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principal component analysis approach to reduce the number of defining geometric parameters, semianalytic eigensensitivity
analysis, and first-order Taylor series approximation to allow rapid as-measured airfoil response analysis. A second developed
model extends this approach and quantifies both random and bias errors between the reduced and full models. Adjusting for
the bias significantly improves reduced-order model accuracy. The error model is developed from a regression analysis of the
relationship between airfoil geometry parameters and reduced-order model error, leading to physics-based error quantification.
Both models are demonstrated on an advanced fan airfoil’s frequency, modal force, and forced response.
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1. INTRODUCTION

Effective airfoil dynamic response analysis ensures rotor reli-
ability and requires prediction of resonance avoidance mar-
gin, forced response, and mistuning. Standard practices pre-
dict dynamic response using finite element models (FEMs)
of design intent geometries. While sufficient for some
cases, this standard approach does not explicitly consider
airfoil structural response variations caused by random
manufacturing deviations from design intent geometries.
Because hundreds or thousands of these simulations would
be required to assess effects from random variations, a new
more efficient airfoil modal and a forced response prediction
process are required.

Existing literature contains a significant body of work
developing efficient mistuned rotor forced response pre-
diction using reduced-order models (ROMs) [1–6]. These
efforts have shown strong amplification of rotor forced
response caused by small perturbations in blade-to-blade
frequency. While effective, these prior models are limited
in two significant ways. First, they assume that airfoil fre-
quencies vary, but airfoil mode shapes remain nominal. This
assumption enables computational efficiencies but geometric

deviations clearly alter blade-to-blade mode shapes, thus
altering each blade’s modal force and impacting mistuned
response. Their second limitation is the required experi-
mentally obtained blade-to-blade frequency variation input.
Such empirical measures are subject to error, particularly
for integrally bladed rotors (IBRs) and the known challenge
to isolate their individual airfoil frequencies from the rotor
system response. These experimental results also are not
connected to airfoil geometric parameters that can be
controlled in the design process for acceptable frequency
scatter manufacturing. Because of these limitations, physics-
based ROMs of airfoil modal and forced response that
explicitly account for geometric deviations are needed as they
provide accurate input to existing mistuning models and
include frequency scatter in design. Further, since existing
mistuning prediction methods do not consider mode shape
variation, a ROM is needed to show the significance of
mode shape variation on forced response and leads to future
improved mistuning analysis tools.

ROM development begins with an approach to create a
reduced set of geometry parameters defining manufacturing
variation. Previous efforts in reduced-order airfoil geometry
modeling include Garzon and Darmofal’s use of principal
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component analysis (PCA) [7]. The PCA approach is a com-
mon statistical method that creates a reduced basis space
through an eigenanalysis of the covariance between param-
eter deviations [8]. The research’s results demonstrate the
effectiveness of the technique for turbomachinery applica-
tions. An alternate approach was demonstrated by Capiez-
Lernout et al. in their development of a technique charac-
terizing manufacturing tolerances for mistuned bladed disk
with a dispersion parameter [9]. This ad-hoc estimation
of the geometry effects on response does not directly
depend on measured geometry but does have computational
advantages. Because the PCA approach is directly related to
measured deviations, it is applied in this ROM development.

With a reduced geometry model determined, develop-
ment of a reduced-order response method remains. Taylor
series approximations are an attractive method assuming
that the required sensitivities can be efficiently calculated.
Methods to rapidly predict sensitivities of modal response,
eigensensitivities, have been developed by Fox and Kapoor
for unique eigenproblems and Friswell for cyclic symmetry
problems [10, 11]. These equations are semianalytic and
allow sensitivity calculation from a single FEM solution with
efficiency improvements described later. Such approaches
have been widely used in optimization applications, but not
for airfoil modal response approximation over the range of
manufacturing deviations considered in this effort.

With these existing tools, the first of two airfoil response
ROMs, the standard ROM, is developed. First, PCA is
used to create a reduced basis set of the manufacturing
deviations. Eigensensitivities are then efficiently calculated
semianalytically with respect to this new basis, and these
are used in a first-order Taylor series modal response
approximation. These approximate modal quantities are
then used in a modal domain forced response analysis. When
combined, the integrated approaches lead to an exceptionally
efficient and accurate model.

