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Fault detection and isolation (FDI) in rotor systems often faces the problem that the system dynamics is dependent on the rotor
rotary frequency because of the gyroscopic effect. In unbalance excited rotor systems, the continuously distributed unbalances
are hard to be determined or estimated accurately. The unbalance forces as disturbances make fault detection more complicated.
The aim of this paper is to develop linear time invariant (LTI) FDI methods (i.e., with constant parameters) for rotor systems
under consideration of gyroscopic effect and disturbances. Two approaches to describe the gyroscopic effect, that is, as unknown
inputs and as model uncertainties, are investigated. Based on these two approaches, FDI methods are developed and the results are
compared regarding the resulting FDI performances. Results are obtained by the application in a rotor test rig. Restrictions for the
application of these methods are discussed.

1. Introduction

Model based fault detection and isolation (FDI) meth-
ods often offer better performance than signal based FDI
methods (see, e.g., [1]). Thus model based methods are
widely used in the technical processes when high system
performance and reliability are demanded. In ideal cases, the
systems are free of disturbances or the disturbances working
on the systems are known and accurate models of the systems
are available for the model based FDI processes. Disturbances
and model inaccuracies or uncertainties often have strong
impact on FDI performance and can cause false alarms or
decreased fault detection rate.

In rotor systems the unbalance forces are major dis-
turbances for the FDI process. Although approaches for
unbalance identification [2, 3] or balancing without trial
weights [4, 5] are often applied to estimate modal unbalances
or unbalances at the knots of the finite element model
(FEM), a physical model with high accuracy and enough
number of sensors are required to achieve an accurate
estimation result. Actually if an elastic rotor is considered as
a continuous system with infinite degrees of freedom (DOF),

the continuously distributed unbalances cannot be detected
to full extent. In real systems the unbalances cannot be fully
determined or compensated.

In case of rotor systems with large disks, the gyroscopic
effect cannot be neglected. The system behavior is then
dependent on the rotor rotary frequency. If the gyroscopic
matrix is known and rotor rotary frequency is measured,
a parametric model dependent on rotary frequency can
be built [6, 7] and a rotary frequency dependent FDI
method can be applied. However if a rotor is not running
at constant rotary frequency or if the measurement of the
rotary frequency is not accurate enough, the rotary frequency
dependent fault detection filter is often not applicable. Also
an accurate parametric model is often not available for model
based FDI.

In contrast to the rotary frequency dependent design,
linear time invariant (LTI) fault detection filters with simple
and easy to implement structures are developed in this paper.
Therefore, we consider a constant model at a certain rotary
frequency as a nominal model and the gyroscopic effect is
formulated as model uncertainties or unknown inputs. The
FDI problems for rotor systems become then FDI problems
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with disturbances and model uncertainties or unknown
inputs. To cope with these effects, robustness of the designed
fault detection filters is crucial for a reliable performance.

Robust FDI methods are mostly based on two approach-
es: decoupling of unknown inputs [8] and optimization by
means of different objective functions [9].

The idea of unknown inputs was firstly introduced by
Watanabe and Himmelblau [10] with the design of unknown
input observer (UIO) to decouple the influences of unknown
inputs on the residuals. Unknown inputs summarize the
influences of unknown disturbances with a certain distribu-
tion on the plant. In some cases, model uncertainties can be
considered as unknown inputs with determined distribution
[11, 12], thus by decoupling of the unknown inputs the
influences of model uncertainties are also decoupled. Besides
UIO, another observer based method can be found, for
example, in [13, 14] which utilizes eigenstructure assignment
of the observer and a residual weighting matrix. Parity
equations based methods to decouple unknown inputs can
be found, for example, in [1] or [9]. In the last years, least
order fault detection filters based on null space design are
investigated [15, 16]. Methods that account for sinusoidal
unknown inputs, which is the case of rotor system, can be
found in [17].

Through the development of techniques to solve linear
matrix inequalities (LMIs) [18], optimization methods are
intensively investigated in FDI processes in the last years.
Uncertainties in the system matrices can be recast as
disturbances [19] or treated directly [20]. Some publications
focus on ensuring sufficient disturbance attenuation and
fault sensitivity and at the same time rejecting the influence
of control inputs onto the residuals (see, e.g., [21, 22]). Other
publications rely on matching the input-output behavior of
the overall system consisting of plant and residual generator
to a given reference model [23, 24].

A lot of researches on FDI in rotor systems are done
in the last decades. Some of the researches focus on the
fault characteristic [25–27] and others test different FDI
methods in rotor systems [28–30]. The gyroscopic effect is
often not of concern in the FDI processes. Despite other
aspects to investigate symptoms of fault appearances in rotor
systems (e.g., special orbit or frequency domain analysis),
this paper is mainly focusing on developing general FDI
methods dealing with gyroscopic effect and disturbances
(e.g., from initial unbalances). The objective is to detect input
faults (e.g., changes of unbalances), which are not simply
distinguishable from disturbances under the consideration of
the gyroscopic effect. To this end, two different approaches
to describe the gyroscopic effect are considered. On the
one hand, the effect is formulated as unknown inputs. On
the other hand, it is interpreted as uncertainties in the
system model. Based on these two descriptions, different
approaches to design fault detection filters are investigated.
In Section 2 we present the test rig on which we implement
and test the obtained fault detection filters. We consider
both physical models and identified models that are used for
the filter design and the modeling of the gyroscopic effect.
Section 3 briefly summarizes the method to estimate the
unknown input distribution matrix and the different design

approaches for fault detection filters which can be employed
for rotor systems. Mainly, an unknown input observer and
model matching approaches are considered. In Section 4,
we test the feasibility of these two approaches by means of
simulation using the test rig model. The application results of
the methods on the test rig are presented in Section 5 before
a conclusion is given.

