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A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is uti-
lized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included
using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration
response and the effect of coupling between torsional and lateral modes. Bode, spectrum, and orbit plots are used to show the
differences between the vibration signatures associated with cracked shafts versus asymmetric shafts. Results show how nonlinear
lateral-torsional coupling shifts the resonance peaks in the torsional vibration response for cracked shafts and asymmetric rotors.
The resonance peaks shift depending on the ratio of the lateral-to-torsional natural frequencies with the peak responses occur-
ring at noninteger values of the lateral natural frequency. When the general nonlinear models used in this study are constrained
to reduce to linear torsional vibration, the peak responses occur at commonly reported integer ratios. Full spectrum analyses of
the X and Y vibrations reveal distinct vibration characteristics of both cracked and asymmetric rotors including reverse vibration
components. Critical speeds and vibration orders predicted using the models presented herein include and extend diagnostic in-
dicators commonly reported.
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1. INTRODUCTION

The purpose of this investigation is to develop and test mod-
els for the vibration response of cracked and asymmetric
shafts. Some asymmetries are geometric while others may be
due to a shaft crack. In this paper, an asymmetric shaft refers
to geometric asymmetry other than that due to a crack. The
vibration response of asymmetric and cracked shafts shares
characteristics such as 2x response which makes them hard
to distinguish.A distinct crack diagnostic measure observable
with measurable vibration data is a further goal of this study.
This topic is widely studied because of possible sudden catas-
trophic failure of a rotor from fatigue. Stress concentrations
and high-rotational speeds exacerbate the problem. This is
especially dangerous because the torsional response of the ro-
tor is often unmeasured and lightly damped. A comprehen-
sive literature survey of various crack modeling techniques
and system behavior of cracked rotor was given by Wauer
[1]. This paper contains the modeling of the cracked com-
ponents of the structures and searches for different detection
strategies to diagnose fracture damage. A more recent sur-

vey paper by Sabnavis et al. [2] divides the current research
into three categories: vibration-based methods, modal test-
ing, and nontraditional methods such as wavelets or neu-
ral networks. Dimarogonas [3] provided an earlier litera-
ture review of the vibration of cracked structures and cites
more than 300 papers. His review is categorized according
to methods that describe local flexibility due to cracks, non-
linearities introduced into the system, and local stiffness ma-
trix descriptions of the cracked section. The crack leads to a
coupled system that can be recognized from additional har-
monics in the frequency spectrum. The subharmonic res-
onances at approximately half and one third of the bend-
ing critical speed of the rotor are reported to be the promi-
nent crack indicators by Gasch [4, 5] and Chan [6]. By uti-
lizing a single parameter “hinge” crack model, Gasch pro-
vided an overview of the dynamic behavior of a simple rotor
with transverse crack. He assumed weight dominance and
employed a perturbation method into his analysis. Cross-
coupling stiffness and dynamic response terms were not in-
cluded in his analysis. Mayes model [7] is more practical for
deep cracks than a hinged model. Based on Mayes modified
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Figure 1: Configuration of the cracked extended Jeffcott rotor with two disks.

model, Sawicki et al. [8, 9] studied the transient vibration re-
sponse of a cracked Jeffcott rotor under constant accelera-
tion ratios and under constant external torque. The angle be-
tween the crack centerline and the rotor whirl vector is em-
ployed to determine the closing and opening of the crack.
This allows one to study the rotor dynamic response with or
without the rotor weight dominance assumption by taking
nonsynchronous whirl into account. Sawicki et al. [10] in-
vestigated the nonlinear dynamic response of a cracked one-
mass Jeffcott rotor by means of bifurcation plots. When a ro-
tor with the crack depth of 0.4 spins at some speed ranges,
both the lateral and torsional vibration responses sustain pe-
riodic, quasiperiodic, or chaotic behavior. Some researchers
[11, 12] have investigated using additional external excita-
tions, such as active magnetic bearings, to create combina-
tion resonances for crack identification. Muszynska et al. [13]
and Bently et al. [14] discuss rotor-coupled lateral and tor-
sional vibrations due to unbalance as well as due to shaft
asymmetry under a constant radial preload force. Their ex-
perimental results exhibited the existence of significant tor-
sional vibrations due to coupling with the lateral modes. In
Bently’s and Muszynska’s experiments, an asymmetric shaft
was used to simulate the behavior of a crack.