Though accurate, as with all approximations, there is
error. Model errors have been widely recognized as critical
to the design and analysis process, and the need for their
accounting has been outlined in several professional editorial
policy papers [12, 13]. In this research, a second ROM
is developed, an error-quantified ROM, that captures the
error developed in the model reduction process. This a
posterior error model requires a linear regression model of
the errors obtained between a limited number of full model
and standard ROM comparisons. Results from the model
are able to reduce the standard ROM error and quantify the
approximate model uncertainty.

It is noted that these models do not account for the
impact of geometric deviations on unsteady aerodynamic
loading. While this may be an important factor in the
prediction of forced response, the development of a reduced-
order model for aerodynamics is an ongoing challenge not
considered in this research.

The following sections develop the two ROMs. How
measured airfoil deviations are reduced to a practical
number of parameters with PCA is defined in Section 2.
Section 3 develops the standard reduced-order modal and
forced response models, and Section 4 introduces the error-

quantified ROM. These sections are followed by results
from a real-world component that show the significance of
geometric deviations from design intent and demonstrate
the accuracy of both developed models. The application
of these new tools provides improved input to existing
mistuning prediction models that show the effect of geomet-
rically induced mode shape variation on forced response and
create a model that can be used for future mistuning tool
developments.

2. REDUCED-ORDER AIRFOIL GEOMETRY MODEL

In the past, deviations from design intent have been checked
with shaped tools and manual gages. Such devices are pass-
fail tools providing no quantitative response information
back to the engineer. Because of the rotor response sensi-
tivity to geometric variations, new measurement techniques
are desired. One approach uses coordinate measurement
machines (CMMs) that collect data through a geometry
traversing probe that obtains spatial data points at regular
intervals. Each measured airfoil may provide thousands of
measured data points. Assessing the sensitivity of each of
these locations to perturbation would require significant
computational resources, hence the need for a reduced-
order geometry model retaining a limited set of parameters
quantifying geometry deviations. PCA is attractive given its
ease of implementation and the creation of minimum, a set
of retained basis vectors to represent correlated geometry
variations.

PCA is implemented by storing n measured three-
dimensional coordinate data points in vector x ∈ R3n. A set
of p measured airfoils results in matrix, X ∈ R3n,p. Since
we are interested in variations from the average blade, the
mean value of each row is subtracted from each member of
the row to give a matrix of measured deviations, ΔX, where
each element is

Δxi, j = xi, j − xi, i = 1, 2, . . . , 3n; j = 1, 2, . . . , p, (1)

where xi is the average of the ith row. It is important to
note that the average, xi, is not necessarily the original design
intent. Also, subtracting the row mean from each element
makes the expected value of each row zero. The first-order
covariance matrix of ΔX defines the statistical relationship
between a measurement point deviation and all other points,
and its eigensolution leads to eigenvectors that can be used to
form a new subspace optimally representing variation. This
is written in standard eigenproblem form:

Cov(ΔX)Ψ = ΨD, (2)

where D and Ψ are the eigenvalue and eigenvector matrices,
respectively. The eigenvectors are the principal components
modes of the measured data, and the eigenvalues are
the principal component variances that indicate the data
variance each principal component captures. Based on these
eigenvalues, graphical and statistical methods can be used
to retain a limited set of basis vectors. Also of importance,
the principal components are orthogonal, and therefore,
uncorrelated statistically. The PCA transforms a large set
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of correlated parameters into a small set of uncorrelated
parameters.

Transformation of the measured deviations, ΔX, to the
principal component basis requires the linear operation:

Z = ΨT[ΔX], (3)

where the eigenfunction matrix is multiplied by the deviation
matrix to give the z-score matrix, Z ∈ Rm,p with m the num-
ber of retained principal component modes. These scores
are effectively regression coefficients for the new principal
component basis and define the participation of each PCA
mode in each measured geometry. The above algorithms,
(1)–(3), are the covariance method of PCA, and the columns
of Z represent the Karhunen-Loeve transformation.

