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The purpose of this paper is to carry out an alternative to the present transient models for field wound synchronous machines,
which is able to take into account the nonlinearity of the magnetic materials as well as the cross-magnetization. After
presenting the principal model structures according to the state variables, a model based on two lookup tables for the
magnetizing flux linkages is introduced and built step by step. The resulting signal flowchart shows an algebraic loop within
the model, where the main flux linkage rapidly converges to its instantaneous value by simple iteration. The proof of this
convergence is given for both saturated and unsaturated machine. Even though the proposed model uses the total linkage flux
as state variable, as many alternative models do, it does not require the inversion of the current to flux linkage function (i.e., of
lookup tables). This can spare a heavy computational task, especially with very large lookup tables. In the proposed model, the
computational effort in the worst case scenario is reduced to few iterations (<10). Finally, the nonlinear behavior of the model
is verified in four different transient scenarios by comparing its outcomes with those of a linear model for the same test machine.

1. Introduction

The study of synchronous machines (SM) in nonstationary
behavior has taken advantage of the Park theory since many
decades. The separation of the combined actions of all
machine magnetomotive forces (MMFs) along the two elec-
trically orthogonal rotor magnetic axes makes the corre-
sponding magnetic flux linkages independent from the
relative position between rotor and stator. This simplifies
in turn the solution of the electromechanical differential
equations (DEs) which describe the machine behavior, since
the machine self-inductance and mutual inductance become
time invariant. Nevertheless, the nonlinearity of the mag-
netic properties prevents the problem to be simply solved
by the theory of linear DE or the Laplace transform. There-
fore, the numerical integration of DE by means of computa-
tional resources has become the main way to simulate SM-
related transient phenomena making use of a d-q axis
model. Transient related to the electric system dynamic sta-

bility [1, 2], symmetrical and asymmetrical faults [3, 4], load
rejection [5], and asynchronous behaviors [6–8] have done
large use of nonlinear SM models based on the d-q axis the-
ory. In more recent time, the interest for the transient model
of SMs has been awaken by the applications of embedded
systems (ES) to the control of SM for industrial and traction
applications [9–13]. In that case, the model is used in the
observer of a driven motor, in order to predict its state var-
iables. In this specific task, the model must fulfil not only the
usual requirement to be accurate in the predictions but also
to deliver them quickly. This fact well represents the
observer dilemma between the complexity of the model on
one side and the need for its computational lightness on
the other side. For example, taking into account the nonlin-
earity and the cross-magnetization introduced by the ferro-
magnetic materials in a SM model [14, 15], it improves the
outcome accuracy of the model itself, but it requires more
computational resources. In order to tackle this computational
problem, lookup tables (LUTs) [14, 16] are increasingly
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preferred to analytic formulas [17, 18] for implementing the
nonlinearity and the cross-magnetization in SM models. In
fact, LUTs can provide the armature flux linkage for a given
magnetomotive force (MMF) just by entering a multidimen-
sional numerical table and picking up its value. All that with-
out getting the CPU involved in any sort of time-consuming
calculation. Nonetheless, for the experimental and the compu-
tational determinations of the relationship between the flux
leakages and the currents, see the currents as sources and the
linked fluxes as outcomes [16, 17]. For this reason, the flux-
linkage-to-current LUT, which is needed in the model using
the flux linkage as state variable, cannot be measured or calcu-
lated straightforwardly. It must rather be obtained through the
inversion of the current-to-flux-linkage function ΨðiÞ. In an
ingenious closed loop [14, 16], control strategies have been
invented, which are nested in a numeric iterative procedure,
in order to obtain the flux-linkage-to-current LUT moving
from an available current-to-flux-linkage one. Besides, the
recourse to a SMmodel having the current as variable of state,
which makes knowingly use of the straight functionΨðiÞ, does
not lighten the calculation burden anyway, since a marginal
inductance matrix lðiÞ of the machine and its inversion are
also needed [17]. This paper offers a solution for using a SM
machine transient model having all machine flux linkages as
state variables, without any need for the inversion of the cur-
rent-to-flux-linkage LUTs. The key idea for bypassing the
issue of the ΨðiÞ inversion is the recourse to LUTs which
are related to the magnetizing flux linkages along the d-axis
and the q-axis rather than to the whole flux linkages. Then,
the machine currents can be alternatively obtained from the
distance vector between the flux linkages and the main fluxes
via a constant leakage matrix, which is related to the machine
stray inductances. Therefore, particular attention is paid in
this paper to the construction of the leakage matrix starting
from the most suitable and general SMmodel. Moreover, pro-
vided an input for the machine state of magnetization together
with the external electrical and mechanical constraints at a
given time, it is proved that the proposed model converges
necessarily to the instantaneous values of the state variables.
In the part dedicated to the method, after having revised the
possible structures for a SMmodel and introduced a complete
SM d - q-axis model, the paper shows the linear proportional-
ity between the machine currents and the distance vector
between main and flux linkages. Hence, the alternative flux
linkage-based model is built, and its convergence to the timely
state variables is demonstrated. The model is tested on a
60kVA, 400V, 50Hz salient pole synchronous machine
(SPSM). The method for obtaining the related LUTs bymeans
of FEM calculations is described in the appendix, whereas the
implications of the nonlinearity and the cross-magnetization
on the machine behavior are discussed in the paper body.
The section dedicated to the results shows the simulations
obtained by means of the novel model. Four different transi-
tory behaviors have been simulated: (1) rapid transition from
nominal excitation to underexcitation and back; (2) 10% sud-
den increase of the grid voltage; (3) rapid drop of the driving
torque (-75%) under constant power factor; and (4) severe
voltage sag (-60%) lasting several cycles. The results achieved
through the proposed model are compared with the ones

achieved for the same SPSM by a linear model (i.e., having
constant d-axis and q-axis magnetizing inductances) in order
to highlight the errors introduced in the results by neglecting
nonlinearity- and cross-magnetization-related phenomena in
the machine model.

