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For the case of ultralow surface separation, in a hydrodynamic wedge-platform thrust slider bearing, the outlet zone and a portion
of the inlet zone are in boundary lubrication, while most of the inlet zone is in the multiscale lubrication contributed by both the
adsorbed boundary layer and the intermediate continuum fluid film. The present paper first presents the mathematical derivations
for the generated pressure and carried load of this bearing based on the governing equation for boundary lubrication and the
multiscale flow equation. Then, the full numerical calculation is carried out to verify the analytical derivations. It was found
that the mathematical derivations normally have considerable errors when calculating the hydrodynamic pressure distribution
in the bearing, owing to introducing the equivalent parameter λbf ,e which is constant in the inlet zone; however they can be
used to calculate the carried load of the bearing when the surface separation in the outlet zone is sufficiently high. The study
suggests the necessity of the numerical calculation of the hydrodynamic pressure and even the carried load of this bearing. It is
also shown that owing to the fluid-bearing surface interaction, the pressure and carried load of this bearing are significantly
greater than those calculated from the classical hydrodynamic theory.

1. Introduction

There is an intrinsic very thin boundary layer (normally with
the thickness no more than 10nm) physically adsorbed to
the solid surfaces in a hydrodynamic slider bearing [1, 2].
When the bearing surface separation is on the 1μm scale
or greater, the adsorbed boundary layer effect is negligible,
and the classical hydrodynamic theory [3] may be applied.
It was found that only when the minimum bearing surface
separation is lower than one hundred times of the thickness
of the boundary layer, the boundary layer effect should be
considered [4]. With the increases of the load, sliding speed,
and/or the fluid film temperature, the bearing will work with
the surface clearance on the same scale with the thickness of
the boundary layer. For this case, the classical hydrodynamic
theory fails, and new hydrodynamic theory needs to be
developed by incorporating the boundary layer effect.

For the fluids with long-chain molecules, the boundary
layer may be only monolayer with a considerable thickness,
and it can be taken as a solid layer [5–9]. For this case, the

analysis is simple just by adding the boundary layer thick-
nesses. We can apparently notice the effect of the residual
boundary film for the low bearing surface clearance. For
the fluids with short-chain molecules or simple fluids such
as water, alcohol, and methane, the boundary layer on a sold
surface may consist of several molecule layers in the range of
the fluid-solid interaction, and its rheological properties
including the local density and local viscosity are varied
across the boundary layer thickness according to molecular
dynamics simulation results [10–14]; this boundary layer
should essentially be considered as a flowing layer under
the entrainment of the moving surfaces. By equivalently
treating the boundary layer as orientated normal to the solid
surface, Zhang [15] developed the flow equations, respec-
tively, for the two adsorbed boundary layers and the inter-
mediate continuum fluid in the two-dimensional multiscale
flow when the distance between the two solid surfaces is
comparable to the boundary layer thickness.

Shao et al. [16] analyzed the multiscale hydrodynamic
wedge-platform thrust slider bearing by using Zhang’s
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multiscale flow equations when the two bearing surfaces
approached to one another, but there was still a continuum
fluid film existing in the whole contact intervening the two
boundary layers. Their analysis is obviously more advanced
than the classical hydrodynamic analysis [3], which only
considered the continuum fluid. It is applied for the condi-
tion of heavy loads and/or low sliding speeds. They found
that when the minimum bearing surface separation is below
100nm, the boundary layer effect significantly increases the
hydrodynamic pressure and carried load of the bearing for
the medium and strong fluid-bearing surface interactions.

When the bearing surface clearance is further reduced so
that in the outlet zone the intermediate continuum fluid film
vanishes and there is only the physically adsorbed boundary
layer, the analysis by Shao et al. [16] will fail, and new mathe-
matical analysis should be developed for this special model of
the bearing. In this bearing with ultralow surface separation,
the boundary layer in the outlet zone should follow the nano-
scale flow equation; in the inlet zone area adjacent to the outlet
zone, there is also only the boundary layer existing which
should be described by the nanoscale flow equation; and in
the other area of the inlet zone, there is still the multiscale flow
incorporating both the boundary layer flows and the interme-
diate continuum fluid flow. The present paper attempts to
address this bearing by developing the full mathematical der-
ivation, though Zhang [17] has analyzed this specific mode
of hydrodynamics in a line contact. Numerical calculation is
also made to verify the accuracy of the derived mathematical
equations for the pressure and carried load of the bearing.
Important conclusions are drawn concerning the analysis
and performance of this particular bearing.

2. Model of the Studied Bearing

Figure 1 shows the hydrodynamic wedge-platform thrust
slider bearing with ultralow surface separation studied in this
paper. In this bearing, the surface separation in the outlet zone
is so low (normally on the 1nm scale) that only the physically
adsorbed boundary layer exists (i.e., the intermediate contin-
uum fluid film disappears) in the outlet zone; in the inlet zone
area adjacent to the outlet zone, there is also only the physi-
cally adsorbed boundary layer because of the very low surface
separation, but in the remaining area of the inlet zone occurs
the multiscale hydrodynamics consisting of both the adsorbed
boundary layer flows and the intermediate continuum fluid
flow. This bearing model is new and deserves a proper study,
as the classical (continuum) hydrodynamics fail for it.