How these z-scores and principal component modes are
integrated into a reduced-order forced response model is
described in the following section.

3. STANDARD BLADE-ALONE FORCED RESPONSE
REDUCED-ORDER MODEL

The approach used in this ROM development is Taylor
series approximation using first-order sensitivities. Sensi-
tivity calculations can be computationally expensive when
calculated numerically via finite difference methods that
require an FEM evaluations for each design parameter. This
work proposes to use semianalytic methods that replace the
costly calculations of the process, that is, decomposing the
stiffness and mass matrix and solving the matrix eigenvalue
problem.

Combining the semianalytic sensitivity methods defined
in [14] with the reduced-order geometry model results from
Section 2 leads to the following principal component mode
response sensitivities:

∂λi
∂ψj

= φTi

(
∂K
∂ψj

− λi ∂M
∂ψj

)
φi,

∂φi
∂ψj

=
r∑

g=1

cigφg ,

(4)

where i identifies the vibration mode number, j is the
principal component mode number, and r is the total
number of retained vibration modes. The constant terms are
calculated:

cig =
φTg
(
∂K/∂ψj − λg

(
∂M/∂ψj

))
φi(

λg − λi
) ,

cii = −1
2
φTi

∂M
∂ψj

φi,

(5)

where λi and φi are eigenvalue and mass-normalized eigen-
vector, K and M are mass and stiffness matrices, and ψj are
retained principal component modes. The stiffness and mass
matrix derivatives are numerically computed through nom-
inal and perturbed finite element models. Forced response
sensitivity can also be calculated directly but is not done so
here because of the need to explicitly retain frequency and

mode shape sensitivities for use as input to mistuning and
modal force predictions.

Prediction of modal stress sensitivity requires the deriva-
tive of the strain-displacement equation. Differentiating this
equation with respect to the jth principal component mode
gives

∂σi
∂ψj

= DB
∂φi
∂ψj

+ D
∂B
∂ψj

φi, (6)

where D is the elasticity matrix, B is the strain-displacement
matrix, and σi is the stress vector of the ith vibration mode.
As with the mass and stiffness matrices, the sensitivity of the
strain-displacement matrix is calculated numerically.

Once the sensitivities have been computed, the standard
ROM eigenvalues and eigenvectors are computed with a first-
order Taylor series expansion. The approximations are

λ̃i = λ0
i +

m∑
j=1

∂λi
∂ψj

dψj ,

φ̃i = φ0
i +

m∑
j=1

∂φi
∂ψj

dψj ,

(7)

where λ0
i and φ0

i are the average eigenvalue and eigenvector
results and the tilde symbol annotates an approximation. The
increment dψj is the jth z-score value for a given measured
airfoil. A first-order approximation was chosen over higher-
order methods because of its simplicity and its accurate
performance in the demonstration problem. Further work
exploring the use of higher-order methods does have merit
of should a situation be found where the current approach
has unacceptable accuracy.

The forced response ROM is based on modal domain
transformation of the equation of motion using the approx-
imate values for (7) while assuming harmonic forcing and
motion: (

− ω2
f + i2λ̃iω f ζi + λ̃2

i

)
α̃i = φ̃Ti f , (8)

where ωf is the forcing frequency, ζi is the modal damping,

φ̃Ti f is the approximate modal force, and α̃i is the approxi-
mate modal coordinates:

α̃i =
φ̃Ti f(

λ̃2
i − ω2

f

)
+ i
(
2λ̃iω f ζi

) , (9)

which gives the participation of the ith approximate mode.
The approximate displacement vector, ũ, is computed in the
approximate modal domain:

ũ = Φ̃α̃, (10)

where the algebra represents modal summation.
While the ROM presented in this section does reduce

the costly modal analysis procedures from expensive matrix
computations to simple arithmetic, there is an error intro-
duced in the approximation. The next section describes
how to improve this model using the developed error-
quantification technique.
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4. ERROR QUANTIFIED REDUCED-ORDER MODEL

Models in general have an unquantified error between their
result and the true value. Accounting for this error and
providing an error bound on the result ensure proper model
application. This section develops an approach to quantify
the error between the eigensensitivity-based approximate
models developed in Section 3 and full FEM solutions. This
quantification includes analysis for reducible errors related
consistently to design parameter variations, that is, bias and
random errors that are irreducible without modifying the
model form. This error quantification approach is used to
reduce error instead of pursuing higher-order approximation
methods to avoid the complexity and to develop the error
quantifying approach that is applicable to even these more
advanced approximations.