1.1. Notational Aspects. With the symbol I , we abbreviate an
identity matrix, while 0 denotes a matrix of zeros of appro-
priate dimensions. For a matrix M ∈ Rn×m, the singular
values are written as σ1, σ2, . . . , σp, with p = min{n,m}. For
a stable transfer matrix G(s), the H∞-norm is the maximum
singular value of G( jω) over all frequencies and abbreviated
as supω∈[0,∞) maxi=1,...,pσi(G( jω)) = ‖G(s)‖∞. For a square
and symmetric matrix P, positive (negative) definiteness is
denoted by � (≺). Elements of such matrices, which are
readily inferred by symmetry, are abbreviated by the symbol
�. Furthermore, we write He(Q) = Q+Q� for the symmetric
part of a matrix Q.

2. Modeling

2.1. Test Rig. The test of the FDI methods and the compari-
son of their performances are carried out on a rotor test rig
presented in Figure 1.

This test rig is constructed at the Technische Universität
Darmstadt to test different control strategies and FDI
methods in rotor systems under consideration of gyroscopic
effect. The flexible shaft has a diameter of 9 mm and 320 mm
in length. Two discs with relatively large inertia are mounted
on the shaft unsymmetrically to enhance the gyroscopic
effect. The gyroscopic effect can be observed from the
Campbell diagram of the test rig in Figure 2. The test rig is
supported by an active bearing on the left side and a passive
bearing on the right side. The active bearing is equipped
with two piezoelectric stack actuators with maximum strokes
of 60 μm. The actuators are arranged orthogonal to each
other. Against each piezoelectric actuator a preload spring is
mounted, so that the piezoelectric elements only work under
pressure forces. Four displacement sensors are implemented
in the test rig on 2 sensor planes along the rotor in
pairs (see Figure 1). On every sensor plane, the sensors are
arranged in the same directions as the actuators. The first
2 eigenfrequencies of non-rotating rotor are about 39 Hz
and 97 Hz. The first and second eigenforms are presented in
Figure 3. The rotor is driven by a 250 watt DC motor with
maximal rotation speed of 1000 rad/s and runs through 2
resonances at 47 Hz (295 rad/s) and 108 Hz (678 rad/s).

A finite element model is built for the test rig on the
basis of Timoshenko beam theory [31]. The bearings are
modeled using discrete stiffness, inertia, and piezoelectric
elements. The active bearing is coupled with the shaft by
applying the forces of the piezoelectric actuators to the
shaft which are dependent on the strains of the actuators
and the voltages applied to the actuators. The strains of
the actuators are calculated from the vibration of the shaft.
The model of the piezoelectric actuators obeys the law
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Figure 1: Configuration of the rotor test rig.
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Figure 2: Campbell diagram of the rotor system.

of piezoelectric material. The piezoelectric actuators are
used for the vibration control. The FDI methods are not
influenced by the actuators. They are thus not considered
in the FDI process. The damping of the rotor system is
considered as viscous damping. The damping ratio is set to
1%, in order to match the measured frequency responses
of the test rig. For the implementation of FDI methods,
the finite element model is reduced by means of modal
reduction technique. A low order model with 8 modal
degrees of freedom (DOF), that is, 16 DOF in the state
space representation, is proven to be accurate enough for the
relevant frequency range. The finite element model of the
rotor systems is proper, thus the feed through part does not

Figure 3: The first and second eigenforms of the rotor test rig.

exist in the state space representation. The state space model
of the rotor is given in

ẋ = AG(Ω)x + Bu + EDdD, (1a)

y = Cx, (1b)

where x is the vector of system states, u is the control
input vector, that is, the voltages applied to the actuators,
dD describes the disturbances, that is, forces (e.g., generated
by initial unbalances) acting on the shaft, and y are the
system outputs, that is, the sensor signals. AG(Ω), B, C, ED
are system matrices with appropriate dimensions, where
AG(Ω) is dependent on the rotor rotary frequency Ω
because of gyroscopic effect. The initial unbalances are
modeled as unbalances randomly distributed in both axial
and circumferential directions of rotor shaft. The masses and
eccentricities of initial unbalances are randomly chosen with
strongly weighted unbalances on the rotor discs. The model
(1a) and (1b) is controllable and observable for whole rotary
frequency range.

