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This study focuses on a differential wheeled robot’s (DWR) prescribed-time fractional order position control. Firstly, based on the
kinematic model of DWR, a distance-related orientation error is designed using the inverse sine function. Based on this, an
improved linear velocity constraint function is proposed. Compared with existing methods, while ensuring the correlation
between velocity and orientation error, the multibalance point risk caused by large angle errors is avoided. Then, a prescribed-
time fractional order position controller based on a time-varying scaling function is proposed to stabilize the kinematic system
of DWR in the prescribed time. This controller can stabilize the position control system of the DWR in a prescribed time by
adjusting the prescribed-time parameter, avoiding the infinite gain risk in traditional prescribed-time controllers. Finally,
through numerical simulation, we verify that the proposed control law can converge the system status of DWR to the bounded
interval in the prescribed time.

1. Introduction

Due to their simple structure and strong stability, differential
wheel robots (DWR) have been widely used in intelligent
logistics and medical rescue scenes, bringing many conve-
niences to people’s daily lives [1–3]. For example, the DWR
is a mobile base equipped with a flexible robotic arm to com-
plete the pick-up task [4–6]. In some practical applications,
especially material-handling scenarios, mobile robots often
must reach the target location within the specified time [7].
In these applications, the robot can reduce the distance from
the target position by controlling its linear and angular veloc-
ities. This motivation, also known as “position stabilization,”
has received widespread attention from researchers.

The literature contains a variety of approaches to this
topic. In the literature [5, 6], the author studies the maxi-
mum load of the manipulator when the flexible manipulator
is installed on the mobile robot. The finite element method
can be applied to derive kinematic and dynamic equations
for moving carriers [5]. Furthermore, reference [6] proposed

a new method for path planning for a wheeled mobile
manipulator using hierarchical optimal control. Based on
the robot kinematic model, the authors of literature [8] use
PID control to provide a reference speed for the robot-
driving wheel. Literatures [9, 10] have the experiments of
the control law in [8]. Compared to the previous works,
the linear velocities in [9, 10] consider the orientation error,
which ensures that the speed is slow when the robot’s orien-
tation does not meet expectations. Complex technologies are
proposed in other studies, such as adaptive [11] or predict-
ing controllers [12], but the settling time of the robot posi-
tion control system is not precise. However, in practical
applications, such as material-handling scenarios, robots
need to complete tasks within a limited time [13]. Although
the angle error is considered in the velocity design of DWR
[9, 10], thereby reducing the nonlinear coupling relationship
of the system, it still cannot obtain an accurate association
between the stability time and speed. More importantly, if
the system’s settling time can be accurately obtained, it can
improve the work efficiency of the robot to a certain extent
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[5]. Conventional finite-time control makes the system sta-
ble within a finite time affected by initial values, which is
not conducive to practical applications [14]. Fixed-time con-
trol provides a prespecifiable upper bound for the system
settling time, independent of the initial state value but still
influenced by design parameters [15]. In [16, 17], the
authors propose a new finite-time control method based
on a time-varying scaling function with a monotonous
increasing characteristic called prescribed-time control
(PTC). The characteristic of PTC is that the system’s settling
time can be predetermined within the allowed physical range,
independent of the initial state values and system parameters.
However, the controller gain of PTCwill gradually increase to
infinity with the running time, which cannot ensure the sys-
tem’s continuity after the prescribed time. For this reason, lit-
erature [18] introduced a time-varying piecewise function. It
proposed an adaptive PTC method for robot systems, but
the method did not consider the application of higher-order
systems. In [19], a prescribed-time robust differentiator was
designed based on an event-triggered approach using finite
varying gains. Further, literature [20] introduced a switching
scaling function to obtain a prescribed finite time state feed-
back controller for higher-order systems. Also, in literature
[21], a new notion of stability, called triangular stability, is
proposed, and triangular stability implies prescribed-time
stability. The piecewise time-varying function avoids the infi-
nite gain problem faced at time T by switching in advance,
making the system state known after the prescribed time
[18–21]. However, due to the sampling time of the DWR con-
trol system, when the switching delay is triggered, the prob-
lem of reverse gain may occur, causing the system to
diverge. Therefore, the PTC method suitable for the DWR
position control system is still worth further studies.