This paper extends the research investigations of both
Bently et al.’s [14] and Wu’s work [15, 16]. The unique fea-
tures in this work are the use of full spectrum and the in-
corporation of Mayes and Davies [7] crack steering func-
tion into an extended Jeffcott rotor model. This causes the
stiffness to change with orientation as opposed to the asym-
metric stiffness model which is constant in a rotating coor-
dinate system. Another difference is that the equations of
motion herein are expressed and solved in inertial coordi-
nates. While anisotropic shafts share some common charac-
teristics with cracked shafts, the crack opening and closing
introduce different behavior. Therefore, in this study, an ac-
curate and realistic crack model is introduced for a two-mass
rotor in which the first mass represents a turbine and the sec-
ond mass represents a generator. Starting from energy equa-
tions, an analytical model with four degrees of freedom for a
torsional/lateral-coupled rotor due to a crack is developed. A
radial constant force is applied to the outboard disk to em-
phasize the effects of the gravity force which plays a critical
role for the “breathing” of a crack. As preload increases, the
vibration amplitudes in both lateral and torsional directions
increase. The “second-order” nonlinear coupling terms due
to a crack introduce supersynchronous peaks at certain rota-
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Figure 2: Section view of cracked shaft.

tional speeds, which is unique for a cracked rotor and might
be used as an unambiguous crack indicator. Computer sim-
ulations also show that the rotational speeds at which am-
plitudes of the torsional vibrations reach maximum are gov-
erned by the ratio of lateral to torsional natural frequency.

2. EXTENDED JEFFCOTT ROTOR
MATHEMATICAL MODEL

2.1. Physical system

Figure 1 illustrates the system schematic configuration used
to model a turbo machine with a cracked rotor or an asym-
metry at the same location. The rotor is driven through a
flexible coupling and is supported by bearings which con-
strain lateral motion. A crack or asymmetry is located near
the outboard disk where a downward constant radial force P
is also applied. The coupled torsional-flexural vibrations are
modeled using four degrees of freedom; torsional rotation at
each disk and lateral motion at the outboard disk. Figure 2
shows the section view of the cracked shaft in both inertial
(X ,Y), and rotating coordinates (ξ,η).

The angular position of the outboard disk is expressed as
Φ(t) = Ωt +ϕ(t)−ϕ0, where Ω is the rotational speed of the
rotor, ϕ(t) is the angular position of the outboard disk rela-
tive to the motor, and ϕ0 is the initial angular position. Sim-
ilarly, the angular position of the inboard disk is expressed
as Θ(t) = Ωt + θ(t) − θ0, where θ(t) is the angular posi-
tion of the inboard disk relative to the motor. The outboard
disk’s vibration is represented by the angular coordinate Φ(t)
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and two lateral displacements in inertial coordinates. The in-
board disk’s vibration is described by the angle Θ(t). The lo-
cation of the center of mass of the outboard disk can be ex-
pressed as the following:

xcm = X + ε cos(Φ + δ),

ycm = Y + ε sin(Φ + δ).
(1)

2.2. Equations of motion

The kinetic energy, potential energy, and dissipation func-
tion for the rotor system can, respectively, be expressed as
the following:

T = 1
2
I(Ω + ϕ̇)2 +

1
2
I0(Ω + θ̇)

2

+
M

2

{
Ẋ2 + Ẏ 2 − 2εẊ(Ω + ϕ̇) sin(Φ + δ)

+ 2εẎ(Ω + ϕ̇) cos(Φ + δ) + ε2(Ω + ϕ̇)2},

U = 1
2

(
k11X

2 + k22Y
2) + k12XY +

1
2
Kt(ϕ− θ)2,

D = 1
2
CẊ2 +

1
2
CẎ 2 +

1
2
Ct(ϕ̇− θ̇)

2
.

