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In view of the problem that the actual degradation status of rolling bearing has a poor distinguishing characteristic and strong
fuzziness, a rolling bearing degradation state identification method based on multidomain feature fusion and dimension reduction
of manifold learning combined with GG clustering is proposed. Firstly, the rolling bearing all-life data is preprocessed by local
characteristic-scale decomposition (LCD) and six typical features including relative energy spectrum entropy (LREE), relative
singular spectrum entropy (LRSE), two-element multiscale entropy (TMSE), standard deviation (STD), RMS, and root-square
amplitude (XR) are extracted and compose the original multidomain feature set. And then, locally preserving projection (LPP)
is utilized to reduce dimension of original fusion feature set and genetic algorithm is applied to optimize the process of feature
fusion. Finally, fuzzy recognition of rolling bearing degradation state is carried out by GG clustering and the principle of maximum
membership degree and excellent performance of the proposed method is validated by comparing the recognition accuracy of LPP
and GA-LPP.

1. Introduction

Rolling element bearings are one of the most important
components for carrying heavy loads and providing constant
rotational speed in rotating machines [1]. With continuous
operation of rotating machines for a long time, rolling bear-
ings’ performance condition is changing all the time and that
affects performance stability of the whole machine directly.
Therefore, there is a practical significance for improving
rotating machines’ service life by rolling bearing degradation
state identification in real time.

The fault feature extracted from vibration signals is
analyzed to determine the bearing state [2]. And fault feature
extraction is the basis of realizing rolling bearing degradation
state recognition. Scientific degradation features can charac-
terize the degradation degree of rolling elements accurately
and stably. Degradation features are mainly selected form
time domain, frequency domain, time-frequency analysis,
and signal complexity aspects. Considering that the actual
vibration signal of rolling bearings is nonlinear and nonsta-
tionary, the ability of time and frequency domain statistics
to characterize different degradation states of the same
bearings is relatively poor. For instance, kurtosis is insensitive

to initial damage [3] and it can hardly characterize the
slight degradation state exactly. These years, the information
entropy theory is widely used in signal processing and fault
diagnosis and it develops into different forms of entropy with
different properties such as approximate entropy (ApEn),
sample entropy (SampEn), multiscale entropy (MSE), spatial
information entropy (SIE), and fuzzy entropy (FuzzyEn) [4,
5]. These entropy features apply nonlinear dynamics theory
which is different from traditional time-domain indexes in
health monitoring and fault identification and have made
achievements. Compared with the preset fault pattern recog-
nition, rolling bearing degradation state recognition in its
whole life is more ambiguous and complex. However, a single
feature of vibration signals can only reflect fault character-
istics of rotating machines at a certain fault degree and this
can result in problems such as recognition inaccuracy, system
instability, and ambiguous recognition results [6]. To address
these problems, multidomain feature fusion is widely used in
degradation state recognition and fault prediction of rotating
machines [7, 8].

However, high-dimensional feature vector composed
by multidomain features inevitably has the problems of
information redundancy and characteristic conflict and the
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effective information is easy to be submerged by high-
dimensional data [9]. Moreover, the use of high-dimensional
data leads to a sharp increase in the amount of calculation
that is not conductive to the real-time identification of rolling
bearing degradation state. Manifold learning theory has the
ability to identify low-dimensional nonlinear structure which
is hidden in high-dimensional data and thus, in recent
years, those manifold learning algorithms including locally
linear embedding (LLE), locally preserving projection (LPP),
isometric feature mapping (IsoMap), and Laplacian eigen-
maps (LE) [10]. By the neighbor graphs obtained from high-
dimensional features, LPP algorithm can gain its projection
in the low-dimensional space. In this way, fusion and reduc-
tion of high-dimensional data are achieved. Compared with
IsoMap and LLE, LPP has an advantage of simple calculation
and fast processing speed. The results of LPP are closely
related to nearest neighbor parameters that have no definite
criterion. Therefore, the optimized parameters are obtained
by repeated experiments. Reference [11] proposed a modified
kernel distance measure sensitivity factor to measure the
ability that fault features characterize different fault patterns.
In view of this, LPP algorithm can be optimized by taking the
sensitivity factor as object function. When the factor reaches
its maximum, the effect of LPP feature fusion is best.