The developed error model is an a posterior model that
requires comparison of a limited number, k, of full solutions
to the standard ROM. These models are referred to as train-
ing models that provide the error analysis data. The error is
quantified as the discrepancy vector between standard ROM
and full model results:

δk = f
(

zk
)− f̃

(
zk
)
, k = 1, 2, . . . , p, (11)

where the functions represent the simulation of a modal
response at the kth vector of z-scores defining an airfoil,
and the tilde represents the standard ROM approximation.
The analysis of the relationship between the vector δ and
the components of zk determines the existence of a physical
relationship between principal component mode magnitude
and discrepancy. A discrepancy model as a function of z-
scores is constructed from the regression analysis:

δ = Fβ + ε, (12)

where F is a matrix of defined regression functions, β is a
vector of unknown regression coefficients, and ε is a norm-
ally distributed zero mean error term. In the error-quantified
ROM, the regression functions are components of the Z
matrix that defines the airfoil geometries. As an example, the
matrix form for a regression model that includes a constant
and all linear terms is

F =

⎡
⎢⎢⎢⎢⎢⎣

1 Z1,1 Z1,2 · · · Z1,p

1 Z2,1 Z2,2

...
. . .

1 Zm,p

⎤
⎥⎥⎥⎥⎥⎦

, (13)

where the first column is the regression coefficient for the
constant model term b0. Should the discrepancy data show
nonlinear characteristics, additional nonlinear regression
terms can be added. The regression coefficients are deter-
mined so that the error between the regression model and
the data is minimized through solution of the linear least-
squares problem:

(
FTF

)−1
FTδ =

⎡
⎢⎢⎢⎢⎢⎣

b0

b1

...

bm

⎤
⎥⎥⎥⎥⎥⎦

, (14)

where b values are the most likely estimates of the regression
coefficient vector β. The error term, ε, should be uncor-
related, normally distributed with zero mean and constant
variance for statistical modeling assumptions to be met
that allow confidence interval prediction. The linear model
developed from (12) is added to the approximate model
developed in Section 3 to develop the error-quantified ROM
for the pth airfoil:

λ̃i = λ0
i +

n∑
j=1

∂λi
∂ψj

dψj +
(

z∗p
)T
β + εp,

φ̃i = φ0
i +

n∑
j=1

∂φi
∂ψj

dψj +
(

z∗p
)T
β + εp,

(15)

where z∗p is the vector of z-scores for the pth airfoil with
the addition of a leading value of one to account for the
constant b0 term. Because the error terms are modeling
error as the difference between full FEM and standard ROM,
the addition of these terms reduces the error. Predictor
variables, members of β, are only included in the model if
they show statistical significance to the error. An advantage
of this process is that the PCA produces an orthogonal
set of predictor variables which simplifies determination of
the parameter significance. These error-quantified modal
quantities are then used in an error-quantified forced
response solution using the modal domain approach from
the previous section.

5. NUMERICAL RESULTS

The sensitivity of blade-alone modal and forced response to
geometric deviations from design intent and the effectiveness
of both the standard ROM and error-quantified ROM
is shown on an advanced sixteen-bladed low-aspect ratio
IBR. This IBR, the advanced damping low-aspect ratio fan
(ADLARF), has been rigorously studied under the GUIde
consortium, a joint government, university, and industrial
program to fund research in turbomachinery forced response
[15–17]. Because airfoil geometry measurements are not
available for this rotor, measured deviations from a related
industrial IBR fan stage are used. Full FEMs of the as-
measured models of the sixteen airfoils are used to assess
sensitivity to variations from design intent, create the error
model training data, and quantify the accuracy of the
two developed ROMs. While these ROMs do not directly
provide mistuning results, they provide the required data
for previously referenced mistuning models that account for
structural coupling.