2. Materials and Methods

2.1. A Novel Structure for the SM Model. In [19], it has been
proved that by assuming the SM flux linkages or alterna-
tively the currents as state variables, or even considering a
combination of them, several different SM equivalent models
can be obtained. Nevertheless, in the practical applications, the
most recurrent models [17] are those represented in Figure 1.
In particular, the model in Figure 1(a) assumes the armature
flux linkage vector Ψ as a state variable whereas the model
in Figure 1(b) uses the armature currents vector i to that
end. The last model is straightforwardly apt to host a LUT that
relates the flux linkage vector to the armature currents. In fact,
as soon as the machine is considered anhysteretic, the function
ΨðiÞ becomes single-valued. Hence, it can be univocally
approximated, in a domain D of the armature currents, by
interpolating a finite number of its samples collected in a
LUT. Since the anhysteretic assumption has the collateral
drawback of disregarding part of the magnetic losses in the
machine, they need to be reintroduced into the model later
on. Fortunately, there are many available methods [9] for
doing that, and this specific topic will therefore not be dealt
in the present paper.

However, choosing the current vector as a state variable
procures additional complexity to the model: the construc-
tion of the incremental inductance matrix
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Figure 1: Typical structures of a SM model having (a) the flux
linkage or (b) the current as a variable of state.
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on one side and the calculation of its inverse l−1 on the other
side. Both [16, 17] agree in preferring the model of
Figure 1(a) to that of Figure 1(b) because it leads to more
simple state equations. Moreover, in ES making use of a full
order observer, the flux linkage vector is always available.
Conversely, if the observer does not have full rank, the
model of Figure 2(b) must be forcibly used according to
the state of the art, due to the lack of estimations for the flux
linkages.

The novel model proposed by the present work is repre-
sented in Figure 2.

The following can be observed: (I) it keeps all flux link-
ages, not only those of the armature, as state variables; (II)
it implements the function iðΨÞ of Figure 1(a) by combining
a constant matrix L−1σ , to be yet defined, and a nonlinear
single-valued function ΨmðiÞ, which represents the arma-
ture main flux linkages. Feature (I) spares the use of (1) in
the model as well as the issue of its inversion, whereas fea-
ture (II) introduces the novelty of the suggested model. In
particular, it does not require the construction of the inverse
function iðΨÞ starting from ΨðiÞ as shown in [14, 16], and it
is applicable to reduced order observers as well, since its sat-
uration model ΨmðiÞ works upon available current measure-
ment/estimation rather than on flux linkage ones.

However, the exploitation of this model requires two
aspects to be clarified in advance. First of all, the machine
currents are a linear combination of flux linkages and mag-
netizing flux linkages according to

i = L−1σ Ψ −CTΨm
À Á

, ð2Þ

with L−1σ and C being the constant matrices to be defined.
Second, the block diagram within the shaded box in
Figure 2 forms an algebraic loop, which sets a convergence
problem in a discrete time integration of the related DEs.
At the generic integration instant tk, the highlighted block
gets the estimated vector of the flux linkages Ψk as an input.
Two possible outcomes can occur within the next time
instant tk+1: either the generic main fluxes Ψm,j converge
to their actual values at tk—providing through that an esti-
mation for the currents ik at the same time—or they diverge
making the simulation progress impossible. From a system
perspective, the proof of the convergence within the loop is
equivalent to demonstrate the existence of a solution i in

i = L−1σ Ψ −CTLUT ið ÞÀ Á
, ð3Þ

for all possible Ψ, once the main flux ΨmðiÞ is expressed by
means of LUTs

Ψm ið Þ = LUT ið Þ, ð4Þ

where

LUT ið Þ =
LUTd ið Þ
LUTq ið Þ

" #
: ð5Þ

2.2. Stray Flux Linkages vs. Current Proportionality. A quite
general Park model for a wound field salient pole synchro-
nous machine (SPSM) is represented in Figure 3, where
two armature circuits (outside the shaded circle) and three
rotor circuits (inside the shaded circle) are considered. In
particular, with reference to the rotor, there are the excita-
tion circuit (f ) and a single damper circuit (D) on the d -axis
and a single damper circuit (Q) on the q -axis.

A more precise consideration of a round rotor SM
(RRSM) would have required two more rotor circuits on
both axes indeed: one for taking into account the presence
of the massive and conductive rotor body and the other
one for the eventual conductive slot wedges. In the same
way, the consideration of a permanent magnet excited SM
(PMSM) should replace the excitation winding in Figure 3
with a suitable and permanent source of MMF, in order to
fit in the representation. Nevertheless, the circuits of
Figure 3 are general enough for presenting the proposed
model in its entirety.

The more simplistic assumption often done about the
Park model of Figure 3 is that the circuits along the d-axis
share all the same magnetizing flux. In other words, their
mutual inductances referred to the armature side are consid-
ered all equal to the main armature inductance on the d-axis,
Lmd

LfD′ = Lf a′ = LDa′ = Lmd: ð6Þ

Canay [20], Hiramatsu et al. [21], and Guorui et al. [22]
have proved that (6) does not always hold. Not only the
main fluxes but also the stray fluxes contribute to the mutual
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Figure 2: The proposed model structure.
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Figure 3: The coordinated rotor and stator circuits for a wound
field SM having single damper circuits on the d- and q-axes,
respectively.
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linkage between the circuits laying on the same magnetic
axis. Figure 4(a) shows, e.g., that the magnetic coupling
between the excitation winding and the D-damper bars in
a RRSM takes place through the stray fluxes too. In fact, all
rotor circuits, excitation winding and damper bars, are usu-
ally laid down in the same slots.

In this way, the main flux ΦmDf , shared between excita-
tion winding and D-damper bars, becomes larger than Φmd ,
i.e., the flux they have in common with the armature. In a
SPSM having grid-shaped damper bars on each pole, a part
Φσaf of the magnetic flux Φmaf—produced by the armature
and linked to the field winding—does not link the D-damper
bars. Therefore, Figure 4(b) shows that the flux Φmd linking
the D-damper circuit can be smaller than the flux Φmaf

shared between the armature and the excitation winding.
The practical consequence of these remarks is the introduc-
tion of an additional stray inductance LfD′ − Lmd in the usual
Park model as shown in Figure 5. It takes into account the
algebraic difference between the total main flux, which links
the armature on the d-axis, and the total flux shared between
field winding and D-damper circuit.