(2)

Loads applied to the system include a driving torque ap-
plied to the inboard disk, Cc(Ω− θ̇) +Kc(Ωt− θ), and a ver-
tical side load, P, applied to the outboard disk. The damping
is modeled as lumped viscous damping at the outboard disk
and lumped torsional viscous damping of the shaft. The stiff-
ness matrix for a Jeffcott rotor with a cracked shaft in inertial
coordinates, KIc, is given by [5, 8, 9]. Details can be found in
[15],

KIc =
⎛

⎝
k11 k12

k21 k22

⎞

⎠

=
(
K 0

0 K

)

− f (Φ)K
2

(
Δk1 +Δk2 cos 2Φ Δk2 sin 2Φ

Δk2 sin 2Φ Δk1−Δk2 cos 2Φ

)

,

(3)

where

Δk1 =
Δkξ + Δkη

K
, Δk2 =

Δkξ − Δkη
K

, (4)

Δkξ ,Δkη are, respectively, the reduced stiffness in ξ and η
directions in a rotor-fixed coordinate system, and f (Φ) =
(1 + cos(Φ))/2 is a steering function which Mayes and Davies
[7] proposed to illustrate a smooth transition between the
opening and closing of a “breathing” crack in rotating coor-
dinates; and Δkη = Δkξ/6 is assumed to describe the stiffness
variation for deep cracks.

The stiffness matrix for a rotor with an asymmetric shaft
in inertial coordinates is given by

KIasym = TKRT−1, (5)

where T is the coordinate transformation matrix, T =(
cosΦ − sinΦ
sinΦ cosΦ

)
and KR =

( Kξ 0

0 Kη

)
is the stiffness matrix in ro-

tating coordinates:

KIasym =
(
K + ΔK cos(2Φ) ΔK sin(2Φ)

ΔK sin(2Φ) K − ΔK cos(2Φ)

)

. (6)

Note that for the asymmetric shaft, the stiffness param-
eters differ from the parameters used for a cracked shaft. In
the asymmetric shaft model, K is the average stiffness rather
than the uncracked shaft stiffness, and ΔK and q are asym-
metric stiffness factors:

K = Kξ + Kη
2

, ΔK = Kξ − Kη
2

, q = Kη − Kξ
2K

,

(7)

with these factors

KIasym =
(
k11 k12

k21 k22

)

= K

[
1− q cos 2Φ −q sin 2Φ

−q sin 2Φ 1 + q cos 2Φ

]

.

(8)

2.3. Cracked shaft equations of motion

The general equations of motion are obtained using La-
grange’s equations. For the cracked shaft, the equations of
motion become

Ẍ +
C

M
Ẋ+ω2

n

[
1− f (Φ)

2
(Δk1 + Δk2cos2Φ)

]
X

− ω2
n f (Φ)Δk2sin2Φ

2

(
Ym − P

K

)

= ε(Ω + ϕ̇)2cos(Φ + δ) + εϕ̈sin(Φ + δ),

Ÿm +
C

M
Ẏm − ω2

n f (Φ)Δk2sin2Φ
2

X

+ ω2
n

[
1− f (Φ)

2
(Δk1 − Δk2cos2Φ)

]
Ym

= ε(Ω + ϕ̇)2sin(Φ + δ)− εϕ̈cos(Φ + δ)

− P f (Φ)
2M

(Δk1 − Δk2cos2Φ),

θ̈ +
Kt + Kc
I0

θ − Kt
I0
ϕ = −Ct + Cc

I0
θ̇ +

Ct
I0
ϕ̇,

ϕ̈ +
Ct
I
ϕ̇− Ct

I
θ̇ +

Kt
I
ϕ− Kt

I
θ

= Pε f (Φ)
2I

(Δk1 cos(Φ+δ)−Δk2 cos(Φ−δ))

+
P2

2KI

[
1
2
∂ f (Φ)
∂Φ

(Δk1−Δk2 cos 2Φ)

+ f (Φ)Δk2 sin 2Φ
]

+ Γc,

(9)
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where

Γc = − Cε

ρ2M

[
Ẋ sin(Φ + δ)− Ẏm cos(Φ + δ)

]

+
εω2

n

ρ2

(
1− f (Φ)

2
Δk1

)[−X sin(Φ+δ) + Ym cos(Φ+δ)
]

+
ε f (Φ)Δk2ω2

n

2ρ2

[−X sin(Φ−δ) + Ym cos(Φ−δ)
]