Modal calculations were made with a blade-alone finite
element fan blade model. The blade approximately spans
12 inches with a 9-inch chord length. The model contains
linear hexahedral elements with an element edge length
on 0.25 inches, resulting in 7722 degrees-of-freedom, uses
common Ti 6Al-4V material properties, and all degrees
of freedom are fixed at the blade root. This is a high
quality, but not fully converged model, that was used to
reduce computational requirements during the development
process. A more rigorous converged mesh analysis was



J. M. Brown and R. V. Grandhi 5

Mode 15

(a)

Mode 16

(b)

Figure 1: Mode fifteen and mode sixteen.

conducted to ensure that the unconverged model does not
impact any of the research conclusions. The converged
model had nearly 50 000 degrees-of-freedom, and frequency
variation results for the as-measured models, for the twen-
tieth and most complex mode, were within a maximum of
0.02 percent between the investigated and converged models.
This demonstrated that the geometric deviations had nearly
the same percentage effect on response variation regardless
of mesh density.

Results are obtained from the first twenty modes, cover-
ing responses from first flex at 360 Hz to approximately
7000 Hz. Figure 1 shows the mode shapes for the fifteenth
and sixteenth modes, which are discussed in greater detail in
the proceeding sections. The models were created parametri-
cally with the coordinate measurement machine data points
used as the parameters. With this model, airfoil geometry
variations were automatically generated through a script file,
and mesh topology remained consistent with each model.
Post processing was also conducted through scripting to
ensure error-free result tabulation.

5.1. Reduced-order geometry model results

An available set of compressor airfoil measured geometry
deviations and the ADLARF nominal geometry provided
representative as-measured geometry. Figure 2 shows one
measured geometry deviation profile representative of the
remaining airfoils, both as a blade surface contour plot
and a three-dimensional surface plot. Correlation between
surface deviation across the blade is evident and shows that
a reduced-order geometry model should account for spatial
correlation. The measurement also shows negative deviations
near the tip and positive deviations near the base. Such a
pattern could be developed from variations in the vertical
alignment of the part during manufacture. The probability
distribution of the set of all measured deviations which is
non-Gaussian has a mean value of nearly zero, a standard
deviation of 0.003 inches, a minimum of −0.015 inches, and
maximum of 0.011 inches.

PCA of the sixteen measured blades generates fifteen
principal components, Ψ ∈ R3n,15. Figure 3 shows the perc-
entage total variance of each principal component mode,
and it is shown that the first fifteen modes capture all

measured deviations. As expected, the modes are ordered
by decreasing variance modeling. Because fifteen features
fully describe the blade geometry deviations, there is a
significant computational cost reduction associated with
the Taylor series approximations. If PCA had not reduced
the geometry deviation degrees-of-freedom to fifteen, one
sensitivity calculation would be needed for each FEM surface
node degree-of freedom, requiring nearly 2700 simulations.

5.2. Standard and error-quantified reduced-order
model results

The ROMs developed in Sections 2 and 3 are demonstrated
on the as-measured rotor. Each subsection first includes
results showing the full FEM predicted response variations
of the sixteen as-measured airfoils. These results justify the
need to account for geometrically induced variations. The
subsections then continue to show the ROM’s accuracy in
predicting blade-to-blade variations for a selected critical
mode that provides the training data used to determine the
model bias and random error and the two ROM’s maximum
errors over the first twenty modes.

5.2.1. Frequency results

The IBR frequency variation predicted from the sixteen as-
measured airfoils for the first twenty modes, normalized
by the average frequency, is shown in the Figure 4 box-
and-whisker plot. A box-and-whisker plot displays the four
quartiles of data for each data set, displaying the median as
the horizontal dash bisecting the rectangular box into the
first upper- and lower-data quartiles. The dashed vertical
lines attached to these boxes show the upper- and lower-
second quartiles. Addition symbols are for outlier data.
Results show the largest frequency variation interval covering
greater than ±2% of the average value for sixteenth mode
with the mean range of variation for all modes nearly ±1%.
It is seen that the normalized frequency deviation does not
appear to significantly increase with the increasing mode
number because of the normalization. The absolute variation
in frequency does increase with mode number. Further
analysis of the coefficient of variation, the data mean divided
by its standard deviation, does show an increasing trend in
normalized variation.