Molecular dynamics simulation (MDS) [18–21] may be
used to model the flow of the confined fluid in the nanoscale
surface separation in the outlet zone, and it may also be used
to model the flow of the adsorbed boundary layer in the
multiscale hydrodynamic area in the inlet zone. This should
be feasible if the bearing width is on the 1 nm or 10 nm
scales. However, when the bearing width is on the microm-
eter or millimeter scales, MDS should be given up for model-
ing the molecular scale flow in the bearing owing to costing
too long computational time and too large computer storage.
This is often true so that the conventional multiscale scheme

by using MDS [18–21] is not applicable for the present bear-
ing model.

Fortunately, Zhang [15] derived the closed-form explicit
flow equations, respectively, for the adsorbed boundary layer
flows and the intermediate continuum fluid flow in the two-
dimensional multiscale flow. These equations can be directly
implemented for the multiscale hydrodynamic area in the
inlet zone of the bearing. The nanoscale flow equation [22]
can be implemented for the other area of the bearing, where
only the boundary layer exists. These construct the frame of
the present mathematical analysis for the studied bearing.

3. Theoretical Analysis

The analysis is based on the following assumptions for the
simplification:

(1) The fluid is isoviscous and incompressible; (2) the
two bearing surfaces are identical and perfectly smooth; (3)
the fluid film thermal effect is negligible; (4) the side leakage
of the bearing is negligible; and (5) no interfacial slippage
occurs on any interface. Assumptions (1), (3), and (5) are
correct for the case of very low sliding speeds and very light
loads such as for microslider bearings. When the bearing
clearance is ultralow, even the nanometer-scale surface
roughness is comparable, and the surface roughness effect
should be considered. This subject will be addressed in the
following research. For the other factors deviating from the
above assumptions such as the side leakage, the film viscous
heating, or the wall slippage in a macrosize bearing, the cor-
rection factors can be introduced to modify the present
results for the practical application.

3.1. Mathematical Derivations

3.1.1. For the Zone 1 of the Inlet Zone. In this subzone, the
total mass flow rate through the bearing consists of the
boundary layer flows and the intermediate continuum fluid
flow, which are, respectively, nanoscale noncontinuum and
macroscale. According to Zhang’s multiscale flow equations
[15, 23], this total mass flow rate per unit contact length is:

qm = ρeffbf ,1
F1h
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where λbf = hbf /h; hbf is the thickness of the adsorbed boundary
layer; h is the intermediate continuum fluid film thickness; ρ is
the hydrodynamic pressure; x is the coordinate shown in
Figure 1; u is the sliding speed and here is positive; ρ and η
are, respectively, the bulk density and the bulk viscosity of the
fluid; ρeffbf ,1 and ηeffbf ,1 are, respectively, the average density and
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the effective viscosity of the physically adsorbed boundary layer
in the inlet zone; D and Δx are, respectively, the fluid molecule
diameter and the separation between the neighboring fluidmol-
ecules in the x coordinate direction in the adsorbed layer; q0
= Δj+1/Δj (Δj is the separation between the ðj + 1Þth and jth

fluid molecules across the layer thickness) and q0 is constant;
n is the equivalent number of the fluid molecules across the
layer thickness; and Δn−2 is the separation between the neigh-
boring fluid molecules across the layer thickness just on the
adsorbed layer-fluid interface, ε = ð2DI + IIÞ/½hbf ðn − 1Þ
ðΔl/ηline,lÞavr,n−1�, F1 = ηeffbf ð12D2Ψ + 6DΦÞ/h3bf , and F2 = 6ηeffbf
Dðn − 1ÞðlΔl−1/ηline,l−1Þavr,n−1/h2bf . Here, I =∑n−1

i=1 iðΔl/ηline,lÞavr,i
, Ψ =∑n−1

i=1 iðlΔl−1/ηline,l−1Þavr,i, II =∑n−2
i=0 ½iðΔl/ηline,lÞavr,i + ði + 1

ÞðΔl/ηline,lÞavr,i+1�Δi, Φ =∑n−2
i=0 ½iðlΔl−1/ηline,l−1Þavr,i + ði + 1Þ

ðlΔl−1/ηline,l−1Þavr,i+1�Δi, iðΔl/ηline,lÞavr,i =∑i
j=1Δj−1/ηline,j−1, and

iðlΔl−1/ηline,l−1Þavr,i =∑i
j=1 jΔj−1/ηline,j−1,where ηline,j−1 is the

local viscosity between the jth and ðj − 1Þth fluid molecules
across the layer thickness and ηline,j/ηline,j+1 = qγ0.

Equation (1) is highly nonlinear. For the feasible integra-
tion of Equation (1), the parameter λbf in Equation (1) is
taken as the equivalent constant value λbf ,e = 2hbf /ðkhiÞ,
where k is constant and ranges between 0 and 2. This treat-
ment should surely introduce some calculation errors. The
direct numerical solution to Equation (1) afterwards is also
obtained to verify the accuracy of the mathematical deriva-
tion based on this equivalent treatment.