Considering that the actual rolling bearing degradation
states perform strong fuzziness and the boundaries of dif-
ferent degradation states are difficult to determine, Fuzzy
C-means (FCM) clustering [12] and Gustafson-Kessel (GK)
clustering [13] are widely used in fault diagnosis. And Gath-
Geva (GG) clustering improves FCM and GK algorithm by
fuzzymaximum likelihood estimation distance norm and the
clustering effect is better [14].

Based on the above analysis, a rolling bearing degradation
state identification method based on fusion and dimension
reduction of multidomain features and GG clustering is put
forward in this paper. Six features computed from informa-
tion entropy and time domain are fused by LPP optimized
by genetic algorithm (GA-LPP) in order to separate the
training points of different degradation degrees as clear as
possible. Finally. degradation state recognition is realized by
GG clustering and the principle of maximummembership.

2. Multidomain Feature Extraction

2.1. Time-Domain Features. In order to fully characterize
different degradation states of rolling bearings, multi-time-
domain features are needed to analyze. Common time-
domain indexes include mean, standard deviation (STD),
root mean square (RMS), root- square amplitude, skewness,
peak to peak, waveform index, pulse index, margin index,
partial slope index, and kurtosis.These features are examined
from three aspects of ability to follow degradation trend,
monotonicity, and data smoothing. Three features including
STD 𝑥std, RMS 𝑥rms, and root-square amplitude 𝑥

𝑟
are

selected to compose a three-dimensional feature matrix as
follows:

𝑋
1
= [𝑥std; 𝑥rms; 𝑥𝑟] . (1)

2.2. Entropy Features. Combined with LCD theory [4], rel-
ative entropy theory, and multivariate multiscale entropy
theory, the entropy features including LREE, LRSE, and
TMSE are constructed below.

2.2.1. LREE and LRSE. (1) According to the LCDnoise reduc-
tion criterion guided by the mutual correlation coefficient
[15], the vibration signal is decomposed and reconstructed.
Suppose that 𝑀 samples in degradation state 𝑥

𝑖
(𝑡) (𝑖 =

1, 2, . . . ,𝑀) and a single sample 𝑥
𝑏
(𝑡) in normal state are

acquired from the reconstructed signal.
(2) With the development of rolling bearing degradation

state, the energy at characteristic frequency and its multipli-
cationswill become larger in the frequency spectrumwhich is
obtained by LCD andHilbert transform. For rolling bearings,
different fault modes have different vibration characteris-
tics. For a certain rolling bearing fault mode just as inner
ring pitting, its vibration characteristic frequency and its
frequency multiplication can be calculated by the following
formula:

𝑓
𝑔
=

𝑍

2

(1 +

𝑑

𝐷

cos𝛼)𝑓
𝑟
× 𝑔, (𝑔 = 1, 2, . . . , 𝐺) , (2)

where𝑍 is roller number of the bearings, 𝑑 is roller diameter,
𝐷 represents pitch diameter, 𝛼 denotes contact angle, and 𝑓

𝑟

is the rotor frequency.
(3) The sum energy of all samples at the characteristic

frequency 𝑓
𝑔
(𝑔 = 1, 2, . . . , 𝐺) is computed as follows:
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𝑔
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(4)

(5)The LREE between normal state and degradation state
is defined as follows:

LREE𝑖
𝑏
=

𝐺

∑

𝑔=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝
𝑔

𝑖
log

𝑝
𝑔

𝑖

𝑝
𝑔

𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (5)

(6) The singular value spectrum of normal samples
and degradation samples can be obtained by singular value
decomposition (SVD):
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(7) Combinedwith the relative entropy theory, the related
probabilities are defined as 𝑞𝑝𝑔

𝑏
and 𝑞𝑝
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where 𝜎𝑔
𝐿
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(8)The LRSE between normal state and degradation state
is defined as follows:
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2.2.2. TMSE. Through LCD, there is enough degradation
state information in the first two signal components whose
cross-correlation coefficient is higher than others. For the
two components whose sequence length is 𝑁, after coarse
grain, two-element embedding reconstruction, composite
delay vectors, and thresholds setting, assuming that the two
composite delay vectors’ embedding dimensions are 𝑚 and
𝑚 + 1, the conditional probabilities are, respectively, 𝑃𝑚(𝑟)
and 𝑃