While these are small deviations, they are in a range
shown to lead to maximum mistuning amplifications. The
close proximity of blade-to-blade frequencies causes multiple
mode excitations at a single forcing frequency and sum-
mation of modal energy. Mistuning response will be highly
sensitive to the exact pattern, so accurate prediction of each
blade frequency is required. The predicted frequency varia-
tions can provide the necessary input to existing mistuned
forced response ROMs and avoids experimental frequency
measurement. Explicit geometric modeling also physically
links design parameters to the frequency variations that lead
to mistuned amplification. Understanding gained through
these ROMs can lead to design changes or manufacturing
process controls that will lead to improved IBR reliability.
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Figure 2: Airfoil surface deviation (Blade 1).
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Figure 5 plots the comparison between the predicted bla-
de-to-blade IBR frequencies from the full finite element
model, standard ROM, and the error-quantified ROM.
Results for the sixteenth mode are shown because it had
the largest frequency scatter in the first twenty modes, as
seen in Figure 4, and also have the largest error between

full model and standard ROM predictions as shown in
Figure 7. Even though Figure 5 shows the ROMs at their
worst, it is seen that the standard ROM does an admirable job
predicting blade-to-blade frequency deviations and captures
the blade-to-blade trend in frequency deviation. Because
mistuning is highly sensitive to frequency magnitudes, a
reduced error model is still desirable. Results show that
the error-quantified ROM greatly improved accuracy. The
airfoils with the greatest error from the standard ROM,
three, four, eight, ten, fifteen, and sixteen show a marked
improvement with the error-quantified ROM.

The input for the bias and random error terms of the
error-quantified ROM was constructed from the a posterior
discrepancy analysis between full FEM and standard ROM.
Figure 6 shows the errors for the sixteenth mode plotted
against the z-scores of the retained principal component
modes. There is a clear linear correlation between the
residual value and the z-score magnitude of the twelfth
principal component mode, while all other modes appear
randomly distributed. This linear relationship was seen
for all twenty modes. Because there is a predictable trend
between the residual and twelfth principal component mode
magnitude, the error quantified reduced-order model from
(15) will account for model bias and improve accuracy.
Each mode has its own regression coefficients based on that
mode’s data. The remaining error not accounted for as bias
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can be included in the random error parameter of the error-
quantified ROM.

It is noted that standard regression modeling practice
avoids validating the model with the data used to create
the regression model. This practice was not followed for
the results shown. This is acceptable because the strong
linear relationship in the data shows that the result is more
than just a random phenomenon. Nonetheless, a set of 50
randomly generated airfoil geometries based on the statistics
from the PCA analysis was analyzed with the full FEM and
ROMs. These results did not change any of the conclusions
based on the sixteen as-measured airfoils and show that the
error-quantified model is applicable to the larger domain of
random airfoils.

Figure 7 shows the maximum percent error between
the two ROMs and the full FEM for all twenty vibration
modes. This maximum error is obtained for each mode
by computing the absolute difference between each ROM

and full model, dividing by the full model value for each
of the sixteen airfoils and plotting only the maximum of
these sixteen error results. This is again a worst case looks
at the models, and the average blade error of the ROMs
is significantly lower as can be seen in Figure 5. Figure 7
shows that while the standard ROM had a maximum percent
error below 0.5% for the first 10 modes and below 1% for
all but one of the remaining modes, the error-quantified
ROM predicted much improved results nearly identical to
the full model. Error percentages from the error-quantified
ROM for the first twenty modes are below 0.1% error. The
figure shows that the error-quantified ROM reduced the
maximum percent error for all the first twenty modes by
well over 75%. While the standard ROMs accuracy may
be considered sufficient, the high sensitivity of mistuned
response to variations on the order of its error indicates that
the error-quantified model may be more appropriate.