+
X2ω2

n

4ρ2

∂ f (Φ)
∂Φ

(
Δk1 + Δk2 cos 2Φ

)

− X2ω2
n

2ρ2
f (Φ)Δk2 sin 2Φ +

Ym(Ym − 2P/K)ω2
n

2ρ2

×
[

1
2
∂ f (Φ)
∂Φ

(Δk1 − Δk2 cos 2Φ) + f (Φ)Δk2 sin 2Φ
]

+
Δk2X(Ym−P/K)ω2

n

2ρ2

×
[
∂ f (Φ)
∂Φ

sin 2Φ+2 f (Φ) cos 2Φ
]
.

(10)

Using nondimensionalized time defined by the following:

τ = ωnt,
d(·)
dt

= ωn
d(·)
dτ

= ωn(·)′,

d2(·)
dt2

= ω2
n
d2(·)
dτ2

= ω2
n(·)′′,

(11)

(9) and (10) take the following form:

X ′′ + 2ζX ′ +
[

1− f (Φ)
2

(
Δk1 +Δk2 cos 2Φ)

]
X

− f (Φ)Δk2 sin 2Φ
2

(
Ym − P

Mω2
n

)

= ε
(
Ω

ωn
+ ϕ′

)2

cos(Φ + δ) + εϕ′′ sin(Φ + δ),

Y ′′m + 2ζY ′m −
f (Φ)Δk2 sin 2Φ

2
X

+
[

1− f (Φ)
2

(
Δk1 − Δk2 cos 2Φ

)]
Ym

= ε
(
Ω

ωn
+ ϕ′

)2

sin(Φ + δ)− εϕ′′ cos(Φ + δ)

− P

M

f (Φ)
2ω2

n

(
Δk1 − Δk2 cos 2Φ

)
,

θ′′ + RI(1 + Kr)
(
ωt
ωn

)2

θ − RI
(
ωt
ωn

)2

ϕ

= −2RIζt(1 + Cr)
ωt
ωn

θ′ + 2RIζt
ωt
ωn

ϕ′,

ϕ′′ + 2ζt
ωt
ωn

ϕ′ − 2ζt
ωt
ωn

θ′ +
(
ωt
ωn

)2

ϕ−
(
ωt
ωn

)2

θ

= P

2M
ε f (Φ)
ω2
nρ2

(Δk1 cos(Φ + δ)− Δk2 cos(Φ− δ))

+
P2

2M2

1
ω4
nρ2

[
1
2
∂ f (Φ)
∂Φ

(Δk1−Δk2 cos 2Φ)

+ f (Φ)Δk2 sin 2Φ
]

+
Γc
ω2
n

,
(12)

Γc
ω2
n
= −2ζ

ε

ρ2

[
X ′ sin(Φ+δ)−Y ′m cos(Φ+δ)

]

+
ε

ρ2

(
1− f (Φ)

2
Δk1

)

× [− X sin(Φ + δ) + Ym cos(Φ + δ)
]

+
ε f (Φ)Δk2

2ρ2

[− X sin(Φ− δ) + Ym cos(Φ− δ)
]

+
X2

2ρ2

[
1
2
∂ f (Φ)
∂Φ

(Δk1 + Δk2 cos 2Φ)

− f (Φ)Δk2 sin 2Φ
]

+
Ym
2ρ2

(
Ym − 2P

Mω2
n

)

×
[

1
2
∂ f (Φ)
∂Φ

(Δk1−Δk2 cos 2Φ)+ f (Φ)Δk2 sin 2Φ
]

+
Δk2X

2ρ2

(
Ym − P

Mω2
n

)

×
[
∂ f (Φ)
∂Φ

sin 2Φ + 2 f (Φ) cos 2Φ
]

,

(13)

where Kc = KrKt, Cc = CrCt, RI = I/I0.