𝑚+1

(𝑟) when similar capacity limit is 𝑟. TMSE can
be expressed as the natural logarithm of the conditional
probabilities’ ratio:

TMSE (𝑀, 𝜆, 𝑟,𝑁) = ln [

𝑃
𝑚

(𝑟)

𝑃
𝑚+1

(𝑟)

] , (9)

where𝑀 is embedding vector and 𝜆 is delay vector.
The above three kinds of entropy features constitute

another three-dimensional feature matrix, which can be
expressed as

𝑋
2
= [𝑥LREE; 𝑥LRSE; 𝑥TMSE] . (10)

Above all, entropy features and time-domain features
constitute a six-dimensional multidomain feature matrix:

𝑋 = [𝑋
1
; 𝑋
2
] . (11)

3. Optimized LPP Based on GA

3.1. The Principle of LPP. LPP algorithm can retain the
nonlinear structure and local characteristics inside the data
when it is applied for high-dimensional data reduction. The
algorithm principle can be shown as below [16].

For 𝑛 data samples with 𝐷 dimensional space 𝑋 =
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dimensional vector (𝑑 ≪ 𝐷). The similarity matrix can be
defined by the following formula:
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where 𝑥
𝑖
and 𝑥

𝑗
are the nearest neighbor points and 𝑡 is a

constant.
LPP algorithm can be achieved by solving the following

optimization problem:
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which needs to satisfy 𝑊
𝑇

𝑋𝐷𝑋
𝑇

𝑊 = 1 and 𝐿 = 𝐷 −

𝑄 is Laplace operator. The matrix 𝐷
𝑖𝑖

= ∑
𝑗
𝑄
𝑖𝑗
reflects

the density of the data distribution. Then, the transform
matrix can be calculated by solving the generalized eigenvalue
decomposition problem:

𝑋𝐿𝑋
𝑇

𝑊 = 𝜆𝑋𝐷𝑋
𝑇

𝑊. (14)

In the above formula, the matrix 𝑋𝐷𝑋
𝑇 is sometimes

a singular case. For this problem, the feature set is usually
projected onto a PCA subspace and in this way the singularity
can be eliminated. And then the following linearmapping can
be obtained:

𝑥 󳨀→ 𝑧 = 𝑊
𝑇

𝑥,

𝑊 = 𝑊PCA𝑊LPP.
(15)

3.2. Kernel Space Measure Sensitivity Factor. In order to
evaluate the distinction effect of different degradation states
by training samples after fusion and dimension reduction,
Zheyuan et al. [17] propose that distance between different
types of samples in kernel space is taken as the basis of feature
evaluation. However, in clustering analysis, clustering center
selection not only depends on the distance, but also depends
on the degree of aggregation of the same type of points.There-
fore, reference [11] takes the ratio of different types’ distance
and divergence of the same type as the measure factor in
kernel space. And this factor is regarded as the distinguishing
criterion for high accuracy. The Gaussian radial basis kernel
function is selected to calculate the distance between 𝑝

1
and

𝑝
2
. The form is as follows:
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Then, the distance between two points can be expressed
as

𝐷
𝑘
(𝑝
1
, 𝑝
2
) = √2 − 2𝐾 (𝑝

1
, 𝑝
2
). (17)

On this basis, the average distance between training samples
of type 𝑎 and type 𝑏 can be calculated as follows:
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where 𝑎 = 1, 2 . . . , 𝐶; 𝑏 = 1, 2 . . . , 𝐶. 𝐶 is the number of
sample categories. 𝑁

𝑎
and 𝑁

𝑏
are the number of samples of

type 𝑎 and type 𝑏.
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The average distance between different sample categories
is

𝐽
𝑘
=
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The divergence of the same sample category can be
expressed as

𝑆
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where 𝑥
𝑎
is average of training samples of category 𝑎.

According to the definition, the kernel space measure
sensitivity factor is

𝜀 =

𝐽
𝑘

𝑆
𝑘

. (21)

3.3. Optimization Based on GA. In order to make the fusion
features gained from LPP dimension reduction distinguish
different degradation states better, genetic algorithm (GA) is
applied to optimize the kernel space where there are kinds
of training samples. GA is a newly developing algorithm to
search an optimal solution. The process of GA algorithm
mainly includes population initialization, crossover, muta-
tion, fitness calculation (individual evaluation), and selection
(population replacement).The kernel spacemeasure sensitiv-
ity factor is taken as the fitness function for optimization and
the optimal individual is the case where the discrimination of
different degradation states is highest.