5.2.2. Modal force results

While frequency deviation has been a subject of study
because of its relevance to frequency-based mistuning
ROMs, mode shape deviation has received limited investi-
gation. In this section, the mode shape variations are not
shown directly, instead the useful heuristic of modal force
deviations is shown because of its role in forced response
prediction. Modal force, the inner product of the mode shape
and loading vectors, is the quantity on the right-hand side of
the modal equation of motion, and its variation has a 1 : 1
correspondence to forced displacement variation. Nominal
unsteady loading predictions for a defined harmonic from a
related IBR were used in the modal force calculation.

A modal force variation box-and-whisker plot for the
as-measured IBR is shown in Figure 8. It is evident that
these deviations are much larger than the frequency scatter.
The first significant variation in modal force is shown at
the fifth mode with an upper bound 29% larger than
the average value. Considering the set of the first twenty
modes, several modes are observed with upper bounds
near 20%, with mode fifteen notable for a 55% upper
bound. These significant variations in modal force directly
impact variation in airfoil forced response, and these are
not explicitly accounted for in current design or mistuning
analysis practices. These variations are in addition to those
blade-to-blade stress variations caused by mistuning, that
should be accounted for to reliably predict forced response
variations, and demonstrate the need for a eigenvector
response ROM that accounts for geometry variation.

Figure 9 plots the blade-to-blade comparison between
the full FEM, the standard, and error-quantified ROMs for
the fifteenth mode modal force prediction. The fifteenth
mode was selected because the as-measured airfoil results
for this mode had the largest modal force variation, shown
in Figure 8, and also has the largest error between standard
ROM and full models as seen in Figure 11. Again, this
shows the two ROMs at their worst. As seen in Figure 9,
the standard ROM accurately captures the trend of modal
force variation. The error-quantified ROM improves the
approximation for nearly all airfoils, in particular the third,
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Figure 6: Correlation of PC mode parameters and frequency residual (Mode 16).

fourth, eighth, tenth, fifteenth, and sixteenth airfoil. These
airfoils are the same that were shown to have the largest
frequency error, also had the largest modal force error, and
were also effectively accounted for by the error-quantified
ROM.

The discrepancy calculated between the standard ROM
and full FEM modal force solutions of the as-measured IBR
is plotted with respect to the airfoil z-scores in Figure 10.
Again as with the frequency results, principal component
mode twelve shows a linear relationship between the error
and airfoil z-score value. When compared to the frequency
residuals of Figure 6, the linear relationship is still obvious
but with more random variation.

Figure 11 plots the maximum error between the full FEM
and ROMs for the first twenty modes. This maximum error is
obtained for each mode by computing the absolute difference
between standard ROM and full model, dividing by the full
model value for each of the sixteen airfoils and plotting only
the maximum of the sixteen errors. It is initially observed
that the errors are significantly larger than for frequency,
but this is not unexpected as the variations in modal force

are significantly larger. For the first twenty modes, the
standard ROM performs adequately with more than half the
modes below 5% and most remaining modes below errors
below 10% with the exception of the thirteenth, fifteenth,
and nineteenth modes. The error-quantified ROM reduces
the error for these modes in addition to significant error
reduction for the fifth mode. The error-quantified ROM
reduces the error for these modes by over 50%. In general, it
is seen that the error-quantified model is providing a reduced
benefit to the ROM when compared to the frequency results,
but still enables more accurate modal force prediction for
the first twenty modes within 6% of full model results.
The remaining error can be accounted for with the error-
quantified ROM random error term.

5.2.3. Forced response results

While the variation in modal force is a significant contributor
to forced response, it only accounts for variations in
mode shape displacements. Variations in modal stress and
frequency will also impact forced response variation and
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Figure 7: Maximum error calculation for airfoil frequency.
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Figure 8: Airfoil modal force variation.

this section’s results account for those effects. The maximum
forced stress variation box-and-whisker plot is shown in
Figure 12. Considering the set of the first twenty modes,
several modes are observed with upper bounds near 20%,
with mode fifteen notable for a 68% upper bound.