2.4. Asymmetric shaft equations of motion

For an asymmetric shaft, the equations of motion become

Ẍ +
C

M
Ẋ + ω2

n(1− qcos2Φ)X − ω2
nq
(
Ym − P

K

)
sin2Φ

= ε(Ω + ϕ̇)2cos(Φ + δ) + εϕ̈sin(Φ + δ),

Ÿm +
C

M
Ẏm − qω2

nXsin2Φ + ω2
n(1 + qcos2Φ)Ym

= ε(Ω + ϕ̇)2sin(Φ + δ)− εϕ̈cos(Φ + δ) +
qP

M
cos2Φ,

θ̈ +
Kt + Kc
I0

θ − Kt
I0
ϕ = −Ct + Cc

I0
θ̇ +

Ct
I0
ϕ̇,

ϕ̈ +
Ct
I
ϕ̇− Ct

I
θ̇ +

Kt
I
ϕ− Kt

I
θ

= −qPε
I

cos(Φ− δ) +
qP2

KI
sin2Φ + Γc,

(14)
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where

Γc = − Cε

ρ2M
[Ẋsin(Φ + δ)− Ẏmcos(Φ + δ)]

+
εω2

n

ρ2
[−Xsin(Φ + δ) + Ymcos(Φ + δ)]

+
εqω2

n

ρ2
[−Xsin(Φ−δ) + Ymcos(Φ−δ)]− qP

I
Ymsin2Φ

+
qω2

n

ρ2

[(
Ym

(
Ym− P

K

)
−X2

)
sin2Φ

+2X
(
Ym− P

K

)
cos2Φ

]
.

(15)

Using nondimensionalized time defined by (11), (14),
and (15) takes the following form:

X ′′+2ζX ′+(1−q cos 2Φ)X−q
(
Ym− P

Mω2
n

)
sin 2Φ

= ε
(
Ω

ωn
+ϕ′

)2

cos(Φ+δ)+εϕ′′ sin(Φ+δ),

Y ′′m +2ζY ′m−qX sin 2Φ+(1+q cos 2Φ)Ym

= ε
(
Ω

ωn
+ ϕ′

)2

sin(Φ + δ)− εϕ′′ cos(Φ + δ)

+
P

M

q

ω2
n

cos 2Φ,

θ′′+RI(1+Kr)
(
ωt
ωn

)2

θ−RI
(
ωt
ωn

)2

ϕ

=−2RIζt(1 + Cr)
ωt
ωn

θ′ + 2RIζt
ωt
ωn

ϕ′,

ϕ′′ + 2ζt
ωt
ωn

ϕ′ − 2ζt
ωt
ωn

θ′ +
(
ωt
ωn

)2

ϕ−
(
ωt
ωn

)2

θ

=
(
P

M

)2 q

ω4
nρ2

sin 2Φ

− P

M

qε

ω2
nρ2

cos(Φ− δ) +
Γc
ω2
n

,

(16)

Γc
ω2
n
= −2ζ

ε

ρ2
[X ′sin(Φ + δ)− Y ′mcos(Φ + δ)]

+
ε

ρ2
[−Xsin(Φ + δ) + Ymcos(Φ + δ)]

+
qε

ρ2
[−Xsin(Φ− δ) + Ymcos(Φ− δ)]

− PqYm
Mρ2ω2

n
sin2Φ +

q

ρ2

[
Ym

(
Ym− P

Mω2
n

)
−X2

]
sin2Φ

+
2qX
ρ2

(
Ym − P

Mω2
n

)
cos2Φ.

(17)

2.5. Special cases

Case 1 (pure torsional vibration for a cracked rotor). Assum-
ing no lateral vibration, X = 0,Ym = 0, and a rigid drive
coupling, Θ̇ = Ω, leads to the following simplification for
the cracked shaft:

ϕ̈ +
Ct
I
ϕ̇ +

Kt
I
ϕ

= Pε
8I

(Δk1 − Δk2)

+
{

Pε
4I

(Δk1−Δk2)cosΦ +
P2

8KI

(
− Δk1 +

Δk2

2

)
sinΦ

}

+
{

Pε
8I

(Δk1 − Δk2)cos2Φ +
P2Δk2

4KI
sin2Φ

}

+
3P2Δk2

16KI
sin3Φ.

(18)

We introduce the following two constants:

E1 = Pε
2Iω2

n
= P

2M
ε

ρ2ω2
n

, E2 = P2

2KIω2
n
= P2

2M2
1

ρ2ω4
n
.