Studies have shown that the clustering effect of LPP
fusion features will change along with the changing kernel
space. In the interest of finding the optimal kernel space,
all training samples need to do affine transformation. Take
3D fusion features as an example, one training point is set
as 𝑃
1
(𝑥
0
, 𝑦
0
, 𝑧
0
) and affine transform angles are set as 𝜃

1
∈

[0, 2𝜋] and 𝜃
2
∈ [0, 2𝜋]. So the affine transformation matrix

is
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1
sin 𝜃
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]

]

]

]

]

]

.

(22)

The new sample feature points after kernel space transfor-
mation can be computed by the following equation:

𝑋 = 𝐴
−1

𝑏. (23)

The two affine transform angles are used as the training
entity and the individuals are randomly generated to com-
plete initialization. By the optimization process of GA, the
training sample clustering effect is found to be the best.

4. GG Clustering Algorithm

For the training sample set 𝑋 = {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
}, it is

assumed that each sample is made up of 𝑑 characteristics:
𝑋
𝑘

= {𝑥
𝑘1
, 𝑥
𝑘2
, . . . , 𝑥

𝑘𝑑
}. After initialization, all samples are

divided into 𝐶 categories; namely, the number of clustering
classifications is 𝐶 (2 ≤ 𝐶 ≤ 𝑁). The clustering centers of
all categories are 𝑉

𝑖
= {V
1
, V
2
, . . . , V

𝑖
} and the membership

matrix is 𝑈 = {𝑢
𝑖𝑘
}
𝐶×𝑁

. The element 𝑢
𝑖𝑘

∈ [0, 1] represents
the membership degree of the 𝑘 training sample to the 𝑖

degradation state (1 ≤ 𝑖 ≤ 𝐶). In GG algorithm, the following
objective function can reach the minimum value with the
iterative adjustment of 𝑈 and 𝑉:

𝐽
𝑚
(𝑈, 𝑉) =

𝐶

∑

𝑖=1

𝑁

∑

𝑘=1

(𝜇
𝑖𝑘
)
𝑚

𝐷
2

𝑖𝑘
, (24)

where𝑚 is the weighted index generally taken to 2.
Different from FCM clustering,𝐷

𝑖𝑘
indicates the distance

measure calculated by the covariance matrix in GG cluster-
ing. In that way, the data samples of different directions and
shapes can be reflected effectively.

5. The Process of Degradation
State Identification

The original vibration signal is preprocessed by LCD. The
time-domain features of STD, RMS, and root-square ampli-
tude and the entropy features of LREE, LRSE, and TMSE are
extracted from the selected signal components to compose
the original characteristic set. The degradation state recogni-
tion processes are as shown in Figure 1.

The degradation state recognition algorithmmainly con-
tains the following key steps:

(i) LCD Pretreatment.According to the cross-correlation
coefficient between the LCD components and the
original signal, the useful components can be chosen.
Considering the amount of information existing in
components and the time of computation, the first
two components whose coefficient is higher than
others are selected for further analysis after many
tests.

(ii) Feature Extraction and Fusion. Six-dimensional mul-
tiple domain features are fused by LPP algorithm
and the intrinsic dimension is three according to the
maximum likelihood estimation.Therefore, the target
dimension of feature fusion is set as three. On the
basis of the maximum sensitive factor principle, the
fusion features are optimized by GA to find the best
kernel space for clustering analysis.

(iii) The clustering centers are determined by GG algo-
rithm and the rolling bearing degradation identi-
fication is achieved by the principle of maximum
membership degree.

6. Instance Verification

6.1. Experimental Platform andData Preprocessing. Thebear-
ing full-life data used in this paper comes from Hangzhou
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Figure 1: Flow chart of the identification method.

Table 1: The experimental parameters.