According to the observations presented above, it results
that LfD′ − Lmd can be negative for SPSM while it is always
positive for RRSM.

Since the circuits along the q-axis in Figure 3 are only
two, there is just one quadrature main flux to be considered.

Therefore, the equivalent magnetic circuit on the q-axis
looks like the one represented in Figure 6.

Having the circuits of Figures 5 and 6 under consider-
ation at once, the following relationship can be set between
the currents and the flux linkages at play.
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all quantities used in (7) being referred to the armature side.
Hence, the inverse of the 5 × 5 matrix Lσ, called the matrix
of the stray inductance, takes the form
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where

K = Lσf′ + Lmf′ − Lmd

� �
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ð9Þ

The Blondel coefficient was introduced:

Figure 4: Different flux linkages between three d-axis circuits in a
wound field synchronous machine having (a) round rotor or (b)
salient pole rotor.
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(i) Stray coefficient for the armature

σa = 1 −
Lmd

Ld
: ð10Þ

Laible’s coefficients are as follows [23]:

(i) Stray coefficient between armature and field wind-
ing

σaf = 1 −
Laf′
� �2
LdLf′

ð11Þ

(ii) Stray coefficient between armature and D-damper
circuit

σaD = 1 −
LaD′
� �2
LdLD′

ð12Þ

(iii) Stray coefficient between armature and field wind-
ing

σfD = 1 −
LfD′
� �2
Lf′LD′

ð13Þ

(iv) Stray coefficient between armature and Q-damper
circuit

σaQ = 1 −
LaQ′
� �2
LqLQ′

ð14Þ

(v) Armature shielding coefficient

μa = 1 −
Laf′ LaD′
LfD′ Ld

ð15Þ

(vi) Field winding shielding coefficient

μf = 1 −
LfD′ Laf′
LaD′ Lf′

ð16Þ

(vii) D-damper circuit shielding coefficient

μD = 1 −
LfD′ LaD′
Laf′ LD′

, ð17Þ

as well as the machine anisotropy factor at nominal
conditions

AFN =
LNd
LNq

− 1: ð18Þ

The inverse matrix of the stray inductances ((8)) turns
into

L−1σ =
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In (19), LNd represents the armature direct axis induc-
tance at nominal conditions and

σ2
K =

K

Ldð Þ2 =
μD

1 − σaD
+
σa + μa − σaμa

1 − μa

� �

Á μf

1 − σaf
+
σa + μa − σaμa

1 − μa

 !
−

σa + μa − σaμa
1 − μa

� �2
:

ð20Þ

When studying (10)–(17) closer, it can be recognized
that the stray and the shielding coefficients can be regarded
as constants. In fact, they represent ratios where numerators
and denominators vary according to the same underlying
nonlinear magnetization characteristics, irrespective to d
-axis or q -axis consideration. Adding that LNd and AFN are
also constants, it can be concluded that (19) is a constant
matrix and that (7) sets a linear proportionality between
the vector of the stray fluxes and the vector of the machine
currents.

2.3. Variable Convergence within the Algebraic Loop. The
armature main flux linkages on the d- and q-axes depend
on the superposed action of all MMFs at work on the d-
and q-axes, respectively. Once the currents of the rotor cir-
cuits have been referred to the armature side, they are arma-
ture currents at all effects, so that the sources of the main
fluxes can be summarized as follows:

iΘd
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with

C =
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: ð22Þ

A more concise expression for (7) can be written by
using (22).

i = L−1σ Ψ − L−1σ CTΨm, ð23Þ

which, once substituted in (21), takes the form

iΘd

iΘq

" #
=CL−1σ Ψ − CL−1σ CTΨm: ð24Þ

For later considerations, it is here anticipated that
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, ð25Þ

where

α =
K

K + Lσa LσD′ + LmD′ + Lσf′ + Lmf′ − 2Lmd

� � < 1, ð26Þ

γ =
LσQ′

LσQ′ + Lσa
< 1: ð27Þ

When considered in relative terms, (26) and (27)
become

By considering the discrete values of (5) as one possi-
ble choice among the ∞2 sets of values generated by the
magnetizing flux functions ΨmdðiΘd

, iΘq
Þ and ΨmqðiΘd

, iΘq
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Þ ∈D, it is possible to generalize (5) as
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so that the inverse of (30)
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exists locally in D−1 as soon as
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∂Ψmd
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α =
σ2K

σ2K + σa μD/ 1 − σaDð Þð Þ + μf / 1 − σaf
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+ 2 σa + μa − σaμað Þ/ 1 − μað Þð Þ
� � < 1, ð28Þ

γ =
σQ 1 − 1 + AFN

À Á
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À Á2 + σa 1 + AFN
À Á
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By considering (21), (24), and (31) at the same time, it is
possible to obtain

Ψm = − CL−1σ CTÀ Á−1 LUT−1 Ψmð Þ −CL−1σ Ψ
Â Ã

: ð33Þ

Equation (33) sets a Banach fixed point problem, where
the numerical sequence

Ψn+1
m = ϕ Ψn

mð Þ ð34Þ

converges to a finite value

Ψm = lim
n⟶∞

Ψn
m, ð35Þ

if and only if, ϕ represents a contracting map of D−1 towards
D or simply when

M = sup
Ψm∈D

ϕ′ Ψm½ �ð Þ�� �� < 1: ð36Þ

The function ϕ′ stands for the Jacobian of ϕ. Since Ψ is
kept constant during the eventual convergence in (33), the
Jacobian of ϕ has the following expression:

ϕ′ Ψmð Þ = − CL−1σ CTÀ Á−1 ∂LUT−1

∂Ψm
: ð37Þ

Due to (32) the function Ψm can be inverted, so that (37)
turns into

ϕ′ Ψmð Þ = − CL−1σ CTÀ Á−1 ∂LUT
∂iΘ

� �−1
: ð38Þ

Finally, taking into account (25), (30), and (38), the
inequality (36) changes into

sup
Ψm∈D

−αγ
L2σa

lm,ddlm,qq − l2m,dq

�����
����� < 1, ð39Þ

where lm,dd, lm,dq, and lm,qq are the elements of the symmetric
matrix lm accounting for the incremental magnetizing induc-
tances of the SM.