(19)

Using nondimensional time defined by (11) and (18) takes
the following form:

ϕ′′ + 2ζt
ωt
ωn

ϕ′ +
(
ωt
ωn

)2

ϕ

= E1

4
(Δk1 − Δk2)

+
{
E1

2
(Δk1−Δk2) cosΦ +

E2

4

(
− Δk1 +

Δk2

2

)
sinΦ

}

+
{
E1

4
(Δk1 − Δk2) cos 2Φ +

E2Δk2

2
sin 2Φ

}

+
3E2Δk2

8
sin 3Φ.

(20)

Case 2 (pure torsional vibration for an asymmetric rotor).
Assuming no lateral vibration, X = 0,Ym = 0, and a rigid
drive coupling, Θ̇ = Ω, leads to the following simplification
for the asymmetric shaft:

ϕ̈+
Ct
I
ϕ̇+

Kt
I
ϕ=−qPε

I
cos(Φ−δ)+

qP2

KI
sin2Φ. (21)

Using nondimensional time defined by (11) and (21)
takes the following form:

ϕ′′ + 2ζt

(
ωt
ωn

)
ϕ′ +

(
ωt
ωn

)2

ϕ

= − P

M

qε

ω2
nρ2

cos(Φ− δ) +
(
P

M

)2 q

ω4
nρ2

sin2Φ.

(22)

The equations above were solved using a variable time-step
integration algorithm after the following normalization and
simplifications, Y = Ym − P/K is used to delineate the static
offset from dynamic response.
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3. NUMERICAL RESULTS AND DISCUSSION

3.1. Pure torsion

Computer simulation results using the parameters in
Table 1 for the special cases listed above are shown in
Figure 3. The response for a cracked shaft which is cal-
culated from (18) can be interpreted as a nonlinear os-
cillator with 1x excitation {(Pε/4I)(Δk1 − Δk2)cosΦ +
(P2/8KI)(−Δk1+Δk2/2) sinΦ}, 2x excitation {(Pε/8I)(Δk1−
Δk2)cos2Φ + (P2Δk2/4KI)sin2Φ}, and a 3x excitation
{(3P2Δk2/16KI)sin3Φ} due to the unbalance, the depth
of the crack, and the side load. These excitations cause
the critical speeds shown in Figure 3(a). For the asym-
metric shaft, the steady-state responses seen in Figure 3(b)
and calculated from (21) can be interpreted as re-
sponse to 1x{−(qPε/I)cos(Φ − δ)} and 2x excitations
{(qP2/KI)sin2Φ}. Since lateral motion is restrained, only
torsional critical frequencies appear. For the cracked shaft,
there is a 3x critical speed in addition to 1x and 2x. For the
parameters in Table 1, the 2x response is the largest. Further
details of the dependence of the magnitude of response to
crack depth can be found in [16].

Figure 4 depicts the response for the same system de-
scribed in Table 1 except that the response is plotted for a
range of eccentricities. For the cracked shaft and the asym-
metric shaft, the critical speed associated with the 1x tor-
sional natural frequency at 2400 rpm has a magnitude that
increases with increasing eccentricity. The response at the
other critical speeds is independent of eccentricity. The con-
sequence of this is that for well-balanced shafts, the presence
of a crack will be more easily detected by monitoring the re-
sponse at a shaft-rotative speed of ωt/2 or ωt/3. At large val-
ues of eccentricity, the response at shaft-rotative speeds equal
to the torsional natural frequency dominates. The sensitivity
of response to changing eccentricity is much greater for the
asymmetric shaft. The frequency response at various shaft-
rotative speeds,Ω, using the parameters in Table 1 is depicted
in Figure 5. Each is dominated by 2x responses with an addi-
tional 3x-order response for the cracked shaft.