Substituting dx = dh/tan θ into Equation (1) and rear-
ranging gives that:

dp
dh = ah xð Þ + d

ch3 xð Þ + b
, ð2Þ

where θ is the wedge angle of the bearing,
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,

b = ρeffbf ,1
F1h

3
bf

6ηeffbf ,1
−

h3bf
ηeffbf ,1

1 + 1
2λbf ,e

−
q0 − qn0
qn−10 − qn0

Δn−2
hbf

� �
ε

1 + Δx/Dð Þ

" #
,

c = ρ
1

ηeffbf ,1

F2λ
2
bf ,e
6 −

λbf ,e
1 + Δx/Dð Þ

1
2 + λbf ,e − λbf ,e

q0 − qn0
qn−10 − qn0

Δn−2/D
hbf /D

� �" #
−

1
12η

( )
,

d = 1
tan θ

qm + uρeffbf ,1hbf
� �

: ð3Þ

Integrating Equation (2) by substituting hðxÞ = ðx − l1
− l2Þ tan θ gives that:
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where ζx = ðc/bÞ1/3ðx − l1 − l2Þ tan θ and y1 is an integral
constant.

By using the boundary condition pjx=l1+l2+l3 = 0, it is
solved from Equation (4) that:
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where ζ = ðc/bÞ1/3l3 tan θ.
The pressure in the zone 1 is thus formulated as:

p xð Þ = F1,i1 xð Þqm + F2,i1 xð Þ, forl1 + l2 ≤ x ≤ l1 + l2 + l3, ð6Þ
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Figure 1: The studied hydrodynamic wedge-platform thrust slider bearing with ultralow surface separation.
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where
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6b2/3c1/3 tan θ

2
ffiffiffi
3

p
arctan

ffiffiffi
3

p
1 − 2ζð Þ
3

"(

− arctan
ffiffiffi
3

p
1 − 2ζxð Þ
3

#

− 2 ln 1 + ζ

1 + ζx
− ln 1 − ζx + ζ2x

1 − ζ + ζ2

)
,

F2,i1 xð Þ =
u b1/3ρ − 2c1/3ρef fbf ,1 hbf
� �

12 bcð Þ2/3 tan θ
2 ln 1 + ζ

1 + ζx
+ ln 1 − ζx + ζ2x

1 − ζ + ζ2

 !

+
ffiffiffi
3

p
u b1/3ρ + 2c1/3ρef fbf ,1hbf
� �
6 bcð Þ2/3 tan θ

� arctan
ffiffiffi
3

p
1 − 2ζð Þ
3 − arctan

ffiffiffi
3

p
1 − 2ζxð Þ
3

" #
:

ð7Þ

The pressure on the boundary between the zone 1 and
the zone 2 as shown in Figure 1 is:

p x=l1+l2
�� = F1,i1 l1 + l2ð Þqm + F2,i1 l1 + l2ð Þ: ð8Þ

3.1.2. For the Zone 2 of the Inlet Zone. In this subzone, the
surface separation is so low that the intermediate continuum
fluid film disappears, and only the adsorbed boundary layer
exists; the flow is molecular-scale and noncontinuum.
According to the nanoscale flow equation [22], the total
mass flow rate per unit contact length through this subzone
is:

qm = Sρeffbf ,2h
3
tot

12ηeffbf ,2
dp
dx −

u
2 htotρ

eff
bf ,2, ð9Þ

where ρeffbf ,2 and ηeffbf ,2 are, respectively, the average density
and the effective viscosity of the confined fluid, and S the
parameter describing the noncontinuum effect of the con-
fined fluid across the surface separation.

Substituting dx = dhtot/tan θ into Equation (9) and rear-
ranging gives that:

dp
dhtot

= A1
h2tot

+ B1qm
h3tot

, ð10Þ

where A1 = 6uηeffbf ,2/ðS tan θÞ and B1 = 12ηeffbf ,2/ðSρeffbf ,2 tan θÞ.
Integrating Equation (10) gives that:

p htotð Þ = y2 −
A1
htot
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, ð11Þ

where y2 is an integral constant.

Substituting htot = htot,o + ðx − l1Þ tan θ into Equation
(11) gives that:

p xð Þ = y2 −
A1

htot,o + x − l1ð Þ tan θ
−
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ð12Þ

Based on the pressure continuity condition pjx=l1+l2 =
F1,i1ðl1 + l2Þqm + F2,i1ðl1 + l2Þ, it is solved from Equation
(12) that:
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The pressure in this subzone is thus:

p xð Þ = F1,i2 xð Þqm + F2,i2 xð Þ, forl1 ≤ x ≤ l1 + l2, ð14Þ
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According to Equation (14), the pressure on the bound-
ary between this subzone and the outlet zone is:

p x=l1
�� = F1,i2 l1ð Þqm + F2,i2 l1ð Þ: ð16Þ
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3.1.3. For the Outlet Zone. In the outlet zone, the surface sep-
aration is smaller than the total thickness of the two
adsorbed boundary layers on the bearing surfaces so that
there is only the adsorbed boundary layer. According to
the nanoscale flow equation [22], the total mass flow rate
per unit contact length through the outlet zone is:

qm = Sρeffbf ,2h
3
tot,o

12ηeffbf ,2
dp
dx −

u
2 htot,oρ

eff
bf ,2, ð17Þ

where ρeffbf ,2 and ηeffbf ,2 are, respectively, the average density
and the effective viscosity of the adsorbed boundary layer
across the surface separation in the outlet zone, and S is
the parameter describing the noncontinuum effect of the
boundary layer in the outlet zone.