2.2. Model for FDI Process. Since multiplicative faults can be
transformed in an additive way [9], the faults are modeled
as additive faults generally. In rotor systems the influences
of unbalances and gyroscopic effect (as will be presented in
Section 2.3) are periodical with the rotor rotary frequency.
The major focus of this work is to detect input faults
(e.g., rotor disc break) that is influenced by the gyroscopic
effect and periodical with the rotor rotary frequency. These
faults are not simply distinguishable from the influences of
gyroscopic effect and disturbances from initial unbalances.
Output faults (i.e., sensor faults) are not influenced by the
gyroscopic effect and are normally not periodical. Mostly,
they can be easily detected in the frequency domain. Thus
the output faults are not of the interest in this paper and are
not explicitly considered in the following. But the methods
introduced in this paper are also applicable for output faults.

Some limitations of the model and different situations
are considered in the FDI process according to the knowledge
of the rotor system

(i) The initial unbalances cannot be detected to full
extent, thus the disturbance term EDdD in (1a) and
(1b) is supposed to be unknown.

(ii) If enough physical information about the rotor
system is available, the system can be modeled using
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a physical model. On the basis of the model of non-
rotating rotor (i.e., setting A = AG(0) in model (1a)
and (1b)), the gyroscopic effect can be represented as
an additive term ΩAg to the A matrix. The available
model in this case is thus

ẋ =
(
A + ΩAg

)
x + Bu + F f , (2a)

y = Cx, (2b)

where f represents considered faults and F is its input
matrix.

(iii) If a physical model cannot be build or accuracy of a
physical model is insufficient, identified model can be
used. In this case, the knowledge about gyroscopic
matrix Ag is supposed to be unknown. Only iden-
tified models at certain rotor rotary frequencies are
supposed to be available. If the gyroscopic effect is
considered as model uncertainties, identified models
at different rotary frequencies Ωn

ẋ = AΩnx + Bu + F f , (3)

y = Cx, (4)

with AΩn = AG(Ωn) are required, so that different
situations of the systems can be considered in the
FDI process. For the design based on the model
matching approach (see Sections 3.3 and 4.2), An =
AG(1/2Ωmax) is used as a nominal model, where Ωmax

is the maximum relevant rotor rotary frequency.
Therewith, the distance of models for Ω = 0 and Ω =
Ωmax to the nominal model is the same with respect
to the parameter Ω. This facilitates the solution of
the model matching problem. If the gyroscopic effect
is described as unknown inputs, the model of non-
rotating rotor

ẋ = Ax + Bu + F f , (5a)

y = Cx, (5b)

with A = AG(0) is used as nominal model for the FDI
process. Thereby, the gyroscopic effect has not to be
considered in the nominal model (5a) and (5b).

2.3. Consideration of Initial Unbalances and Gyroscopic Effect.
In order to achieve robustness against disturbances (e.g.,
from initial unbalances), information about the disturbances
is required. The way that unbalance forces influence the rotor
system can be determined by means of measurements on
the test rig [32]. Detection of the real unbalance distribution
is not needed. If unknown inputs d and their distribution
matrix E are used to represent the influences of initial
unbalances, the system model for FDI is extended as

ẋ =
(
A + ΩAg

)
x + Bu + Ed + F f , (6a)

y = Cx, (6b)

in case of physical model and

ẋ = AΩnx + Bu + Ed + F f , (7a)

y = Cx, (7b)

in case of identified model. Ideally, the unknown inputs
d have the same influences via their distribution matrix E
as initial unbalances. For FDI process only the distribution
matrix E is determined, the unknown inputs d are not
detected. Note that the estimated matrix E is generally not
identical and does not necessarily to be equal to or even have
the same dimension as the real input matrix of disturbances
ED.

In rotor dynamics, conservation of angular momentum
leads to a coupling between the rotational degrees of freedom
in a rotating shaft. The effect of the coupling on rotor discs
can be considered as moments generated by the discs and
acting periodically on the rotor shaft. The effects of coupling
of shaft elements are normally small and negligible. For the
modeling, the rotor system can be regarded as a simple rotor
system without gyroscopic effect (i.e., model (5a) and (5b))
plus disturbance moments representing gyroscopic effect.
The influences of gyroscopic effect and initial unbalances can
be represented together as unknown inputs d generally with
their distribution matrix E. By means of measurements on
the test rig at different rotary frequencies, the matrix E can
be determined [33]. On the basis of model (5a) and (5b), the
model for FDI is extended as

ẋ = Ax + Bu + Ed + F f , (8a)

y = Cx. (8b)

3. Theory

Based on the model (6a) and (6b), (7a) and (7b), or (8a) and
(8b), three problems have to be solved to achieve robustness
against gyroscopic effect and influences of unbalances in FDI
processes in rotor systems.

(1) Represent influences of unbalances and in case of
model (8a) and (8b) also the gyroscopic effect using
unknown inputs.

(2) Design FDI scheme which is robust against unknown
inputs.

(3) Design FDI scheme which is robust against model
uncertainties if model (6a) and (6b) or (7a) and (7b)
is used.