By making use of (39), it is possible to give a proof of the
studied convergence (35) within the algebraic loop of the
proposed SM model, for both the nonsaturated and satu-
rated machines. In fact, when the SM is not saturated, the
incremental inductances (which stand for the slopes of the
tangents to the magnetizing curves on the d- and q-axes,
respectively) are comparable with the magnetizing induc-
tances (which stand for the slopes of the chords from the
origin to the magnetizing curves along the d- and q-axes,
respectively). In other terms,

lm,ddlm,qq ≅
1

1 + AFN
LNd
À Á2

: ð40Þ

Moreover, the lack of saturation, i.e., the availability of
plenty of nonoriented Weiss domains in the SM magnetic
circuit, makes the competition for the magnetic polarization
between the coordinated MMFs practically inexistent. That
means

lm,dq ≅ 0: ð41Þ

Taking into account (10) and substituting (40) and (41)
in (39) lead to the inequality

Mno sat = −αγσ2
a 1 + AFN
À Á�� �� < 1: ð42Þ

Expression (42) fulfils condition (36) for the conver-
gence. In fact, even assuming an unrealistically large arma-
ture stray inductance of about 30%, the d-axis inductance
should be at least 10 times larger than the q-axis one in order
to have σ2

að1 + AFNÞ>1.
If the SM is saturated instead, any further differential

increase of the coordinated MMFs will not gain any new
Weiss domain to their respective directions, so that the
incremental magnetizations contributed by the MMFs can
be regarded as essentially performed in air. For the same rea-
son, the magnetic anisotropy of the machine fades away
making AF ≅ 1. Therefore,

lm,ddlm,qq ≅ σ2a LNd
À Á2

: ð43Þ

At the same time, the lack of available domains to com-
pete for inhibits the mutual coupling between the coordi-
nated circuits through the cross-magnetization. This results
in

lm,dq ≅ 0: ð44Þ

By substituting (43) and (44) in (39), the fulfilment of
(32) for the case of the machine saturation is also achieved,
since

Msat = −αγj j < 1: ð45Þ

Due to the local monotonic nature of the magnetization
functions (30), it must be expected the transition from (42)
to (45) to be also monotonic, to ensure the convergence
(35) for every simulated machine behavior between satura-
tion and nonsaturation.

2.4. Model Implementation. The model presented in Figure 2
has been implemented by means of three functional blocks
shown in Figure 7(a). The block performing the integration
is the same used in the state of the art and presented in
Figures 1(a) and 1(b). It has essentially the goal to gain the
state variable Ψ by integrating the unbalances between the
impressed voltages, the resistive voltage drops, and the
transformational electromotive forces, where present. The
nonlinearity manager (NLM) block, in Figure 7(b), receives
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the current vector as an input and refers the rotor currents to
the armature side by making use of the following transfor-
mation ratios:

kf =
Lmf

Laf
,

kD =
LmD

LaD
,

kQ =
LmQ

LaQ
:

ð46Þ

The transformed currents, which provide their MMFs on
the same d- or q-axes, are summed up in order to determine
the armature equivalent magnetizing currents iΘd

and iΘq
,

respectively. The LUTd reproduces the function ΨmdðiΘd
,

iΘq
Þ shown in Figure 8(a), whereas LUTq reproduces the

ΨmqðiΘd
, iΘq

Þ shown in Figure 8(b). One possible way to

build the lookup tables for a given SM by using a FEM anal-
ysis program is duly described in the appendix to the present
work.

As soon as the coordinated magnetizing current is intro-
duced in the LUTs, two values for the armature main flux
linkages are returned as outputs, Ψmd and Ψmq, respectively.

These quantities provide the inputs for the flux-to-
current (FTC) block in Figure 7(c) together with the vector
of the flux linkages Ψ. The rotor-related flux linkages must
be referred to the armature side by means of the ratios
(46). Then, as already shown in (7), the block performs a lin-
ear combination of the linked stray fluxes through the
matrix L−1σ , in order to get an estimate of the machine cur-
rents. The currents obtained by that way are all referred to
the armature side. Therefore, the rotor-related currents need
to be referred back to the rotor by using the usual ratios (46).

2.5. Performed Test Simulations. The proposed nonlinear
model for SM has been tested on the wound field SPSM

(WFSPSM) shown in Figure 9, the parameters of which are
given in Table 1.

In order to prove the capability of the suggested model in
handling the nonlinearity and the cross-magnetization in the
test machine, the model itself has been compared with a lin-
ear and anisotropic one, where the LUTs of Figure 7(b) have
been replaced by constant magnetizing inductances Lmd and
Lmq. The latter has been chosen, for each led test, so as to
match the initial conditions of the nonlinear model, before
an external cause intervenes to push the machine away from
its initial steady state. In this way, the two models are aligned
at the beginning of the test, and all subsequent divergences
between them can be recognized more clearly. In particular,
four tests have been envisaged, that, for the nature of the
chosen perturbation, end up changing the magnetizing flux
and highlighting the magnetic nonlinearity of the machine.

The first test foresees the sudden drop of the excitation
voltage from its nominal value down to 40% of it, while
the nominal driving torque of the generator is kept constant.
Therefore, the generated nominal active power remains
unchanged. Due to the lack of exciting MMF, the machine
must require the magnetizing current from the grid, moving
by that from the generation to the consumption of reactive
power.

The second test is based on the observation that the volt-
age level at the generator bus bar is responsible for the
incoming/outgoing reactive power. Therefore, a grid voltage
increase, when the excitation current is kept constant, results
in a higher magnetizing flux in the SM. This should in turn
shift the generator towards the saturation and possibly high-
light its underlying nonlinear behavior.