Integrating Equation (17) gives that:

p xð Þ = x

h3tot,o
A2htot,o + B2qmð Þ + y3, ð18Þ

where A2 = 6uηeffbf ,2/S, B2 = 12ηeffbf ,2/ðSρeffbf ,2Þ, and y3 is an inte-
gral constant.

Based on the boundary condition pjx=0 = 0, it is solved
from Equation (18) that y3 = 0. The pressure in the outlet
zone is thus:

p xð Þ = F1,o xð Þqm + F2,o xð Þ, for 0 ≤ x ≤ l1, ð19Þ

where F1,oðxÞ = B2x/h3tot,o and F2,oðxÞ = A2x/h2tot,o.
According to Equation (19), the pressure on the bound-

ary between the inlet zone and the outlet zone is:

p x=l1
�� = F1,o l1ð Þqm + F2,o l1ð Þ: ð20Þ

3.1.4. Mass Flow Rate and Carried Load of the Bearing. Solv-
ing the coupled Equations (16) and (20) gives the mass flow
rate per unit contact length through the bearing as:

qm = F2,i2 l1ð Þ − F2,o l1ð Þ
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The load per unit contact length carried by the bearing is:
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where k1 = c2/3 tan2θ, k2 = −2c2/3ðl1 + l2Þ tan2θ − ðbcÞ1/3 tan θ,
k3 = ½c1/3 tan θðl1 + l2Þ�2 + ðbcÞ1/3ðl1 + l2Þ tan θ + b2/3, k4 = −2ffiffiffi
3

p ðc/bÞ1/3 tan θ/3, and k5 =
ffiffiffi
3

p ½1 + 2ðc/bÞ1/3ðl1 + l2Þ tan θ�/3.
3.2. Numerical Solution. For examining the accuracy of the
derived equations in Section 3.1 based on the assumed
equivalent value λbf ,e, direct numerical calculations were also
carried out based on Equations (1) and (17). This section
describes the detailed numerical procedure.
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In Figure 2, the discretized points are, respectively,
evenly distributed in the outlet zone, in the zone 2 and in
the zone 1 with the total numbers (N1 + 1), (N2 + 1), and
(N3 + 1).

3.2.1. Numerical Analysis for the Outlet Zone. By backward
difference, the pressure on the ith discretized point in the
outlet zone as shown in Figure 3 is expressed as:

dp
dx

����
i

= pi − pi−1
δx,1

for i = 1, 2,⋯,N1, ð24Þ

where pi and pi−1 are, respectively, the pressures on the ith

and ði − 1Þth discretized points of the outlet zone, and δx,1
= l1/N1.

The pressure on the ith discretized point is:

pi = p0 + 〠
i

k=1
pk − pk−1ð Þ: ð25Þ

According to Equations (17) and (24) and the boundary
condition p0 = 0, it is obtained from Equation (25) that:

pi = 12δx,1 〠
i

k=1

ηeffbf ,2 u/2ð Þhtot,oρeffbf ,2 + qm
	 


Sρeffbf ,2h
3
tot,o

= 12ηeffbf ,2 u/2ð Þhtot,oρeffbf ,2 + qm
	 


iδx,1
Sρeffbf ,2h

3
tot,o

:

ð26Þ

As shown above, the backward difference scheme can
make the numerical results be easily obtained.

l2

y

x

0 1 2 3

x1 x2 x30

htot,o
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N1+N2

l3

N1+N2+N3

xN1
xN1+N2+N3

xN1+N2

Outlet zone Inlet zone

Zone 2 Zone 1

l1

xi

i

2hbf

Figure 2: The ðN1 +N2 +N3 + 1Þ discretized points in the bearing.
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Figure 3: The discretized points in the outlet zone.
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Figure 4: The discretized points in the zone 2 of the inlet zone.
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The pressure on the N th
1 discretized point is:

pN1
= 12ηeffbf ,2 u/2ð Þhtot,oρeffbf ,2 + qm

	 

l1

Sρeffbf ,2h
3
tot,o

: ð27Þ

The load per unit contact length carried by the bearing
outlet zone is:

w1 = δx,1 〠
N1

i=1
pi = 12 δx,1ð Þ2 〠

N1

i=1

ηeffbf ,2 u/2ð Þhtot,oρeffbf ,2 + qm
	 


i

Sρeffbf ,2h
3
tot,o

= 6ηeffbf ,2 u/2ð Þhtot,oρeffbf ,2 + qm
	 


Sρeffbf ,2h
3
tot,o

δx,1ð Þ2 N1 +N2
1

	 

:

ð28Þ

3.2.2. Numerical Solution for the Zone 2 of the Inlet Zone. By
backward difference, the pressure on the ith discretized point
in the zone 2 of the inlet zone as shown in Figure 4 is
expressed as:

dp
dx

����
i

= pi − pi−1
δx,2

for i =N1 + 1,N1 + 2,⋯,N1 +N2, ð29Þ

where pi and pi−1 are, respectively, the pressures on the ith

and ði − 1Þth discretized points in this subzone, and δx,2 = l2
/N2.