3.1. Estimation of Unknown Input Distribution Matrix.
Dependent on the knowledge of the disturbances, model
inaccuracies, or model uncertainties, different methods [34–
36] can be used to determine the unknown input distribution
matrix. Without any knowledge about the initial unbalances
and gyroscopic effect (in case of model (8a) and (8b)), meth-
ods using measured signals (e.g., deconvolution method or
augmented observer) are suitable for the estimation in rotor
systems. Measurements for the estimation of the unknown
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input distribution matrix are simulated using test rig model
(1a) and (1b) in this paper. The active bearing is not
activated (i.e., u = 0) for the estimation of unknown input
distribution matrix and the rotor is only excited by initial
unbalances.

3.1.1. Deconvolution Method. The de-convolution method
introduced in [8, 35] is based on a discrete state space model
of the system:

x(k + 1) = Adiscx(k) + Bdiscu(k) + Ediscd(k), (9)

y(k) = Cdiscx(k), (10)

where Adics, Bdics, and Cdics are the system matrices of the
discrete time model. The term Ediscd(k) represents unknown
inputs with the distribution matrix. If the control inputs are
set to zero, the difference between measured output yM(k)
and calculated model response y(k), that is, the residual r(k),
with unknown initial condition x(0) can be described as:

r(k) = yM(k)− y(k)

= yM(k)− CdiscA
k
discx(0)

−
k∑

i=1

CdiscA
i−1
discEdiscd(k − i)︸ ︷︷ ︸

d1(k−i)

.

(11)

For every time step k, a disturbance vector

d1(k − 1) = Ediscd(k − 1), (12)

is obtained by solving r(k) = 0:

Cdiscd1(k − 1) = yM(k)− CdiscA
k
discx(0)

−
k∑

i=2

CdiscA
i−1
discd1(k − i).

(13)

If matrix Adisc is stable, liml→∞Al
disc = 0. The unknown

initial condition can be set to x(0) = 0, the error caused
by x(0) will decay in some time steps. In (13) if and
only if rank (Cdisc) = dim(x) a single solution can be
calculated. If less linearly independent measurements than
the model order are available (i.e., rank (Cdisc) < dim(x)),
(13) is underdetermined and d1(k) has to be estimated
under other restrictions (e.g., assume that only part of
the eigenforms are exited). Thus the number of linearly
independent measurements (equals rank (Cdisc)) is crucial
for the accuracy of the estimation.

For a measurement with kmax time steps, a vector set

M = [d1(1),d1(2), . . . d1(kmax)], (14)

with kmax elements can be calculated. The matrix Edisc can
be considered as a set of vectors and the elements of d(k)
as weighting factors in (12). The matrix M spans a space
in which all the vectors of Edisc lie. The matrix Edisc can be

calculated on the basis of singular value decomposition of M
[8]:

M = U
[

diag
(
σ1, σ2, . . . , σp

)
0
]
VT , (15)

where matrices U ,V are left and right singular matrices and
σ1, σ2, . . . , σp are the singular values with σ1 ≥ σ2 ≥ · · · ≥ σp.
The matrix Edisc is obtained by selecting a few of the most
significant singular values:

Edisc = U
[

diag
(
σ1, σ2, . . . , σq

)]
, (16)

where σq+1, σq+2 · · · 
 σ1 can be neglected. The unknown
input distribution matrix in the continuous time model is
obtained by transforming Edisc into continuous time.

3.1.2. Augmented Observer. Since the unknown input signals
in rotor systems are sinusoidal, the vector d1 in (12) can be
directly estimated using an augmented observer on the basis
of an augmented system model for sinusoidal disturbances:

[
ẋ
ẋd

]
=
[
A Hd

0 Ad

][
x
xd

]
+

[
B
0

]
u, (17a)

y =
[
C 0

][ x
xd

]
. (17b)

The augmented part of the system matrix is from the
disturbance model:

ẋd = Adxd, (18a)

d1 = Cdxd, (18b)

which describes the sinusoidal signals as a differential
equation in state space form. Determination of the system
matrices can be found in [17]. The vector d1 can be directly
observed, for example, by constructing a Lueberger observer
on the basis of augmented model (17a) and (17b).

3.2. Robust Fault Detection against Unknown Inputs. Robust
FDI methods against unknown inputs are normally based
on the idea of decoupling the influences of unknown
inputs on the residuals or optimizing the objective to
attenuate unknown inputs and enhance fault sensitivity on
the residuals.

3.2.1. Fault Detection by Means of Decoupling Unknown
Inputs. In the last decades, different methods to decouple
unknown inputs have been developed. Among others,
unknown input observer (UIO) [8] is one of the most used
methods. UIO takes the structure of the general form of
Luenberger observer (see Figure 4):

ż = Fz + TBu + KUIOy, (19)

x̂ = z + Hy, (20)
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Figure 4: Structure of unknown input observer.

where x̂ is an estimate of x. If

(I −HC)E = 0, (21)

T = I −HC, (22)

F = TA− K1C, (23)

KUIO = K1 + FH , (24)

the estimation error, e = x − x̂, can be described by

ė = Fe. (25)

If the UIO in form of (19) and (20) is stable, the estimation
error will go to zero and the influence of unknown inputs
is then decoupled on the residual r = Ce. The matrix K1 is
chosen to stabilize the UIO and give e desired dynamics, for
example, by pole placement of the system ((TA)T ,CT).