This paper is developed from the above literature and is
aimed at designing the prescribed-time position controller
suitable for the DWR control system. The main work is as
follows:

(1) The novel orientation error and linear velocity con-
straint functions are provided based on the DWR
kinematic model. Compared with [9], the method
in this paper not only keeps the yaw angle of the
DWR at the target point at zero but also solves the
problem of misalignment of the balance point caused
by excessive orientation error

(2) A time-varying scaling function suitable for the
DWR position control is proposed by introducing a
fractional power term. When applying this scaling
function to the prescribed-time position control of
DWR, not only does it avoid the problem of infinite
gain, but also the stability time of the DWR position
control system can be predetermined by adjusting
the time parameter

The rest of this paper is arranged as follows. Section 2
provides the relevant variables for the position control sys-
tem of the DWR. The prescribed-time fractional order posi-
tion controller designed in this paper is given in Section 3,

and the stability of the proposed controller is analyzed in
Section 4. Numerical simulations and discussions are pre-
sented in Section 5.

2. System Modeling and the Objective

This section proposes an innovative orientation error, and
then, we point out that the position control problem of
DWR can be described as the stabilization control of its
kinematic model.

Differential wheeled robots (DWR) rely on two drive
wheels perpendicular to the wheel axis for movement. The
DWR changes the driving direction by the speed difference
between the two drive wheels, so it does not need additional
steering movement to complete the turning. Figure 1 shows
the primary variables of DWR in the position control move-
ment. We used the DWR kinematic model from literature
[9] that does not consider the sway.

x = u cos ψ,
y = u sin ψ,
ψ = ω

1

The states x, y, and ψ are the centroid positions and the
yaw angle of the robot in the coordinate system, respectively.
The u and ω represent the linear and angular velocities of the
robot, respectively, and are used as the system’s input.

The initial position is x, y , and the target position is
xd , yd . Then, the distance between the two is d, and the
azimuth angle is defined as α.

d = xd − x 2 + yd − y 2, 2

α = a tan 2 yd − y, xd − x 3

Now, taking the time derivative of (2) and replacing
(1), we can obtain
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Figure 1: Basic model of DWR.
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d = −
x xd − x + y yd − y

d
= −u cos α cos ψ + sin α sin ψ

= −u cos α − ψ

4

From (3),

α = yd − y x − xd − x y

d2
= u sin α − ψ

d
5

Then, we propose an innovative orientation error

eψ = α − ψ + ζ, ζ = sin−1 kα tanh d , 6

where 0 ≤ k ≤ 1/ 2π , and auxiliary arcsine function ζ sat-
isfies −π/6 ≤ ζ ≤ π/6. Moreover, the interval of α − ψ has
been given in [9], which satisfies α − ψ ∈ −π, π . Then,
eψ satisfies −7π/6 ≤ eψ ≤ 7π/6. From (4),

eψ = α − ψ + ζ =
u sin eψ − ζ

d

− ω + k
α tanh d + α 1 − tanh2 d d

1 − kα tanh d 2

7

The following transformed kinematic system is obtained:

d = −u cos eψ − ζ ,

eψ =
u sin eψ − ζ

d
− ω + k

α tanh d + α 1 − tanh2 d d

1 − kα tanh d 2

8

Therefore, if d⟶ 0 can be achieved while u and ω
remain bounded, the position control of the robot is com-
pleted. Further, this paper is aimed at designing the corre-
sponding prescribed-time velocity control law for u and ω so
that the robot can start from any initial position and achieve
d⟶ 0 in a predetermined time Tcon. Moreover, the
prescribed-time Tcon is an arbitrary preadjustable parameter.
In short, the control objective can be described as the follow-
ing formula lim

t⟶Tcon
d, eψ = 0.

Figure 2 shows the basic process of the robot position
control. The robot relies on the sensor to obtain the distance
and angle information, and the controller relies on these two
values to get the linear and angular velocities. Subsequently,
the execution agency controlled the wheels to rotate accord-
ing to the speed instruction to complete the movement.