The pressure on the ith discretized point is:

pi = pN1
+ 〠

i

k=N1+1
pk − pk−1ð Þ: ð30Þ

By substituting Equations (9) and (29), it is obtained
from Equation (30) that:

pi = pN1
+ 12δx,2 〠

i

k=N1+1

ηeffbf ,2 u/2ð Þ htot,o + xk − l1ð Þ tan θ½ �ρeffbf ,2 + qm
� �

Sρeffbf ,2 htot,o + xk − l1ð Þ tan θ½ �3 :

ð31Þ

The pressure on the ðN1 +N2Þth discretized point is:

pN1+N2
= pN1

+ 12δx,2 〠
N1+N2

k=N1+1

ηeffbf ,2 u/2ð Þ htot,o + xk − l1ð Þ tan θ½ �ρeffbf ,2 + qm
� �

Sρeffbf ,2 htot,o + xk − l1ð Þ tan θ½ �3
:

ð32Þ

The force per unit contact length generated by the film in
this subzone is:

3.2.3. Numerical Solution for the Zone 1 of the Inlet Zone. By
backward difference, the pressure on the ith discretized point
in the zone 1 of the inlet zone as shown in Figure 5 is
expressed as:

dp
dx

����
i

= pi − pi−1
δx,3

for i =N1 +N2 + 1,N1 +N2 + 2,⋯,N1 +N2 +N3,

ð34Þ

where pi and pi−1 are, respectively, the pressures on the i
th and

ði − 1Þth discretized points in this subzone, and δx,3 = l3/N3.
The pressure on the ith discretized point is:

pi = pN1+N2
+ 〠

i

k=N1+N2+1
pk − pk−1ð Þ: ð35Þ

By substituting Equations (2) and (34), it is obtained
from Equation (35) that:

pi = pN1+N2
+ δx,3 〠

i

k=N1+N2+1

tan θ a xk − l1 − l2ð Þ tan θ + d½ �
c xk − l1 − l2ð Þ tan θ½ �3 + b

:

ð36Þ

The pressure on the ðN1 +N2 +N3Þth discretized point is:

pN1+N2+N3
= pN1+N2

+ δx,3 〠
N1+N2+N3

k=N1+N2+1

tan θ a xk − l1 − l2ð Þ tan θ + d½ �
c xk − l1 − l2ð Þ tan θ½ �3 + b

:

ð37Þ

The force per unit contact length generated by the film in
this subzone is:

w2 = δx,2 〠
N1+N2

i=N1+1
pi = l2pN1

+ 12 δx,2ð Þ2 〠
N1+N2

i=N1+1
〠
i

k=N1+1

ηeffbf ,2 u/2ð Þ htot,o + xk − l1ð Þ tan θ½ �ρeffbf ,2 + qm
� �

Sρeffbf ,2 htot,o + xk − l1ð Þ tan θ½ �3
: ð33Þ

w3 = δx,3 〠
N1+N2+N3

i=N1+N2+1
pi = l3pN1+N2

+ δx,3ð Þ2 〠
N1+N2+N3

i=N1+N2+1
〠
i

k=N1+N2+1

tan θ a xk − l1 − l2ð Þ tan θ + d½ �
c xk − l1 − l2ð Þ tan θ½ �3 + b

: ð38Þ
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Figure 5: The discretized points in the zone 1 of the inlet zone.
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Figure 6: The flow chart of the numerical solution.
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3.2.4. Numerical Solution Procedure. In the numerical calcu-
lation, the initial value of qm is chosen as that calculated
from the classical hydrodynamic theory [3]. Then, the pres-
sures on all discretized points can be calculated from the
equations shown above, by starting the calculation from
the exit of the bearing. The value of qm in the iteration will
be changed until the following convergence criterion is satis-
fied: j2ðQm,max −Qm,minÞ/ðQm,max +Qm,minÞj < 0:1%. Figure 6
shows the numerical solution procedure.

4. Calculation

Exemplary calculations were made for the following opera-
tional parameter values:

D = 0:5nm, Δn−2/D = Δx/D = 0:15, l1 = l2 + l3 = 100μm, θ = 1E − 4 rad:
ð39Þ

The parameters Cq1ðHbf ,1Þ and Cq2ðHbf ,2Þ are generally
expressed as [24]:

Cq Hbfð Þ =
1, forHbf ≥ 1
m0 +m1Hbf +m2H

2
bf +m3H

3
bf , for 0 <Hbf < 1

(
,

ð40Þ

whereHbf isHbf ,1 orHbf ,2; Cq1 = ρeffbf ,1/ρ; Cq2 = ρeffbf ,2/ρ; andm0,
m1, m2, and m3 are, respectively, constant; Hbf ,1 = hbf /hcr,bf ,1;
Hbf ,2 = htot/hcr,bf ,2; and hcr,bf ,1 and hcr,bf ,2 are, respectively, the
critical thicknesses for characterizing the rheological properties
of the adsorbed boundary layer in the zone 1 of the inlet zone
and those of the boundary layer confined in the whole surface
separation in the zone 2 of the inlet zone and in the outlet zone.
In the analytical derivation, the values ofCq2 in the zone 2 of the
inlet zone as shown in Figure 1 are treated as an approximate
and constant value to reduce the problem nonlinearity although
they are actually varied and dependent on the surface separation
in this subzone as shown by Equation (40). When calculating
Cq2 from Equation (40) for the zone 2 of the inlet zone, it is
taken that htot = ðhtot,o + 2hbf Þ/2 to find the average and con-
stant value of Hbf ,2 in this subzone according to Figure 1.

