbulence
models were very close to each other and in good agree-
ment with the experiment. The velocity profiles calculated
with the new model are in good agreement with the
experiment (see Figure 8) while the linear two-equation
models disagree with the experimental profiles (see
Figure 9) because the eddy viscosity in the boundary layer
and hence the turbulent stresses are too high.

CONCLUSION

A new procedure has been proposed, which leads to an
adaptive turbulence model for unsteady flow fields. It gives
the correct asymptotical limit of a direct numerical
simulation, if all turbulent fluctuations are resolved and
reduce to a conventional turbulence model, if no fluctua-
tions at all are resolved. This procedure can be applied
to any two equation turbulence model which solves a
transport equation for the turbulent kinetic energy k and

either the dissipation rate of the turbulent kinetic energy
¢ the turbulent time scale 7 or the inverse time scale w.
A stochastic backscatter model is also part of the new
procedure with the same asymptotical behavior as men-
tioned above.

The procedure has been used to derive a non-linear k —7-
model which predicts the flow field around a circular
cylinder and the flow around a turbine blade in good
agreement with the experiments. The additional computa-
tional overhead for this new model is very low.
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