Remark 1. It is noteworthy that when k = 0, eψ = α − ψ,
which becomes the case of the study in [9]. In [9], the con-
troller adjusts the robot’s yaw angle by driving α − ψ⟶ 0
(i.e., eψ ⟶ 0). However, this method makes the robot’s
yaw angle at the endpoint uncontrollable. With regard to
function ((6)) proposed in this paper, we have α⟶ −u sin
ζ/d = −ukα tan h d /d when eψ ⟶ 0. Therefore, by design-
ing the u to drive α⟶ 0 and ψ⟶ 0, we can ensure that
the yaw angle of the DWR remains ψ = 0 when the target
position is reached.

In theory, this transformation has ambiguity at the ori-
gin. There are two main reasons for using this method in
this paper:

(1) This method is applicable to practical engineering
and has practicality. This is because after using the
Euler system, the positioning control can become a
linear system, making it easy to adjust convergence
properties. Therefore, many recent excellent achieve-
ments in DWR positioning control are also using
this method, such as [9]

(2) In engineering, we can theoretically avoid singularity
by switching the control to lead out the origin, such
as controlling the speed to 0 when the distance is less
than 1 cm or less. Therefore, this method has good
application value in engineering

3. Prescribed-Time Fractional Order Position
Controller Design

Firstly, a novel constraint function is proposed based on
existing orientation errors to optimize the correlation
between the robot linear velocity and angle. Subsequently,
a novel time-varying scale function is proposed based on
the conventional PTC method, and the DWR’s prescribed-
time fractional order control laws are formulated.

3.1. System Transformation and Objective. When the DWR
is far from the target position and the orientation error is
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Figure 2: Basic process of position control.
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large, it is more desirable for the robot to reach the correct
orientation first. The current work [9] links the linear veloc-
ity with angular error and provides a control law for the lin-
ear velocity as follows:

u = K0dp, p =
π − α − ψ

π
, 9

where K0 > 0 is an optional parameter and the constraint
function p satisfies 0 ≤ p ≤ 1. The linear velocity is a nonlin-
ear function related to the angular error α − ψ . The use of
the constraint auxiliary function p makes it possible for the
linear velocity to be dismissed depending on the angular
error α − ψ .

For the previous control law (9), when the angular
error α − ψ = ±π, there is p = 0. The previous constraint
auxiliary function p gives the linear velocity control law
(6) that can be adjusted for the angular error α − ψ ,
but it has an unwanted behavior for the value of α − ψ
= ±π (see Figure 3). In this region, the DWR’s line veloc-
ity command will incorrectly output zero. As a result of
this behavior, the DWR’s control system is at risk of mis-
alignment of the balance point. To avoid the above, we
have improved p to obtain a novel linear velocity con-
straint function

p∗ = 1
1 + Ke α − ψ + ζ 2 = 1

1 + Kee2ψ
, 10

which satisfies 0 < p∗ eψ ≤ 1; Ke > 0 is an optional param-
eter. Notice that due to (6), the interval of values of eψ is
restricted to eψ ∈ − 7/6 π, 7/6 π .

Consider constraint functions p z = p = π − z /π and
p∗ z = 1/ 1 + Kez

2 , where z ∈R is the composite state vec-
tor. The partial derivatives of p z and p∗ z are given:

∂p z
∂z

=

−
1
π
, z > 0

0, z = 0
1
π
, z < 0

,  ∂p∗ z
∂z

= −2Kez

1 + Kez2
2 11

Obviously, the partial derivative of p z is discontinuous
at z = 0, while p∗ z has the characteristic of a continuous
partial derivative. Therefore, using p∗ to replace p in the
existing velocity control law can make the control action of
the controller smoother.

Remark 2. Compared with [9], the new constraint function
(10) satisfies p∗ > 0. When applied to the controller of
DWR, the linear velocity is kept at zero only when the dis-
tance is zero, which can avoid the risk of misaligned control
system balance points. Moreover, function (14) can slowly
increase the linear velocity of the robot when the angle error
is significant. Then, function (10) has better smoothness,
which allows the robot’s trajectory to be further optimized.

3.2. Prescribed-Time Fractional Order Position Controller.
First, we briefly introduce the basic principles of the
prescribed-time control (PTC). The key in the PTC is the
utilization of the time-varying scaling function (12) with
monotonically increasing characteristics [16].

μ1 t, T = T
T + t0 − t

, 12
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Figure 3: p vs. p∗. (a) First-order partial derivative image. (b) Numerical graph of p∗ eψ and p∗ eψ .
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where T > 0 with the properties that μ1 t0, T = 1 and μ1
t0 + T , T = +∞. The function (12) starts at t = t0 and
has increased to infinity as t⟶ t0 + T .