The parameters Cy1ðHbf ,1Þ and Cy2ðHbf ,2Þ are generally
expressed as [24]:

Cy Hbfð Þ =
1, forHbf ≥ 1

a0 +
a1
Hbf

+ a2
H2

bf
, for 0 <Hbf < 1

8<
: , ð41Þ

where Cy1 = ηeffbf ,1/η, Cy2 = ηeffbf ,2/η, and Hbf is same as in
Eq.(40), and a0, a1, and a2 are, respectively, constant.

The parameter S is expressed as [24]:

S Hbf ,2ð Þ =
−1, forHbf ,2 ≥ 1

n0 + n1 Hbf ,2 − n3ð Þn2� �−1, for n3 <Hbf ,2 < 1

(
,

ð42Þ

where Hbf ,2 is same as in Equation (40), and n0, n1, n2, and
n3 are, respectively, constant.

The regressed equations for F1, F2, and ε are repeated as
follows [15]:

F1 = 0:18 Δn−2
D

− 1:905
� �

ln n − 7:897ð Þ,

F2 = −3:707E − 4 Δn−2
D

− 1:99
� �

n + 64ð Þ q0 + 0:19ð Þ γ + 42:43ð Þ,

ε = 4:56E − 6 Δn−2
D

+ 31:419
� �

n + 133:8ð Þ q0 + 0:188ð Þ γ + 41:62ð Þ:

ð43Þ

Table 1: Fluid viscosity data for different fluid-bearing surface
interactions [24].

Interaction
Parameter

a0 a1 a2
Strong 1.8335 -1.4252 0.5917

Medium 1.0822 -0.1758 0.0936

Weak 0.9507 0.0492 1.6447E-4

Table 2: Fluid density data for different fluid-bearing surface
interactions [24].

Interaction
Parameter

m0 m1 m2 m3
Strong 1.43 -1.723 2.641 -1.347

Medium 1.30 -1.065 1.336 -0.571

Weak 1.116 -0.328 0.253 -0.041

Table 3: Fluid noncontinuum property data for different fluid-
bearing surface interactions [24].

Interaction
Parameter

n0 n1 n2 n3
Strong 0.4 -1.374 -0.534 0.035

Medium -0.649 -0.343 -0.665 0.035

Weak -0.1 -0.892 -0.084 0.1

Table 4: The values of n, q0, γ, hcr,bf ,1, and hcr,bf ,2 for different fluid-
bearing surface interactions.

Interaction
Parameter

n q0 γ hcr,bf ,1(nm) hcr,bf ,2(nm)

Strong 8 1.2 1.5 40 80

Medium 5 1.1 1 20 40

Weak 3 1.03 0.5 7 14
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The thickness of the adsorbed boundary layer was calcu-
lated from the following equation:

hbf = nD + q0 − qn0
qn−10 − qn0

Δn−2: ð44Þ

The weak, medium, and strong fluid-bearing surface
interactions were, respectively, considered. The input
parameter values for these interactions are, respectively,
shown in Tables 1–4.

5. Results

5.1. Validation of the Numerical Calculation. For validating
the numerical calculation, the numerically solved pressures
for different discretized points in the bearing are compared
in Figure 7 with the classical hydrodynamic theory calcula-
tions [3] when the model of the bearing is assumed as classical
(i.e., the fluid is Newtonian with the adsorbed boundary layer
neglected). With the discretized points nearly evenly distrib-
uted in the bearing, it is shown that N0 =N1 +N2 +N3
=1000 is sufficient for the numerical accuracy.

5.2. Validation of the Analytical Derivations for the Present
Model of the Bearing. In the analytical derivations of the
pressure and carried load of the present model of the bearing

as shown above, it is critically important to assume the
equivalently constant parameter λbf ,e and to take htot = ð
htot,o + 2hbf Þ/2 to calculate the approximate and constant
values of Cq2, Cy2, and S in the zone 2 of the inlet zone.
These treatments will unavoidably cause the calculation
errors. For estimating the accuracy of the analytical deriva-
tions for the present bearing, the calculations of the pressure
from Equations (6), (14), and (19) are compared with the
full numerically calculated pressures. In the numerical calcu-
lation, N0 = 1000.