Motor speed Sampling
interval Sampling time Sampling

frequency
1500 r/min 10min 1 s 25.6 kHz

bearing test and research center [18]. As is shown in Fig-
ure 2(a), the test platform mainly consists of a ABLT-1A
bearing test machine, a signal acquisition module, and state
monitoring equipment. As Figure 2(b) shows, four CA-YD-
139 acceleration sensors are, respectively, fixed up on four
bearing test stations and connected to DH-5920 dynamic
signal acquisition instrument. Four sets of rolling bearings
can be intensively tested andmultiple sets of full-life vibration
data can be stored simultaneously.What ismore, four thermal
resistors and a YD-1 acceleration sensor are connected with a
signal amplifier to monitor the operating parameters. When
the index exceeds the alarm threshold, the test machine will
stop working.

Deep groove ball bearings are widely used in rotating
machinery. There is practical significance in engineering
taking typical type of 6204 bearing as testing object. The real
bearing in normal state is shown in Figure 3(a). The specific
parameters are set as shown in Table 1.

When the test bench running time reaches 9600minutes,
the machine is shut down. Inner ring pitting occurs in the
bearing at number 4 station and that result in bearing failure
(as shown in Figure 3(b)).

The collected 960 groups of vibration data record the
whole process of rolling bearing from normal state to failure
state. Figure 4 shows the real-time monitoring curves of
average amplitude versus time which reflect different degra-
dation states of rolling bearing clearly. According to the
change of curve amplitude and curvature, the rolling bearing
performance variation can be initially divided into four states:
normal state, slight degradation, severe degradation, and
failure state. The details are presented in Table 2.

The original signal is preprocessed by LCD to get 10
intrinsic scale components (ISCs) and the first 5 ISCs are

Table 2: The division of degradation state of rolling bearing
performance.

Degradation
state

Normal
state

Slight
degradation

Severe
degradation

Failure
state

Sample
group 1–682 683–802 803–900 901–960

shown in Figure 5. Further the cross-correlation coefficient
between each component and the original signal is calculated
and the value relation is as follows:

ISC
1
> ISC

3
> ISC

2
> ISC

4
> ISC

5
. (25)

What is more, there are only the first and the third ISC whose
coefficient is more than 0.5, respectively, 0.6487 and 0.5395.
Therefore, the two components are taken as signal source for
degradation feature extraction.

6.2. Degradation Feature Fusion and Optimization. Accord-
ing to the degradation state division in Table 2, 100 groups of
normal data, 100 groups of slight degradation data, 60 groups
of severe degradation data, and 30 groups of failure data
are selected as training samples. The characteristic indexes
of different degradation states are extracted and normalized,
respectively. The 3D time-domain feature points are shown
in Figure 6. In the bearing degradation process from normal
state to failure state, these three features are monotonically
increasing and the effect of failure state distinguishing is
obvious. However, the points of the other three degradation
states aremixing severely and cannot be distinguished clearly.
Although the time-domain features such as RMS are easy to
get and have good stability to characterize degradation states,
literature [19] indicates that these time-domain features are
not sensitive to early bearing fault including slight degra-
dation and severe degradation until bearing failure occurs.
What is more, reference [20] points out that rolling bearings’
vibration signals present nonlinear characteristics, and these
three traditional time-domain features are similar and can
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hardly make an accurate evaluation of the early degradation
states of the bearings. These arguments explain clearly why
the other three degradation states except for the failure one
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are mixed severely and cannot be distinguished by 3D time-
domain features.

Similarly, the 3D complexity feature points made up of
entropy indexes of LREE, LRSE, and TMSE (scale factor is
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15) are shown in Figure 7. The entropy vector can distinguish
normal state, slight degradation, and severe degradation on
the whole. Nevertheless, in the failure state, the training
samples’ clustering effect is unsatisfying. Reference [21]
demonstrates that entropy indexes are sole dependent on the
probability distribution of the event occurrence in bearing
fault signals. They are sensitive to the degradation state
changing but are more susceptible to spurious vibrations.
When the bearing comes to failure state, the violent condition
changing will make the vibration signals mixed with a lot of
spurious components and the entropy features cannot stably
characterize the failure state of bearings. Therefore, the 3D
entropy features at failure state show strong discreteness in
Figure 7.

In order to improve the discrimination effect of dif-
ferent degradation states, the above time-domain features
and entropy features need to be fused. Therefore, the six-
dimensional multidomain feature vectors are input to the
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Figure 8: Space distribution of LPP fusion features.