The third test reproduces the adjustment of the excita-
tion current when the generated power is suddenly reduced
down to 25% of its nominal value. In order to keep the
power factor constant, the excitation current is decreased
accordingly, so that the exciting MMF is drastically reduced.

The fourth and final simulations deal with a low-voltage
fault ride through (LVFRT), where the grid voltage experi-
ences a severe sag, like the one (class 3) foreseen for the
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industrial environment, in the reference standard for EMC
tests EN61000-4-34. By increasing the duration of the sag,
the stability limit for the SM is detected. The comparison
between the limits—achieved through the linear and nonlin-
ear model, respectively—should show to what extent the
nonlinear magnetization matters in modelling stability
problems.

3. Results and Discussion

3.1. Excitation Voltage Step Test. Figure 10 shows the instan-
taneous drop of the SM excitation voltage, at the time t = 3 s,
in the test machine providing the nominal power at the
nominal conditions. This change in the control voltage pro-
duces a subsequent and slower drop of the excitation
current.

It is not possible to observe any substantial difference
between the resulting field currents for the nonlinear and
linear model, since the d-damper bars screen the field wind-
ing from the large variations of the armature MMFs occur-
ring during the transient. Figure 11 shows that the d -axis

component of the armature current drops almost to zero
whereas the q -axis one increases.

Since the electromagnetic torque remains unchanged,
from the Park equation for the torque follows that

TEM =
3
2
p Ψdiq −Ψqid
À Á

≅
3
2
pΨdiq, ð47Þ

where Ψd , at steady state and for id ≅ 0, is

Ψd ≅ Lmdif′: ð48Þ

In Figure 11, it is possible to observe that jiqj in the linear
model is larger than that in the nonlinear one. Since the exci-
tation current if′ is the same for the two models (Figure 10),
by considering (47) and (48), it follows

LLUTmd iLUTq = Llinmdi
lin
q , ð49Þ

Table 1: Main parameters of the test SM.

Symbol Description Value

AN Rated power 60 kVA

VN Rated voltage 400V

nN Rated speed 1500 rpm

f N Rated frequency 50Hz

cos φN Rated power factor 0.9

δmin ⋯ δmax Airgap range at the pole shoe 3:2 ÷ 5:7mm

αp Pole coverage 0.76

li Active axial length 184mm

rδ Airgap average radius 161mm

q Slots per pole per phase 6

ns Conductors per slot 8

r Armature phase resistance (p.u.) 6:2 · 10−2

r f Field winding resistance (p.u.) 5:8 · 10−3

rD d-axis damp. circuit resistance (p.u.) 7:7 · 10−3

rQ q-axis damp. circuit resistance (p.u.) 15:3 · 10−3

xNd Nominal d-axis reactance (p.u.) 1.32

xNq Nominal q-axis reactance (p.u.) 0.72

AFN Nominal anisotropy factor 0.83

σa Armature stray factor 5.2%

σaf Field winding to armature stray factor 9.7%

σaD Armature to d -axis damper circuit stray factor 11.8%

σQ q -axis damper circuit stray factor 13.3%

μa Armature shielding coefficient 1.7%

μf Field winding shielding coefficient 9.5%

μD q -axis damper circuit shielding coefficient 11.7%
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where

LLUTmd > Llinmd , ð50Þ

because of

iLUTq

��� ��� < ilinq
��� ���: ð51Þ

By remembering that the magnetizing inductances of the
linear model are kept constant and equal to the initial mag-
netizing inductances of the nonlinear model, from (50)
descends

LLUTmd 3s < t < 5sð Þ > LLUTmd t < 5sð Þ: ð52Þ

Inequality (52) proves that the magnetizing inductance
of the nonlinear model senses the transition from the over
excitation to the under excitation, since its value increases
when the magnetizing flux decreases. The transition from
the over excitation to the under excitation is given also from
the graph of the reactive power in Figure 12.

The SM produces reactive power as long as the rotor
MMF is strong enough. As soon as the excitation current
drops, the generator starts consuming reactive power. It
can also be observed that, since id ≅ 0,

Q ≅
3
2
Lmqi

2
q: ð53Þ

The larger value of the jiqj in the linear model observed
in (51) together with (53) explains the discrepancy between
the answers of the two models shown in Figure 12.

3.2. Grid Voltage Step Test. In this test, while the generator is
providing 60% of the nominal power at cos φ = 0:9 (lag-
ging), a stepwise 10% increase of the grid voltage occurs at
t = 2 s. In Figure 13, it can be observed that the two models
give a different account of the d-axis and q-axis currents in
the final steady state, as well as of the generator load angle,
as it is shown in Figure 14. In particular, Figure 14 shows,
firstly, that the load angle δ decreases moving from the ini-
tial steady state to the final one and, secondly, that the linear
model provides a smaller load angle for the final steady state,
δlin, than the one given by the nonlinear model, δLUT.
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Figure 10: Change in the excitation current produced by a
temporary reduction of the control voltage.
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Moreover, since the excitation of the SM and its driving
torque are kept constant, the generated active power does
not change when the transient response fades away, whereas
the reactive power does (Figure 15). The nonlinear model
gives account of a drop in the reactive power provided by
the generator, which is larger than the one reported by the
linear model.

Figure 16 helps to interpret and check the different
results shown in Figures 14 and 15.

The letter A indicates the magnetic work point shared by
the two models at the initial steady state, when the same q

-axis voltage sets the same magnetizing flux linkage on the
d -axis according to

V cos δ ≅ ωΨmd Að Þ: ð54Þ

In (54), the voltage drop on the armature stray induc-
tance is neglected, since it is irrelevant to the present line
of reasoning.