It is pointed out in [8], that a UIO in form of (19)
and (20) exist if and only if: rank (CE) = rank (E) and
(C,TA) is a detectable pair. This indicates that the maximum
number of disturbances considered cannot be larger than
the number of independent measurements if the disturbance
input matrix E is of full column rank.

Other methods using observer structures [13, 14] or
parity equations [15, 16] are based on the idea to design
residual spaces that are null spaces of unknown inputs. Since
the unknown inputs are sinusoidal, disturbance observers
for sinusoidal disturbances [32, 33] can also be used for
the decoupling of unknown inputs. These methods are not
restricted to the condition that (C,TA) is a detectable pair
and some of them require less computing time. But the
restriction that the number of disturbances cannot be larger
than the number of linearly independent measurements is
also valid for these methods [8, 9]. The major advantage
of UIO is that it is rotary frequency independent and the
state vector can be correctly observed under the influences
of unknown inputs. This can be useful for fault diagnosis or
the implementation of state feedback based controllers.

3.2.2. Fault Detection by Means of Optimization. Besides
decoupling methods, robustness against unknown inputs

can also be achieved using multi-objective optimization (see
[8, 9] for an overview). The residual generator is generally
described as:

r(s) = Grd(s)d(s) + Gr f (s) f (s), (26)

where Grd(s) and Gr f (s) represent the influences of unknown
inputs and faults on the residual. In case of observer based
fault detection,

˙̂x = Ax̂ + Bu + L
(
y − Cx̂

)
, (27a)

r = V
(
y − Cx̂

)
(27b)

is used and the transfer matrices relating disturbances (resp.,
faults) and residuals can be written as:

Grd(s) = VC(sI − A + LC)−1E, (28)

Gr f (s) = VC(sI − A + LC)−1F. (29)

The robustness problem is then formulated as to find
matrices L and V , such that:

(i) A− LC is stable,

(ii) ‖Grd‖ < γ, γ > 0,

(iii) ‖Gr f ‖ → max.

The operator ‖�‖ denotes different norms and can be
chosen dependent on the system behavior. γ is a given
constant.

3.3. Robust Fault Detection with Respect to Model Uncer-
tainties. An intuitive approach to account for uncertain
system matrices is the approximative model matching
technique described, for example, in [9, 24]. The basic
idea is using a reference model Gref(s), which characterizes
the desired input-output behavior with generalized input
w = [u� f � d�]� and generalized output rref. Then an
observer of the form (27a) and (27b) is to be parameterized
such that the generated residual r matches rref as well as
possible. Notice that all exogeneous inputs are lumped into
w. Intuitively, since the overall system consisting of plant
and residual generator is to match the reference model, its
selection is crucial to the quality of the resulting FDI system
[37, 38].

Because of this, a two step procedure is proposed in [24].
Firstly, an observer parametrization L∗ and V∗ is obtained
for a system without any parametric uncertainties, that is,
the nominal model with system matrix An. This observer is
designed using an optimization based approach aiming at an
optimal compromise between efficient disturbance rejection
and sufficient fault sensitivity for this system. The resulting
input-output behavior generated by this fault detection
observer is then regarded as the reference model. Following
[39], the optimization problem in the first design step is

minimize
L,V

‖Grd(s)‖∞
σi
(
Gr f

(
jω
)) ∀ω ∈ [0,∞). (30)
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Therein, σi(Gr f ( jω)) describes the singular values of
Gr f ( jω). The solution is also given in [39] as

L∗ =
(
ED�d + YC�

)
Q−1, (31a)

V∗ = Q−1/2, (31b)

with Q = DdD
�
d . The matrix Dd describes the influence of

disturbances on the measured outputs. As they are not part
of the model (6a) and (6b) or (7a) and (7b), we elaborate
further on its choice in Section 4.2. The matrix Y 
 0 is
obtained by solving the algebraic Riccati equation

Y
(
An − ED�d Q

−1C
)�

+
(
An − ED�d Q

−1C
)
Y − YC�Q−1CY

+ · · · + E
(
I −D�d Q

−1Dd

)2
E� = 0.

(32)

Having obtained L∗ and V∗, we can describe the reference
model with xref = x − x̂ as

ẋref = (An − L∗C)︸ ︷︷ ︸
Aref

xref + F︸︷︷︸
Bref, f

f + (E − L∗Dd)︸ ︷︷ ︸
Bref,d

d,
(33a)

rref = V∗C︸ ︷︷ ︸
Cref

xref + V∗Dd︸ ︷︷ ︸
Dref,d

d.
(33b)