LPP for feature fusion and dimension reduction. In order
to ensure the information exchanging among the neighbor-
hoods, the neighborhood number 𝑘 should not be too small;
yet if 𝑘 is too large, the local features can be incomplete.
Generally analyzed, the size of 𝑘 should be between 𝑑 and
𝑁 where 𝑑 is the intrinsic dimension and𝑁 is the number of
training samples in each category. In this paper, 𝑑 = 3 and
𝑁 = 30. Thus, 3 < 𝑘 < 30.

The clustering effect is better when 𝑘 = 7 that is presented
in Figure 8. Compared with the time-domain features and
the entropy features, the degradation state distinguishing
ability of the LPP fusion features is better and the clustering
effects of normal state, slight degradation, and failure state
are satisfying. But the robustness of fusion features in severe
degradation state is relatively poor and this results in the fact
that the same severe degradation state is divided into two
sample parts.Meanwhile, the sample class spacing is relatively
small and the clustering effect is not good. So the process of
feature fusion needs to be optimized.

The kernel space measure sensitive factor is taken as the
objective function. According to formula (22) and formula
(23), the kernel space is optimized byGA so that the factor has
amaximumvalue. In order to improve the convergence speed
and ensure the search quality, the population size is set as 𝑁
= 20∼200. After several experiments, 𝑁 = 30. The larger the
crossover probability is, the higher the loss rate of excellent
results is. But when the probability is too small, the search
will be blocked. In general, crossover probability 𝑃

𝑐
= 0.6∼

1.0 and here it is 0.8. Mutation probability generally should
not be too large; otherwise GA will become a random search
method and the precision and speed of convergence will be
influenced. Therefore, the mutation probability 𝑃

𝑚
= 0.03.

As shown in Figure 9, after 26 iterations, the kernel
space measure sensitivity factor tends to be stable and
the maximum value is achieved. And the optimized affine
transformation angles are 𝜃

1
= 1.4910 and 𝜃

2
= 3.8532.

Figure 10 presents the space distribution of optimized fusion
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feature points. In comparison with Figure 8, the optimized
fusion features distinguish different degradation states better
than the original features and especially the clustering effect
of training samples in severe degradation state improves a
lot. What is more, the different class distinctions are further
widening. Thus, the optimization effect is obvious.

In order to furtherly illustrate the excellent performance
of the proposed method, the sensitivity factors of time-
domain features, entropy features, LPP fusion features, and
GA-LPP fusion features are calculated, respectively, and the
result is just as Figure 11 shows. The kernel space measure
sensitivity factor of GA-LPP fusion features is the maximum
one and it indicates that the fusion features have a strong
ability to characterize different bearing degradation states
after GA optimization.

6.3. Degradation State Recognition Based on GG Method.
According to the number of bearing degradation states, the
number of clustering centers is determined as 𝑐 = 4. The
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Figure 11: Clustering effects of different combinations of features.

weighted factor is𝑚 = 2 and the iterative stopping threshold
value is 10−5.The 290 × 3matrix composed byGA-LPP fusion
features is computed by GG clustering and the clustering
center matrix is

𝑉 =

[

[

[

[

[

[

−0.2388 0.0078 0.0097

−0.0076 0.1597 −0.1367

0.0237 −0.4320 0.3697

0.0595 −0.0016 −0.0027

]

]

]

]

]

]

. (26)

In accordance with Table 1, every 5 groups of data are
chosen randomly as testing samples from each degradation
state. The selected 20 groups of data’s multidomain features
are optimized by GA-LPP at the same affine transformation
angles. The fusion feature space distribution is shown in
Figure 12 where the testing feature points are well distributed
around the clustering centers and the testing sample spacing
is large enough. This method can effectively avoid identifica-
tion misjudgment and improve the recognition accuracy.

The membership matrix 𝑈 is established based on grey
correlation analysis. Based on this, bearing degradation state
recognition is realized guided by the principle of maximum
membership value. Table 3 is themembershipmatrix between
the testing samples and each standard degradation state. By
comparing the membership value of the same sample point
and different degradation states, the recognition result is
the degradation state whose membership value is maximum.
Here are two LPP results before and after GA optimization.
Without GA optimization, LPP fusion features judge slight
degradation state as normal state and severe degradation
state is mistaken as failure state. The accuracy of degradation
state recognition is only 85%. In comparison, GA-LPP fusion
features have a better distinguishing ability. 20 groups of
identification results are in complete agreement with the
real degradation states and the excellent performance of the
proposed method is verified.
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Table 3: Result of the rolling bearing degradation state identification.