At the initial work point A, the main flux linkage is set by
the superposition of the MMF proportional to if′ and id ,
respectively. As soon as the grid voltage is incremented by
ΔV > 0, the magnetic flux linkage in the linear model
increases up to

V + ΔVð Þ cos δlin ≅ ωΨmd Bð Þ > ωΨmd Að Þ, ð55Þ

due to 0 < δlin < δ in Figure 14. Since the model is linear, the
MMF responsible for ΨmdðBÞ can be found by the vertical
projection of the point B on the x-axis, which is taken on
the straight s at y = ωΨmdðBÞ. It can be observed that the
resulting MMF corresponding to the work point B gives a
correct account of a drop of the direct axis current in the
final steady state, since Δilind < 0 for graphic construction.

Coming to the nonlinear model in Figure 16, an increase
ΔV > 0 of the grid voltage produces an increase of the mag-
netic flux linkage up to

V + ΔVð Þ cos δLUT ≅ ωΨmd Cð Þ > ωΨmd Að Þ, ð56Þ

due to 0 < δLUT < δ in Figure 14. At the same time, it must be

ωΨmd Cð Þ < ωΨmd Bð Þ, ð57Þ

due to 0 < δlin < δLUT in Figure 14. The MMF, which sets
ΨmdðCÞ, can be determined by the vertical projection of
the point C on the x-axis, which is taken on the nonlinear
magnetization curve c in Figure 16 at y = ωΨmdðCÞ. It can
be noticed that the resulting MMF corresponding to the work
point C gives a correct account of a drop in the direct axis cur-
rent for the final steady state, since ΔiLUTd < 0. Moreover, the
graphic construction shows that ΔiLUTd ≪ Δilind in spite of
(57), just in reason of the magnetic nonlinearity of the SM
taken into account in the model containing the LUTs. The
much stronger reduction of the id in the nonlinear model
rather than in the linear one is the reason of the opposite ten-
dency of the iq in the two models, shown in Figure 13. In fact,
the constant machine torque during this test

T ≈Ψmdiq +Ψmqid ð58Þ

sets a relationship between id and iq. The small decrease of the
id in the linear model does not change the torque effectively
whereas the iq is forced to decrease in order to compensate
the relevant linear increase in Ψmd. On the contrary, in the
nonlinear model, the drop in id is substantial, and due to the
small increase of the main flux linkage Ψmd, the iq must be
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larger than in the linear model for keeping the torque
constant.

3.3. Driving Torque Step Test (at Constant Power Factor).
The present test foresees a driving torque drop from 100%
down to 25% of its nominal value within 0.1 s. At the same
time, in order to target the same initial power factor (0.9 lag-
ging) in the final steady state, the excitation current is
decreased accordingly. Figure 17(a) shows the needed
adjustments of the field current whereas Figure 17(b) and
the generated active power.

Even though Figure 17 does not present relevant differ-
ences between the answers of the two models, in Figure 18,
they give a different account for the envelope of the armature
phase current amplitude.

The mismatch between the two answers depends mainly
on the direct axis current, as Figure 19 reveals by showing
the different steady-state values for the reactive power.

The difference between the values of the id in the two-
models can be justified by the Park armature voltage equa-
tion along the q -axis at steady state, where the d -axis cur-
rent is given by

−id ≅
ωΨmd −V cos δ

ωLσa
: ð59Þ

Since the load angle δ decreases due to the drastic drop
of the generated active power, so that cos δ ≅ 1, the Ψmd
plays the main role in producing the difference between
the two steady-state values of id provided by the models.
Figure 20 shows how the magnetic work point in the linear
model moves from A to B along the straight s, until the main
flux ΨmdðBÞ is set through the constant magnetizing induc-
tance LNmd and the superposed effects of the currents if′ðBÞ
and ilind ðBÞ.

Equation (59) shows that for ωΨmd to exactly balance
the quadrature axis voltage at id = 0, the main flux Ψmd must
be set by if′ only. This is way, by following the straight w
(having slope −ωLσa) down to the point H at y =V cos δ,
it is possible to find the current if′ðBÞ. Since the final value

of the excitation current if′ðBÞ and the quadrature axis volt-
age Vcosδ is shared by the two models, by prolonging w up
to the nonlinear magnetization characteristic c, the final
magnetic work point C for the nonlinear model is found.
By comparing the points C and B, it can be recognized that

Lmd Cð Þ > Lmd Að Þ = LNmd , ð60Þ

which gives a right account of the nonlinear property of the
SM magnetic circuit. Furthermore, it can be found that

−iLUTd > −ilind , ð61Þ
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which explains why neglecting the nonlinearity in the SM
model would lead to underestimating the value of the reac-
tive power provided at low excitation.

3.4. Low-Voltage Fault Ride Through. In the following last
test, two voltage sags with the same intensity (-60% of the
nominal grid voltage) but different duration (14 and 18
cycles, respectively) are applied to the armature of the SM.
The response of the generator is simulated by means of the
two models under comparison. This test, which evaluates
the capability of the SM to keep the pace when the distur-
bance is over, represents a LVFRT test. Figure 21 shows that
both machines keep the pace for a sag duration of 14 cycles.
No substantial differences between the final steady-state
values of the load angle can be recognized.

In the same figure, for a duration of the sag of 18 cycles,
the nonlinear model proves the SM to be able to keep the
pace after the sag, whereas the linear model does not.

The different results provided by the two models can be
interpreted in an intuitive way through the application of the
well-known equivalent area criterion, as shown in Figure 22.
In there, the difference between the constant driving torque
Tm and the electromagnetic torque T is responsible for the
acceleration work on the rotor. The electromagnetic torque
can be expressed by

T =
p
ω

ffiffiffi
3

p E′V
Xd′

sin δ +
V2

2Xd′
Xd′
Xq′

− 1
 !

sin 2δ
" #

, ð62Þ

where Xd′ and Xq′ are the transient reactances of the SM
along the d- and q-axes, respectively. Since the transient
reactances are related to the stator and rotor stray induc-
tances essentially, the nonlinearity of the magnetic circuit
does not influence their values in a substantial way. There-
fore, the different performances of the two models must be
caused by their different transient electromotive force E′.
In particular, in order to justify the results of Figure 21, it

must be true that, during the voltage sag,

ELUT′ > Elin′ : ð63Þ

In studying Figure 22, it emerges that the nonlinearity of
the SM magnetic circuit confers to the machine itself, a given
capability to withstand grid voltage sags. Neglecting the said
nonlinearity in the SM model leads to underestimating the
machine performances during LVFRT tests.