Secondly, the model matching approach minimizes the worst
case deviation between the input-output behavior of the
reference model and all possible plants resulting from the
uncertainties. This can be formalized as

minimize
L,V

max
Ω

(‖Grw(s,Ω)−Gref(s)‖∞) ∀Ω ∈ [0,Ωmax],

(34)

which is a model matching problem (MMP). Therein, Ωmax

is the highest relevant rotor rotary frequency. Therewith,
following the worst-case paradigm, the largest deviation of
Grw(s) over all parametric uncertainties with respect to the
reference model is minimized in the sense of the H∞-norm.
Notice that Gref(s) accounts for disturbances d. Neglecting
the influence of d in the model matching problem could
lead to poor results due to an invalid reference model [24].
However, (34) implies the evaluation of the H∞-norm for an
infinite number of system models and is thus not practicable
in the given form. To overcome this, we first introduce x̃ =
[(x − x̂)� x�ref x�]� and ξ = r − rref. The input-output
behavior of the transfer matrix difference in (34) is then
described by

˙̃x =
⎡
⎢⎣
An − LC 0 ΔA(Ω)

0 Aref 0
0 0 AG(Ω)

⎤
⎥⎦

︸ ︷︷ ︸
Aξw(Ω)

x̃ +

⎡
⎢⎣

0 F E − LDd

0 Bref, f Bref,d

B F E

⎤
⎥⎦

︸ ︷︷ ︸
Bξw

w,

(35a)

ξ =
[
VC −Cref 0

]
︸ ︷︷ ︸

Cξw

x̃ +
[

0 0 VDd −Dref,d

]
︸ ︷︷ ︸

Dξw

w.
(35b)

Note that therein, ΔA(Ω) = AG(Ω) − An is
introduced as an abbreviation. Hence, Gξw(s,Ω) =
Cξw(sI3n − Aξw(Ω))−1Bξw + Dξw is the transfer matrix
relating w and ξ and a measure for the gain from w to ξ is
‖Gξw(s,Ω)‖∞. Employing the Bounded Real Lemma [18],
we can state the following.

Lemma 1. Given the stable linear time-invariant system ˙̃x =
Aξw(Ω)x̃ + Bξww, ξ = Cξwx̃ + Dξww with transfer matrix
Gξw(s,Ω). Then ‖Gξw(s,Ω)‖∞ < γ holds if and only if there
exists a real symmetric matrix P � 0, such that

⎡
⎢⎣

He
(
PAξw(Ω)

)
PBξw C�ξw

� −γI D�ξw
� � −γI

⎤
⎥⎦ ≺ 0. (36)

The symbol � denotes elements readily inferred by symme-
try and He(Z) = Z + Z� is used as an abbreviation.

It is important to note that if a model matching level γ
is calculated employing a common Lyapunov matrix P for
a finite number of systems with Aξw(Ωi), i = 1, . . . ,N , this
γ is true for all possible systems which lie in the convex hull
spanned by Aξw(Ωi). Thus, only a finite number of N systems
has to be considered, which makes the problem tractable.

Equation (36) is not linear because Aξw(Ω) depends on L.
In order to obtain a convex optimization problem, we impose
a blockdiagonal structure for the Lyapunov matrix as in [24].
With

P =
⎡
⎢⎣
P11 0 0
� P22 P23

� � P33

⎤
⎥⎦ (37)

we have

minimize
P,X ,V

γ subject to (38a)

P � 0, (38b)
⎡
⎢⎣
Ξ11,i Ξ12 Ξ13

� −γI Ξ23

� � −γI

⎤
⎥⎦ ≺ 0, i = 1, . . . ,N (38c)

with

Ξ11,i = He

⎛
⎜⎝

⎡
⎢⎣
P11An − XC 0 P11ΔA(Ωi)

0 P22Aref P23AG(Ωi)
0 P�23Aref P33AG(Ωi)

⎤
⎥⎦

⎞
⎟⎠, (39a)

Ξ12 =
⎡
⎢⎣

0 P11F P11E − XDd

P23B P22Bref, f + P23F P22Bref,d + P23E
P33B P�23Bref, f + P33F P�23Bref,d + P33E

⎤
⎥⎦, (39b)

Ξ13 = C�ξw, (39c)

Ξ23 = D�ξw. (39d)

Therein, a new variable X = P11L is introduced. Notice
that (37)–(39d) is a convex optimization problem, since the
objective function is convex and all constraints are formu-
lated in terms of LMIs and are hence convex as well. After
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solving (37)–(39d), the observer matrix is reconstructed by
L = P−1

11 X . However, it should be noticed that the structure
of the Lyapunov matrix is constrained in order to render the
problem convex. This introduces some conservatism to the
solution. Without these restrictions, the problem includes
bilinear matrix inequalities (BMIs), which are nonconvex
and difficult to solve. The solution obtained by solving (37)–
(39d) might be enhanced using path-following techniques
[40] or the approach proposed in [41].

4. Feasibility Test of the Methods

The feasibility test is done by means of simulation using
the test rig model. As a example a unbalance change on the
left rotor disc of the test rig (see Figure 1) is considered as
fault. Fault detection processes based on the two different
approaches presented in Sections 3.2 and 3.3 are investigated.
In the first one, gyroscopic effect is considered as unknown
inputs and in the second one, gyroscopic effect is considered
as model uncertainties.