Real state Sample number Normal state Slight degradation Severe degradation Failure state Recognition result
LPP GA-LPP LPP GA-LPP LPP GA-LPP LPP GA-LPP LPP GA-LPP

Normal state

1 0.8267 0.8743 0.4836 0.3241 0.1256 0.2520 0.3545 0.2147 √ √

2 0.8580 0.8975 0.3348 0.2334 0.2053 0.2683 0.2770 0.2091 √ √

3 0.9181 0.9290 0.3580 0.2181 0.2784 0.1682 0.2901 0.2412 √ √

4 0.6187 0.8452 0.7820 0.2452 0.3029 0.1314 0.3432 0.3455 × √

5 0.9036 0.9342 0.2028 0.1465 0.2113 0.2101 0.1982 0.1136 √ √

Slight degradation

6 0.7578 0.1750 0.5978 0.9012 0.2214 0.1018 0.3010 0.2071 × √

7 0.2677 0.2205 0.8888 0.9001 0.2036 0.1815 0.2350 0.2274 √ √

8 0.2660 0.1827 0.8422 0.9126 0.2151 0.1312 0.2855 0.2562 √ √

9 0.2790 0.1921 0.8241 0.9075 0.2382 0.1833 0.2287 0.1821 √ √

10 0.2395 0.2275 0.8461 0.8925 0.2108 0.2063 0.2956 0.2632 √ √

Severe degradation

11 0.1506 0.1231 0.2487 0.2196 0.8675 0.9196 0.3252 0.1753 √ √

12 0.2216 0.2100 0.3150 0.2473 0.6015 0.8825 0.7757 0.2104 × √

13 0.2067 0.1143 0.2821 0.2235 0.8226 0.8333 0.2862 0.2690 √ √

14 0.1922 0.1813 0.2421 0.2193 0.8483 0.8777 0.2988 0.2734 √ √

15 0.1232 0.1112 0.1726 0.1853 0.8793 0.9169 0.2276 0.2112 √ √

Failure state

16 0.1384 0.1028 0.2005 0.1714 0.2308 0.2158 0.8903 0.9072 √ √

17 0.1766 0.1433 0.1938 0.1526 0.2457 0.2264 0.8900 0.9157 √ √

18 0.1845 0.1664 0.1584 0.1687 0.2283 0.2041 0.8775 0.8909 √ √

19 0.1870 0.1659 0.1426 0.1585 0.2012 0.1993 0.9063 0.9305 √ √

20 0.1985 0.1753 0.2232 0.2054 0.2106 0.1980 0.8959 0.9231 √ √

Note: “√” represents the right recognition result and “×” represents the wrong one.
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7. Conclusion

In order to improve degradation state recognition accuracy
in rolling bearing all-life cycle, this paper proposes a new
degradation state identification method based on GA-LPP
and GG clustering. Through the actual signal processing and
analysis, the following conclusions can be obtained.

(1) Compared with preset fault degrees, it is difficult to
distinguish different degradation states in the bearing
cycle life. Single domain features usually measure

degradation states from only one perspective, so
the ability of single domain features to characterize
complex and fuzzy degradation states can be insuf-
ficient. In manifold learning theory, LPP algorithm
can fuse multidomain features and reduce dimension
to improve distinguishing effects of different degrada-
tion states.

(2) The kernel space measure sensitivity factor is taken
as the optimization criterion. GA algorithm based on
kernel space transformation is applied to optimize
the LPP feature fusion process which can separate
different degradation samples better. In this way, the
clustering effect of the same degradation state is more
satisfactory and the accuracy is higher.

(3) There is some engineering value combining GA-LPP
multidomain feature fusion and GG clustering in the
field of degradation state recognition.

(4) The GA parameter setting has a certain effect on
the convergence speed and the calculation precision.
Even if the parameters are the same for repeated
experiments, the results can fluctuate. Therefore, the
following work is to improve the proposed method
applicability by parameter optimization and enhanc-
ing GA searching stability.
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