3.5. Anisotropy and Cross-Magnetization: 1 or 2 LUT? A rel-
evant question considers the possibility of using just one single
LUT instead of two for expressing both anisotropy and cross-
magnetization in the SM. In that case, the LUTd related toΨmd
could be used in first place. In order to obtain Ψmq from LUTd

, its values should be scaled down, e.g., by a suitable constant
which depends on the anisotropy factor AF. As long as the
LUTd represents a function of id and iq, some information
about the influence of the q-axis MMF on the cross-
magnetization must be contained in LUTd. In fact, some
energy considerations presented in [15, 24] make it possible
to infer that

ldq =
∂Ψd

∂iq
= lqd =

∂Ψq

∂d
: ð64Þ

Therefore, as soon as

LUTq =
1

1 + AF
LUTdð ÞT , ð65Þ

it is evident that identity (64) is violated, because, from (65), it
follows

lqd =
1

1 + AF
ldq: ð66Þ

Hence, it seems impossible to give a correct account of the
cross-magnetization by using the information coming from
just one single LUT.

With reference to the anisotropy factor AF instead, in
many works, the ratio between Ld and Lq is kept constant,
even though it proves to be strongly dependent on the inten-
sities of id and iq and on their relative ratio. In Figure 23, the
AFm (see the appendix for its definition) for the test SM of
Figure 9 has been represented. It gives an evidence of the fact
that the anisotropy of a SM is in general not constant. It tends
to fade away for very deep saturation, since the magnetic cir-
cuit reluctance along the d- and q-axes becomes comparable
in magnitude. Even more important is the fact that the
cross-magnetization contributes to foster the anisotropy of
the machine. It is possible to observe this fact in Figure 23,
where the anisotropy factor shows higher values along two
crossed versants, which run along the 1st to 3rd and 2nd to
4thid-iq quadrant directions. This is probably due to the com-
peting action of the coordinated MMFs on the material polar-
ization, which prevents one axis to reach the full saturation
when the other one is excited at the same time.
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3.6. An Estimate for the Convergence Speed of the Algebraic
Loop in the Model. Equation (33) represents a contracting
map ϕðDÞ⟶D when the SM iron is unsaturated (42) as
well as when it is not (43). Therefore, it is possible to calcu-
late the number k (in excess) of the needed iterations in
order to get Ψk

m close enough to its asymptotic value �Ψm,
according to a given relative accuracy ε. With M represent-
ing the upper bound of the Jacobian ϕ′ over D, it results as
follows:

ε =
�Ψm −Ψk

m
�� ��
�Ψm −Ψ0

m
�� �� ≤Mk: ð67Þ

After calculating the upper bound Msat = 0:351 in (45)
by means of (28) and (29), the maximal number of itera-
tions (67) reducing the initial error about one thousand
times ðε = 10−3Þ is k = 7.

4. Conclusions

A two-axis theory-based SM model has been presented,
which takes into account the nonlinearity of the SM mag-
netic circuit as well as the cross-magnetization. These per-
formances are achieved by using two LUTs that reproduce
the magnetizing flux linkages of the machine armature. Fol-
lowing this authors’ choice, the outlined model does not

1.0

𝛿max = 𝛿LAlin
–

Alin
+

90°0° 180°𝛿0 𝛿14

(a)

1.0

90°0° 180°𝛿0 𝛿14

ALUT
–

ALUT
+

′

𝛿max < 𝛿L

(b)

1.0

|Alin| < Alin
– +

Alin
–

Alin
+

90°0° 180°𝛿0 𝛿18

(c)

1.0

90°0° 180°

𝛿max = 𝛿L

𝛿0

ALUT
–

ALUT
+

𝛿18′

′

(d)

Figure 22: Equal area criterion used for explaining the transient stability. The continuous bell-shaped curve represents the synchronous
torque in p.u. whereas the shaded one is the transient torque in p.u.: (a) 14-cycle sag-linear model δmax = δL; (b) 14-cycle sag-non-linear
model δ′max < δL; (c) 18-cycle sag-linear model A+

lin + A−
lin > 0 for δ = δL; (d) 18-cycle sag-non-linear model δ′max ≤ δL.
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Figure 23: Magnetic anisotropy factor for the test SM of Figure 9.
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need any inversion of the current-to-flux-linkage LUT, even
if the model maintains the flux linkages as state variables.
This is possible thanks to a LUT-centered algebraic loop,
which is intrinsic into the model and whose iterations
always converge to the instantaneous machine main flux.
The proof for the convergence of the introduced algebraic
loop has been given for both cases of nonsaturated and sat-
urated machines. The novel SM model has been successfully
tested for the simulation of a wholly specified salient pole
synchronous generator. Four different transient scenarios
have been considered, where as many external disturbances
provoke a substantial perturbation on the machine main
fluxes, so to highlight the magnetic nonlinearity at play in
the model. The outcomes have been compared with those
of a traditional linear Park model for the same SM, giving
a punctual interpretation and explanation of the occurred
discrepancies.

All tests performed have shown that neglecting the non-
linearity of the machine magnetization characteristic leads to
remarkable divergences between the two model outcomes.
Finally, the construction of the main flux linkages LUTs
for the test SM has highlighted the importance of a correct
account of the machine magnetic anisotropy. In particular,
the assumption of a constant ratio between the d-axis and
q-axis armature inductances cannot be representative of all
machine behaviors. In fact, the anisotropy of the SM
depends not only on the absolute values of the direct and
quadrature armature currents but also on their ratio. More-
over, it has been found out that the cross-magnetization
leaves a recognizable signature on the machine magnetic
anisotropy profile and that this fact cannot be reproduced
by using one single LUT in the model. For all exposed rea-
sons, the authors believe that the proposed model can be
of a certain interest for those who perform simulations of
SM in classic power systems applications, as well as in the
control tasks of the modern electric drives. In this last field,
this model can be used in reduced order observers, since its
underlying mechanism for reproducing the magnetic non-
linearity relies on the use of the measured currents rather
than on the flux linkages.