Investigation in the simulation shows that in order to
represent the initial unbalances and gyroscopic effect for
the whole rotary frequency range, a 6-column distribution
matrix E of unknown inputs is required. And for a small
rotary frequency range a 2-column matrix E as a subspace of
the 6-column matrix E is enough. Under the real condition
of the test rig with 4 sensors, the decoupling methods,
for example, UIO are not applicable due to the conditions
discussed in the Section 3. Although there are no strong
restrictions of sensor number to apply the optimization
methods, the number of the measurements has a strong
influence on the optimization results. In order to test the
feasibility of the methods for whole frequency range, we
propose a better FDI condition with a 8 sensor configuration
of the test rig presented in Figure 5 and test the methods
by means of simulation. The 4 additional sensors are placed
on 2 sensor planes, which are supposed to have the same
configuration as the original sensor planes on the test rig.

The residual generation process can be generally con-
sidered as signal processing with mixed signal sources. The
residuals can often be scaled arbitrarily in the parameter
design and have a mixed unit, which does not have physical
interpretation. UIO is a special case, whose residuals have
the same units as the outputs. But for the sake of simplicity
and comparison, we consider the residuals without units in
general.

4.1. Consideration of Gyroscopic Effect as Unknown Inputs.
For the approach to consider gyroscopic effect as unknown
inputs, the model in form of (8a) and (8b) is used. A 6-
column matrix E is estimated to represent both influences
of disturbances (initial unbalances) and gyroscopic effect.
For the application of UIO, there must be at least as many
linearly independent measurements as unknown inputs (see
Section 3.2). The matrix E is estimated with 6 columns
to hold the condition and achieve a good approximation.
For the estimation of the matrix E the control inputs are
set to 0 and the rotor is only exited by initial unbalances.

Piezoelectric
actuators

Sensor planes

Figure 5: An 8-sensor configuration of the test rig for simulation.

Signals at 5 different rotary frequencies that cover the whole
rotary frequency range are simulated. Based on each of
the simulated signals in steady state, an unknown input
distribution matrix Ei with 6 columns is estimated using
augmented observer. The 5 Ei are then combined as a vector
set:

EM = [E1,E2, . . . E10]. (40)

Using the singular value decomposition technique intro-
duced in (15) and (16) a 6-column matrix E is calculated
corresponding to the first 6 most significant singular values.

For fault detection a UIO is designed. For the stabiliza-
tion of the system matrix TA (see (19), (20), and (23)) the
pole placement technique is used to determine matrix K1

in (23). The pole placement for UIO is problematic in the
simulation. The eigenvalues of TA are widely distributed on
the complex plane. A pair of eigenvalues of TA (i.e., poles
before the stabilization) lie far left on the complex plane
(in the order of −104), a relocation of these poles causes
numerical problems. Thus these poles are kept in the pole
placement process. The other poles are placed in a region that
is 10 times further left than the poles of the original system.

4.2. Consideration of Gyroscopic Effect as Model Uncertainties.
Dependent on the available information about the system,
the physical model (6a) and (6b) or identified model (7a)
and (7b) at different rotary frequencies can be used for this
approach. In this example, the physical model is used. A 2-
column matrix E is estimated using the same method as in
Section 4.1. Since the gyroscopic effect is already included
in the system matrices, this estimate of E consists only the
influences of initial unbalances. Thus a 2-column E-matrix
is enough for the representation.

To constrain the observer eigenvalues to a specified
region in the left complex half-plane, we add these two
following additional LMIs to optimization problem (38a),
(38b), and (38c)

He(P11An − XC) + 2δP11 ≺ 0, (41a)
[
−rP11 P11An − XC
� −rP11

]
≺ 0. (41b)

While (41a) ensures that all real parts of the observer
eigenvalues are smaller than −δ, (41b) guarantees that the
eigenvalues lie in a circular region around the origin with
radius r [42]. To ensure a sufficient detection speed we
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Figure 6: Frequency response of disturbances and fault on sensor 1 and sensor 7.
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Figure 7: Frequency response of disturbances and fault on the residuals generated by unknown input observer.

select δ = 15 and prevent overly large absolute values of
the observer eigenvalues by r = 105. Both values (δ and r)
have been found to give good detection performance in the
simulations and tests with measurement data.

4.3. Simulation and Results. The fault is implemented as an
additional unbalance in point form which is as large as the
initial unbalance on the left disc and is placed orthogonal to
the initial unbalance on the disc. Thus the resulted unbalance
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Figure 10: Residual generated by UIO.

change is about 41% in the absolute value on the left disc.
Under the influences of the unbalances on the other part of
the rotor system, the influences of the fault are almost invisi-
ble on the output signals compared to the fault free case. The
frequency response on the output signals in fault free case
(i.e., exited only by initial unbalances) and in case of fault
(i.e., exited by initial unbalances and the additional unbal-
ance on the disc) are presented in Figure 6. Sensor 1 measures
the oscillation of the rotor disc on the left side and sensor 7
measures the oscillation of the rotor disc in the middle of
the test rig (see Figure 5). The sensors 1 and 7 are suitable to
measure the first and second eigenforms (see Figure 3).

The result of the unknown input observer is presented in
Figure 7. It is observed that although the frequency responses
vary for the different sensor outputs, the residuals generated
by the UIO have a similar shape. The frequency response
on the residual in case of fault is in general much stronger
than in the fault free case. For the whole rotary frequency
range, the fault detection is based on the rotor model at
Ω = 0; it proves that the gyroscopic effect can be considered
as unknown inputs in the FDI processes.