3.2. Lateral and torsional coupled vibrations

When the parameters shown in Table 2 are used in the gen-
eral four degrees of freedom model, the critical frequencies
shift as seen by comparing Figure 3(a) to Figures 6(a), 6(b)
and Figure 3(b) to Figures 7(a), 7(b). Lateral/torsional cou-
pling causes the lateral natural frequency ωn to appear in the
torsional response.Also, critical speeds are no longer at in-
teger fractional multiples of the torsional natural frequen-
cies. Instead of a given ratio of torsional to lateral natural
frequency, critical speeds occur at fixed noninteger multiples
of the lateral natural frequency.This is shown by compar-
ing Figure 6(a) to Figure 6(b) and Figure 7(a) to Figure 7(b).
The damaged shaft has a lower natural frequency so that 1.24
ωn corresponds to 0.90 ωt. Although the absolute frequencies
have shifted, the relative critical speeds appear as 1/4, 1/3, and
1/2 of this value. Further details about the variations of the
critical speeds due to different stiffness ratios, ωt/ωn, can be
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Figure 3: Overall peak-to-peak torsional vibration response, ϕ, spe-
cial cases, for cracked shaft (a) and asymmetric shaft (b).

found in [16]. By comparing Figure 6 to Figure 7, it is shown
that the coupling causes some frequencies to appear in both
the asymmetric and cracked shafts, while others appear only
in the cracked shaft. The P/M values used in the plots are set
intentionally large for the parametric study in order to easily
illustrate the coupling and to reproduce values from a paper
upon which this study is based [14]. Smaller values would
lead to lower peaks and sometimes change the peak response
to a different critical speed.

The steady-state response at one third of the lateral natu-
ral frequency is shown in Figure 8. The trajectory of the whirl
for the cracked shaft undergoes three loops per shaft revolu-
tion, whereas the trajectory for the asymmetric shaft has a
double elliptical pattern.

The full spectrum of the lateral vibration response as
illustrated in Figure 9 demonstrates the advantage of us-
ing full-spectrum plots to differentiate between crack asym-
metries and geometric asymmetries. The full spectrum for
the cracked shaft includes reverse order response at −1x in
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Table 1: Model physical parameters for pure torsional vibration, special cases.

Cracked shaft Asymmetric shaft

Parameters Values Units Parameters Values Units

ωn 12000 rpm ωn 12000 rpm

ωt 2400 rpm ωt 2400 rpm

ε 7.62×10−5 m ε 7.62×10−5 m

ρ 0.0241 m ρ 0.0241 m

P/M 1270 m/s2 P/M 1270 m/s2

ζt 0.02 ζt 0.02

Δkξ/K 0.30 q 0.14

δ 0 rad δ 0 rad
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Figure 4: Overall peak-to-peak torsional vibration response, ϕ, special cases, for cracked shaft (a) and asymmetric shaft (b).
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Figure 5: Half spectrum of zero-to-peak torsional vibration response, ϕ, special cases, for cracked shaft (a) and asymmetric shaft (b).
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Figure 6: Overall peak-to-peak torsional vibration response, ϕ, general case, for cracked shafts with different lateral stiffness but constant
torsional-to-lateral natural frequency ratio.
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Figure 7: Overall peak-to-peak torsional vibration response, ϕ, general case, for asymmetric shafts with different lateral stiffness but constant
torsional-to-lateral natural frequency ratio.

Table 2: Model physical parameters for torsional and lateral vibration, general cases.

Cracked shaft Asymmetric shaft

Parameters Values Units Parameters Values Units

ε 5.08×10−5 m ε 5.08×10−5 m

ρ 0.0229 m ρ 0.0229 m

P/M 101.6 m/s2 P/M 101.6 m/s2

ζt 0.02 ζt 0.02

ζ 0.1 ζ 0.1

Kr 5 Kr 5

Cr 1 Cr 1

Δkξ/K 0.38 q 0.18

δ 0 rad δ 0 rad



X. Wu and J. Meagher 9

−6 −4 −2 0 2 4 6
×10−4

X (m)

−8

−6

−4

−2

0

2

4

6

×10−4

Y
m

(m
)

Orbit

(a) Cracked shaft

−6 −4 −2 0 2 4 6
×10−4

X (m)

−8

−6

−4

−2

0

2

4

6

×10−4

Y
m

(m
)

Orbit

(b) Asymmetric shaft

Figure 8: Shaft whirling at Ω = ωn/3; ωt/ωn = 1.38; ωn =2400 rpm, Table 3 parameters.

Table 3: Model physical parameters for torsional and lateral vibration, general case.