Appendix

In Figures 5 and 6, it can be observed that the main fluxes
on the two magnetic axes are set by the superposition of
the d-axis and q-axis MMFs, respectively. Once the cur-
rents are all referred to the armature side, they can be eas-
ily added one another, without distinguishing anymore
which one of them and in what measure contributes to
the magnetization or demagnetization of the machine.
This makes it possible to determine the current-to-magne-
tizing-flux characteristics by using only the armature cur-
rents. In fact, once the ranges for the d-axis and q-axis
armature currents have been chosen, a convex and closed
domain D is defined as follows:

D id , iq
À Á

≡ −Imax
d ,+Imax

d½ �X −Imax
q ,+Imax

q

h i
: ðA:1Þ

The domain Dðid , iqÞ ϵ ℝ2 corresponds univocally to
the domain Tðia, ib, icÞ ϵℝ3 of the machine phase currents
by means of the 3 × 2 reduced Park matrix P.

T = P ϑð ÞD, ðA:2Þ

where the zero sequence component has been disregarded
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2
664

3
775 = P

id

iq
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� �
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π

� �
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iq

" #
:

ðA:3Þ

As soon as the d-axis is aligned with the electric axis a
of the armature phase A (which means pϑ = 2kπ for k =
0, 1, 2,⋯), the reduced matrix P turns into the reduced
Clarke matrix, so that

ia

ib

ic

2
664

3
775 =

1 0

−
1
2

ffiffiffi
3

p

2

−
1
2

−
ffiffiffi
3
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2

2
666664

3
777775

id

iq

" #
: ðA:4Þ

If the DC currents ia, ib, and ic of (A.4) supply the
phases, A, B, andC of a SM, respectively, a radial flux den-
sity Bn will be established in the machine airgap. It
depends on the electric angle pα measured starting from
the electrical axis a of the phase A. The spatial harmonics
of the flux density in phase with cos ðkpαÞ are those con-
tributing to the main flux linkage along the d-axis. In the
same way, the flux density harmonics in phase with sin ð
kpαÞ are those producing the main flux linkage along the
q-axis. Hence, the fundamental coordinated main flux
linkages can be determined by

Ψmd = ξτpli 〠
∞

j=1
kw,j

2
π

ð2π
0
Bn pαð Þ cos jpαð Þdα, ðA:5Þ

Ψmq = ξτpli 〠
∞

j=1
kw,j

2
π

ð2π
0
Bn pαð Þ sin jpαð Þdα, ðA:6Þ

where

ξ =
pnsq
c

  number of turns in series per phaseð Þ, ðA:7Þ

kw,j  winding factor for the j‐th harmonicð Þ, ðA:8Þ
τp  pole pitchð Þ, ðA:9Þ

li  equivalentmachine lengthð Þ: ðA:10Þ
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For SMs working as generators, where the EMFs are
forcibly made pretty much sinusoidal through specific
design choices, it is possible to consider the fundamental
of the flux density only in (A.9) and (A.10), so that

Ψmd ≅ ξτplikw,1
2
π

ð2π
0
Bn pαð Þ cos pαð Þdα, ðA:11Þ

Ψmq ≅ ξτplikw,1
2
π

ð2π
0
Bn pαð Þ sin pαð Þdα: ðA:12Þ

One way for populating the LUTs by using the values
of (A.11) and (A.12) is that of obtaining the radial flux
density distribution BnðpαÞ of the SM by a FEM calcula-
tion. The latter is nested in a loop which provides the
phase currents (A.4) to the FEM program, which are
needed for supplying the armature. In this way, the result-
ing magnetizing flux linkages Ψmd and Ψmq are univocally
related to the ordered pairs of id and iq, respectively.

Once the magnetizing fluxes (A.11) and (A.12) are
obtained, it is possible to yield the respective magnetizing
inductances as follows:

Lmd id , iq
À Á

=
Ψmd id , iq

À Á
id

, ðA:13Þ

Lmq id , iq
À Á

=
Ψmq id , iq

À Á
iq

: ðA:14Þ

Finally, the magnetic anisotropy factor AFm for the SM is
obtained by

AFm id , iq
À Á

=
Lmd id , iq
À Á

Lmq id , iq
À Á − 1: ðA:15Þ

Symbols

i: Current vector
id : d-axis component of the armature voltage
iq: q-axis component of the armature voltage
iD: Current in the d-axis rotor damper circuit
iQ: Current in the q-axis rotor damper circuit
if : Excitation current
I: Rotor moment of inertia
J: Cross-matrix for the stator motional EMFs
l: Matrix of the marginal inductances
lm: Matrix of the marginal magnetizing inductances
L−1σ : Inverse Matrix of the stray inductances
Lσf′ : Field winding stray inductance seen from the armature

Lmf′ : Field winding main inductance seen from the
armature

LσD′: Direct axis damper circuit stray inductance seen from
the armature

LmD′ : Direct axis damper circuit main inductance seen from
the armature

LfD′ : Mutual inductance between the direct axis damper-
circuit and the field winding

Laf′ : Mutual inductance between the armature and the field
winding

LaD′ : Mutual inductance between the direct axis damper-
circuit and armature

Lmd : Main or magnetizing direct axis inductance
LσQ′: Q-circuit stray inductance seen from the armature

R: Park-matrix of the resistances
v: Voltage vector
vd : d-axis component of the armature voltage
vq: q-axis component of the armature voltage
vf : Excitation voltage
Ψ: Flux linkage vector
Ψm: Main flux linkage vector
Ψd : d-axis armature flux linkage
Ψq: q-axis armature flux linkage
Ψmd : d-axis magnetizing flux linkage
Ψmq: q-axis magnetizing flux linkage

ΨD′ : D -damper circuit flux linkage seen from the armature

ΨQ′ : Q -damper circuit flux linkage seen from the armature

Ψf′: Field winding flux linkage seen from the armature

ωr : Rotor angular speed.
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