The residuals generated by observer designed by solving
the model matching problem (MMP) are presented in
Figure 8. Also in this case, the fault can be easily detected by
inspecting the residuals. It can be observed that the dynamics

of the system employing the observer is different from the
original system and the resonances in fault free case and in
case of fault appears at different frequencies. Thus at the
resonances in fault free case and at the anti-resonances in
case of fault the result is not as good as in other frequency
range. As mentioned in Section 3.3, this might be due to
the conservatism introduced to convexify the optimization
problem (34). Iterative solutions of the underlying bilinear
matrix inequality (BMI) problem might improve the results
but are difficult to solve because they are non-convex.

5. Application on Rotor Test Rig

To test the methods on the rotor test rig, we apply an
additional unbalance of 14.3 gmm on the left rotor disc
as fault. The influences of initial unbalances are considered
as major disturbances. We use low-pass filters with cut-
off frequency of 300 Hz to attenuate high frequent noise.
Figure 9 shows the influences of the fault on the sensor
outputs. The changes in the amplitudes caused by the fault
are relatively small. The fault causes rather changes in the
phases.

As mentioned in Section 4 we need 6 sensors to represent
the gyroscopic effect using unknown inputs for whole rotary
frequency range. In order to apply UIO we focus on fault
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Figure 11: Residual generated by means of model matching.

detection at the first resonance excited by unbalances. On
the basis of the model of non-rotating rotor a 2-column
E-matrix is estimated to represent the influences of initial
unbalances and gyroscopic effect using the measurements at
a rotary frequency of 47 Hz. Since only measurements from
4 sensor are available, only the first 4 eigenfrequencies (2 for
forward whorl and 2 for backward whorl) are considered
in the estimation. The influences of higher modal are
neglected. Since the modals with high eigenfrequencies are
not strongly excited in the measurement, we assume that the
estimation is accurate enough for the application of UIO.
For the application of UIO the pole placement process is not
problematic in contrary to the case of simulation. All the
poles are places in the same region that is 10 times further
left than the poles of the original system.

The Results are presented in Figure 10. It can be seen that
the UIO successfully suppress the influences of disturbances
and model uncertainties on the residuals. The influences
of the fault on the residuals are obvious and can be easily
detected.

For the application of the method based on solving MMP,
we use the physical model (2a) and (2b) with modeled
gyroscopic matrix to design the residual generator. We
use the rotor model at 47 Hz for the estimation of the
influences of initial unbalances (i.e., disturbances). Since the

gyroscopic is already considered in the model, this estimate
only represents the disturbances. The design process is the
same as in the simulation.

The generated residuals are presented in Figure 11. In
this case the optimization method does not work well.
Comparing the residuals in case of fault with the residuals
in fault free case Figure 11 only shows slightly enhanced
differences in percentage terms. In the application we try
to set the model in the dear of first resonance as nominal
model. But the result is not improved significantly. Although
there is no strong restriction of sensor number for the
application of optimization methods, the FDI results are
strongly influenced by the number of measurements. In the
model matching process the considered model uncertainties
caused by the gyroscopic effect consists changes in all modals
in contrary to the UIO case. That might be too much for
optimization with only 4 sensors. Also the accuracy of the
physical model might also be a reason for the results. We only
considered the gyroscopic effect as model uncertainty, but
the model inaccuracies caused by other unmodeled dynamics
are not considered for model matching. In case of UIO the
model inaccuracies are considered as part of the unknown
inputs in the estimation of their distribution matrix by
means of measurements. Thus using identified model for
FDI might also improve the result of model matching.
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6. Conclusion

Two approaches to consider the gyroscopic effect (i.e., as
unknown inputs or as model uncertainties) in the model
based FDI processes of rotor systems are presented in this
paper. Different models (i.e., physical model and identified
model) are discussed. Both of the approaches can be applied
on the basis of both physical model and identified model.
FDI methods with constant parameters can be designed on
the basis of these approaches, which is advantageous over the
rotary frequency dependent FDI methods.

Robust fault detection against unknown inputs by means
of UIO and robust fault detection against model uncer-
tainties by means of model matching are presented. For
the estimation of unknown input distribution matrix 2
methods, that is, de-convolution method and augmented
observer, are introduced. As an example for fault detection,
an additional unbalance on the rotor disc is considered as
fault. The feasibility tests of UIO and model matching are
carried out by means of simulation. Both methods show
good results in the simulation with 8 sensors for whole
rotary frequency range, which proves the feasibilities of these
approaches if enough measurements are available. To test
the methods on the rotor test rig with 4 sensors, fault
detections are performed at the first resonance excited by the
unbalances. While the UIO still provides a very good result,
the FDI performance on the basis of model matching is not
satisfactory. The possible reasons are discussed.

For the future work, we are going to integrate more
sensors in the test rig in order to test the methods for whole
rotary frequency range. The influences of the sensor number
on the FDI performance using model matching are to be
investigated.
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