Cracked shaft Asymmetric shaft

Parameters Values Units Parameters Values Units

ωn 2400 rpm ωn 2400 rpm

ωt 3312 rpm ωt 3312 rpm

ε 5.08×10−5 m ε 5.08×10−5 m

ρ 0.0229 m ρ 0.0229 m

P/M 101.6 m/s2 P/M 101.6 m/s2

ζt 0.02 ζt 0.02

ζ 0.1 ζ 0.1

Kr 5 Kr 5

Cr 1 Cr 1

RI 1 RI 1

Δkξ/K 0.30 q 0.18

δ 0 rad δ 0 rad

addition to 1x and the supersynchronous responses at 2x and
3x. The asymmetric lateral shaft response contains only 1x
and 2x without any reverse vibration components.

4. CONCLUSIONS

This paper documents the effect of a shaft crack versus other
geometric asymmetries on lateral and torsional vibrations of
a two-mass rotor system. Nondimensional analytical mod-
els of extended Jeffcott rotors are derived from Lagrange’s
equations taking into consideration the lateral/torsional vi-
bration coupling mechanism induced by a “breathing” crack
or a geometric asymmetry. Four degrees of freedom describe
the models; two lateral displacements, one torsional angular
displacement of an outboard disk, and the torsional angular

displacement of an inboard disk. The nonlinearities associ-
ated with a breathing crack or geometric asymmetry couple
the four equations of motion. Two cases are considered in
this work: a torsionally rigid rotor without lateral vibration
and a general unconstrained solution to the four degrees of
freedom model presented. The first case is characterized by
torsional vibrations which occur at Ω = ωt/3 and Ω = ωt/2.
For a cracked shaft, a 3x torsional vibration also occurs. The
general case makes evident the existence of strong coupling
between lateral and torsional vibrations where vibration am-
plitude increases with crack depth, stiffness asymmetry, and
radial load. Nonlinear lateral-torsional coupling from a crack
shifts the resonance peaks in the torsional vibration response.
The resonance peak frequencies shift depending on the ratio
of the lateral to torsional natural frequencies with the peak
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Figure 9: Full spectrum lateral vibration: ωt/ωn = 1.38; ωn =2400 rpm, Table 3 parameters.

responses occurring at fixed noninteger values of the lateral
natural frequency. Orbit plots can also be used to identify
a crack with patterns distinguishable from other geometric
asymmetries. The distinct vibration signatures predicted by
this model can be used for shaft crack diagnostic purposes.

NOMENCLATURE

ωn,ωt : Lateral and torsional natural frequencies,
respectively

Θ : Angular location of inboard disk
θ : Angular displacement of the inboard

disk relative to motor
θ0 : Initial angular location of inboard disk
Φ : Angular location of outboard disk
ϕ : Angular displacement of the outboard disk

relative to motor
ϕ0 : Initial angular location of outboard disk
I0, I : Inboard and outboard disk polar moments

of inertia, respectively
δ : Angular orientation of outboard disk

eccentricity
Γc : Lateral coupling terms in outboard disk

equation of motion
M : Outboard disk mass
P : Vertical side load
X ,Y : Outboard disk lateral motion in inertial

coordinates
xcm, ycm : Locations of the center of mass of outboard

disk
Kr : Stiffness ratio: Kc/Kt
Cr : Camping ratio: Cc/Ct
RI : Polar moment of inertia ratio: I/I0
ξ,η : Rotor-fixed rotating coordinates
Ym : Dynamic vertical vibration in inertial

coordinates
ε : Eccentricity of outboard disk

Ω : Motor speed
Cc,Kc : Motor-shaft coupling damping and stiffness,

respectively
C, Ct: Lateral and torsional damping coefficients,

respectively
ζ , ζt : Lateral and torsional damping ratios,

respectively
Kt : Torsional shaft stiffness
K : Uncracked shaft lateral stiffness or average

stiffness for asymmetric shaft
KIc : Stiffness matrix of cracked shaft in inertial

coordinates
KIasym : Stiffness matrix of asymmetric shaft in

inertial coordinates
KR : Stiffness matrix of asymmetric shaft in

rotating coordinates
f (Φ) : Crack steering function
ρ : Radius of gyration
Δkξ ,Δkη : Reduced stiffness in ξ and η directions,

respectively
q : Stiffness asymmetry factor.
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