Comparison of these plots to the modal force variation
results of Figure 8 shows similar magnitudes of variation
for each mode, but closer inspection shows differences on
many modes. Mode nine’s upper bound on airfoil forced
response is 38% greater than average airfoil, while its modal
force upper bound was 19%. Mode fifteen shows a 68%
increase in upper bound stress while the modal force upper
bound variation for the mode was 55%. These 19% and 13%
increases in stress upper bounds are caused by variations in
the maximum modal stress caused by geometric deviations.
This demonstrates the importance of accounting for modal
stress variations in the developed ROMs.
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Figure 9: Modal force prediction comparison (Mode 15).

The maximum forced stress blade-to-blade prediction
is compared between the standard ROM, error-quantified
reduced-order ROM, and full model in Figure 13. The
fifteenth mode was selected because the as-measured results
for this mode, shown in Figure 8, had the largest forced
response scatter and also has the largest error between full
models and standard ROM, shown in Figure 14. Figure 13
shows that the standard ROM does a good job representing
the full model results and accurately captures the blade-to-
blade trend in forced stress values. The figure also shows
that the error-quantified ROM improves the approximation
for all airfoils, in particular the third, fourth, eighth, tenth,
fifteenth, and sixteenth airfoil.

The a posterior training data used to create the error
quantified reduced-order model is not shown but is almost
identical to Figure 10.

Figure 14 plots the maximum error between the ROMs
and the full models for the first twenty modes. For these
modes, the standard ROM does well with most errors below
5%, with the exception of modes five, fifteen, and sixteen.
The error-quantified ROM reduces the error for many of the
larger errors in this range, particularly modes five, fifteen,
and sixteen where error is reduced by nearly 50%. In general,
it is seen that the error-quantified model is not as effective
in correcting for bias as it was for frequency but still enables
forced response force prediction for the first twenty modes
within 5% of full model results. The remaining random error
can be accounted for with the random error term.

5.3. Explanation of error root cause

It is necessary to consider why a single principal component
mode has shown such a strong linear relationship to error.
While a precise explanation is not possible, there are several
factors which lead to a supported argument. First, the linear
approximations of frequency by the standard first-order sen-
sitivity ROM work well, and further analysis demonstrated
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Figure 10: Correlation of PC mode parameters and modal force residual (Mode 15).

that the frequency deviations over the range considered and
for a single PCA mode are practically linear. It is then also
significant that the relationship between frequency error and
the twelfth PCA mode participation is likewise practically
linear. Therefore, there is a clear evidence that the sensitivity
of the twelfth PCA mode has been inaccurately calculated
because the magnitude of the PCA mode is still enabling
an improved prediction. Because an automated process was
used to generate input files and process results, it is not
likely that a user-based processing error was the cause of
this error. It is then likely that the error resides in the
numerical accuracy of the finite element solution software
used in this effort. The magnitude of the twelfth mode was
smaller relative to the other modes, and it is possible it
fell below a limit that the software was able to accurately
consider independently from the other variations. While this
error could be addressed with FE software improvements, the
error-quantified model shows its benefit by both identifying
the error, what parameter is causing it, and also correcting
the model. The model also retains its value of accounting
for random errors, which is significant when conducting

a probabilistic analysis or developing predictive confidence
bounds.

6. CONCLUSION

This effort demonstrated the impact of geometry deviations
from design intent on the modal and forced response beha-
vior of airfoils. Significant variations were shown on fre-
quency and these variations are significant to mistuned
rotor response. The ability to predict these efficiently with
the developed ROMs can significantly improve current
mistuning analysis and design procedures. It was shown that
mode shape variations were more sensitive than frequency
variations and these led to large variations in forced response.
These variations are not currently accounted for in design,
but the developed ROMs begin the process to do so. The
ROMs are based on PCA reduction in geometry parameters
and an eigensensitivity-based approximation to reduced
response solution times. The error between this model
and full models was quantified, and a linear regression
model was demonstrated to quantify which parameter was
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Figure 11: Maximum error calculation for airfoil modal force.
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Figure 12: Airfoil forced stress variation.
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Figure 13: Forced stress prediction comparison (Mode 15).
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Figure 14: Maximum error calculation for airfoil forced stress.

contributing to error. Knowledge of this relationship led to
an improvement in the model accuracy. The error was likely
caused by limitations in the numerical accuracies of the
FE software and this was corrected by the error-quantified
ROM.
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