Figure 8(a) compares the dimensionless pressure distri-
butions in the present model of the bearing, respectively,
analytically calculated and numerically solved for different
fluid-bearing surface interactions for the same operating
conditions. It is shown that for the weak and medium
fluid-bearing surface interactions, there are only small differ-
ences between these two calculations; however, for the
strong fluid-bearing surface interaction, there are significant
differences between these two calculations. It is suspected
that the analytical calculation errors should mainly be aris-
ing from the approximate calculations of Cq2, Cy2, and S
(respectively, from Equations(40)–(42)) in the zone 2 of
the inlet zone by putting htot = ðhtot,o + 2hbf Þ/2. As shown
in Figure 1, if htot,o is very close to 2hbf , the surface separa-
tion in the zone 2 of the inlet zone is nearly constant, and

0.0 0.2 0.4 0.6 0.8 1.0
0.0E+00

4.0E+03

8.0E+03

1.2E+04

1.6E+04

2.0E+04

P

X

Analytical calculation

Numerical calculation, N0 = 100

Numerical calculation, N0 = 300

Numerical calculation, N0 = 600

Numerical calculation, N0 = 1000

Figure 7: Comparison of the numerically solved pressures for different discretized points with the classical hydrodynamic theory calculation
(i.e., analytical solution) [3] when the model of the bearing is assumed as classical, N0 =N1 +N2 +N3 and htot,o = 3nm.
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Figure 8: Comparisons of the analytically calculated pressures in the present model of the bearing with the full numerical calculation results
for different fluid-bearing surface interactions.
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it can be taken as htot = ðhtot,o + 2hbf Þ/2. In such a case, the
calculation errors of Cq2, Cy2, and S in the zone 2 of the inlet
zone should be small enough so that the accuracy of the ana-
lytical calculation is good.

For justifying this suspect, we use htot,o = ð2hbf Þ0:99 to recal-
culate the analytical pressures andmake the similar comparisons
in Figure 8(b). This chosen value of htot,o is very close to 2hbf , and
it should substantially improve the accuracies of the analytical
calculation. It is shown that for the strong interaction, the calcu-
lation error of the analytical equations is much reduced com-
pared to those in Figure 8(a). Figure 8(b) verifies our conjecture.

Figure 9 compares the analytically calculated dimension-
less loads of the present model of the bearing (by Equation
(22)) with those numerically calculated for different fluid-
bearing surface interactions. It is shown that for the weak
interaction, the accuracy of the analytical calculation is
acceptable, and for the medium interaction, it is acceptable
for htot,o ≥ 2:5nm, while for the strong interaction, it is
acceptable for htot,o ≥ 4nm. The comparisons validate the
value of the present analytical derivations.

5.3. Bearing Performances. This section presents the numer-
ical calculation results for the hydrodynamic pressure and
carried load of the present model of the bearing. In all these
calculations, N0 = 1000.

5.3.1. Pressure Distribution. Figures 10(a)–10(c) show the
dimensionless hydrodynamic pressure distributions in the

present model of the bearing, respectively, for different
fluid-bearing surface interactions and different bearing
clearances. Compared to the classical hydrodynamic theory
calculation, the present calculation shows that for the weak
interaction and the outlet bearing clearances of 1.5 nm and
3nm, the pressures in the bearing are very significantly
increased due to the physically adsorbed boundary layers
on the two bearing surfaces. For the medium and strong
interactions, the pressure increases can, respectively, be 1
and 2 orders. These figures strongly indicate that the fluid-
bearing surface interaction has a heavy influence on the
pressures in the bearing.

5.3.2. Carried Load of the Bearing. Figure 11 compares the
calculated dimensionless carried loads of the present model
of the bearing for different fluid-bearing surface interactions
for the same operating conditions. For maintaining the
model of the bearing for all these three interactions, the plot-
ted range of htot,o is narrow. The weak interaction gives the
load of the bearing a bit larger than that calculated from
the classical hydrodynamic theory. The medium and strong
interactions give the loads of the bearing, respectively, 1 and
3 orders larger than the classical hydrodynamic theory cal-
culation. In the studied model of the bearing, owing to the
ultralow surface separating and the resulting heavy influence
of the physically adsorbed boundary layer on the bearing
surface, the fluid-bearing surface interaction largely alters
the bearing performance.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
1E8

1E9

1E10

1E11

1E12

W

htot,o (nm)

Strong interaction

Medium interaction

Weak interaction

Numerical calculation
Analytical calculation

Figure 9: Comparisons of the analytically calculated dimensionless load of the present model of the bearing with those numerically
calculated for different fluid-bearing surface interactions.
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Figure 10: Continued.
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Figure 11: Dimensionless carried load of the present model of the bearing.
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Figure 10: Dimensionless hydrodynamic pressure distribution in the present model of the bearing. Solid line denotes the present numerical
calculation, and dashed line denotes the calculation from the classical hydrodynamic theory [3].
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6. Conclusions

In a hydrodynamic thrust slider bearing, when the surface
separation in the outlet zone is ultralow (e.g. on the 1 nm
scale), in the outlet zone there is only the boundary layer
physically adsorbed to the bearing surfaces, while in most
of the inlet zone, there are the adsorbed boundary layers
and the continuum fluid film. In this case, the bearing outlet
zone is in the boundary lubrication, while most of the bear-
ing inlet zone is in the multiscale lubrication. The classical
analysis fails for this bearing owing to neglecting the
adsorbed boundary layer.

The present study develops the mathematical analysis
for the hydrodynamic wedge-platform thrust slider bearing
with ultralow clearances by addressing this mode of lubrica-
tion. The nanoscale flow equation [22] describes the flow of
the boundary layer in the outlet zone, and the multiscale
flow equations [22] describes the flows of the adsorbed
boundary layers and the intermediate continuum fluid film
in the inlet zone.

The closed-form explicit equations have been derived,
respectively, for calculating the hydrodynamic pressure and
carried load of the studied bearing by making some simpli-
fying assumptions, i.e., by introducing the equivalent param-
eter λbf ,e for the multiscale hydrodynamic area and by using
htot = ðhtot,o + 2hbf Þ/2 to calculate the values of Cq2, Cy2, and
S in the boundary lubrication area in the inlet zone. The
numerical calculations were also carried out to verify the
accuracies of the derived analytical equations. It was found
that for the weak fluid-bearing surface interaction, the accu-
racies of the analytical equations are acceptable; for the
medium interaction, they are acceptable for htot,o ≥ 2:5 nm
(htot,o is the surface separation in the bearing outlet zone),
while for the strong interaction, they are acceptable for
htot,o ≥ 4 nm. It was found that the errors of the derived ana-
lytical equations are mainly caused by using htot = ðhtot,o + 2
hbf Þ/2 to calculate Cq2, Cy2, and S in the boundary lubrica-
tion area in the inlet zone.

The numerical calculations show that in the present
model of the bearing with ultralow surface separations, even
for the weak fluid-bearing surface interaction, the pressures
are very significantly increased due to the physically
adsorbed boundary layers on the two bearing surfaces; for
the medium and strong interactions; the pressure increases
can, respectively, be 1 and 2 orders; and the load-carrying
capacity of the bearing is correspondingly increased by the
fluid-bearing surface interaction.

Nomenclature

a0, a1, a2: Constant
Cy1: ηeffbf ,1/η
Cq1: ρeffbf ,1/ρ
Cy2: ηeffbf ,2/η
Cq2: ρeffbf ,2/ρ
D: Fluid molecule diameter

F1, F2, ε: Parameters accounting for the nonconti-
nuum effect of the adsorbed boundary layer

h: Continuum fluid film thickness
hcr,bf ,1: Critical thickness for characterizing the

rheological properties of the adsorbed
boundary layer in the zone 1

hcr,bf ,2: Critical thickness for characterizing the
rheological properties of the adsorbed
boundary layer in the zone 2 or in the
outlet zone

hbf : Thickness of the adsorbed layer
hi: Continuum fluid film thicknesses on the

entrance of the bearing
htot: Surface separation
htot,i: Surface separation on the entrance of the

bearing
htot,o: Surface separation on the exit of the

bearing
Hbf ,1: F1 = ηeffbf ð12D2Ψ + 6DΦÞ/h3bf
Hbf ,2: hbf /hcr,bf ,2
k: Parameter for formulating λbf ,e
l1, l2, l3: Widths of the outlet zone, the zone 2 and

the zone 1, respectively
m0,m1,m2,m3: Constant
n0, n1, n2, n3: Constant
n: Equivalent number of the fluid molecules

across the adsorbed layer thickness
N0: N1 +N2 +N3
N1 + 1: Number of the discretized points in the

outlet zone
N2 + 1: Number of the discretized points in the

zone 2
N3 + 1: Number of the discretized points in the

zone 1
p: Hydrodynamic pressure
P: Dimensionless pressure, phtot,o/uη
q0: Δj+1/Δj

qm: Total mass flow rate per unit contact length
through the bearing

Qm: Dimensionless total mass flow rate, qm/ð
uhtot,oρÞ

S: Parameter accounting for the nonconti-
nuum effect across the surface separation

u: Sliding speed of the bearing
w1,w2,w3: Load components, respectively, contributed

by the outlet zone, the zone 2 and the zone 1
W: Dimensionless load, w/uη
x: Coordinate
X: Dimensionless coordinate, x/ðl1 + l2 + l3Þ
y1, y2, y3: Integral constant, respectively
θ: Wedge angle of the bearing
γ: Exponent
ρ: Fluid bulk density
ρeffbf ,1: Average density of the adsorbed boundary

layer in the zone 1
ρeffbf ,2: Average density of the adsorbed boundary

layer across the whole surface separation in
the zone 2 or in the outlet zone
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η: Fluid bulk viscosity
ηeffbf ,1: Effective viscosity of the adsorbed bound-

ary layer in the zone 1
ηeffbf ,2: Effective viscosity of the adsorbed bound-

ary layer in the zone 2 or in the outlet zone
ηline,j−1: Local viscosity between the jth and ðj − 1Þth

fluid molecules across the layer thickness
λbf : hbf /h
λbf ,e: 2hbf /ðkhiÞ
Δj: Separation between the ðj + 1Þth and jth

fluid molecules across the layer thickness
Δx: Separation between the neighboring fluid

molecules in the flow direction in the
adsorbed boundary layer

Δn−2: Separation between the neighboring fluid
molecules across the layer thickness just on
the boundary between the adsorbed
boundary layer and the continuum fluid
film

δx,1: l1/N1
δx,2: l2/N2
δx,3: l3/N3
ζ: ðc/bÞ1/3l3 tan θ
ζx: ðc/bÞ1/3ðx − l1 − l2Þ tan θ.
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