Lemma 3 (see [16]). Consider the function

μ t, T = Tn+m

T + t0 − t n+m = μ1 t, T n+m, T > 0, 13

on t ∈ t0, t0 + T , with positive integers n and m. t0 denotes
the initial time, and n corresponds to the order of the system.
A continuous function V t0, t0 + T ⟶ 0,+∞ satisfies

V t ≤ −2κμ t, T V t + μ t, T
4λ

ξ t 2, 14

for positive constants κ and λ, where ξ t is a disturbance.
Then, solving the above differential inequality can obtain

V t ≤ exp −
2κT

n +m − 1
μ1 t − t0

n+m−1 − 1 V t0

+
ξ 2

t0 ,t
8κλ

, ∀t ∈ t0, t0 + T

15

Corollary 4. Consider Lemma 3; if ξ t ≡ 0, then lim
t⟶t0+T

V t

= 0. That is, in the absence of disturbance ξ t , the differentia-
ble function V t is prescribed-time stable in T.

Corollary 4 is one case of Lemma 3. Its function will be
demonstrated in the following text to demonstrate the stabil-
ity and settling time of the system. According to Lemma 3,
the effective time of conventional PTC is only applicable to
the time t ∈ t0, t0 + T . When t⟶ t0 + T , the controller
gain gradually increased to an infinitely large value, and
the system status of the system was unknown after T . Subse-
quently, combined with the constrained auxiliary function
(10) proposed in the previous section, the linear velocity
control law is designed as follows:

u = K1μ
∗ t, Tcon p∗d2β−1 16

And a novel time-varying scaling function is given as

μ∗ t, Tcon =

1
Tcon − t

, 0 ≤ t ≤ tv

1
Tcon − tv

t > tv

,

 tv = Tcon 1 − exp
− d20 + e2ψ0

1−β

1 − β 2Kp∗min
,

17

where the fractional order parameter β satisfies 1/2 < β < 1.
K1, K are adjustable parameters, satisfying K1, K > 0 and tv
≤ Tcon. Tcon > 0 is a prescribed-time parameter that can be
customized by the user. In addition, d0 denotes the initial
value of the distance, eψ0 denotes the initial value of the
directional error, and p∗min is the minimum value of p∗.

Besides, in order to stabilize the DWR control system,
the angular velocity control law was obtained based on the
backstepping method.

ω = duΔ + α + k
α tanh d + α 1 − tanh2 d d

1 − kα tanh d 2

+ K2p
∗μ∗ t, Tcon eψ

2β−1 sign eψ ,

18

Δ =
1 − cos eψ − ζ

eψ − ζ
, 19

where K2 > 0, K ≤min 0 6K1, K2 , and lim
eψ−ζ⟶0

1 − cos

eψ − ζ / eψ − ζ = 0. 1 − cos eψ − ζ is the high-order
infinitesimal of eψ − ζ. The basic idea of the controller
is shown in Figure 4.

Orientation error Orientation error
constraint function
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velocity
control
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Angular
velocity
control
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Prescribed-time
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Time
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Time-varying
scaling functionDistanceAuxiliary arcsine

function

Target
location

Orientation
correction

Figure 4: Controller structure.
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Remark 5. In the actual navigation process of the DWR,
the distance d and orientation error eψ can be obtained
through simple measurement of the sensor. Therefore,
the initial distance d0 and the initial azimuth eψ0 are con-
sidered to be known a priori. Compared with [16, 17],
the novel time-varying scaling function (17) effectively
avoids the singularity problem of the traditional PTC
and extends the effective time of the scaling function to
t ∈ t0, t0 + Tcon .

Generally speaking, the two-wheel speed of DWR does
not require a state estimator to estimate the position but
can be directly obtained through an encoder or Hall sen-
sor. From this, the forward speed and angular velocity in
the current state can be directly obtained. The acquisition
of position and angle information can also be directly
achieved by sensors without the need for further research.
In engineering, if the acquisition of these quantities is
unstable, some filtering methods can be used for estima-
tion. However, these estimation algorithms are generally
built-in to the sensor or independent of the control
methods studied in this paper and can be directly inte-
grated with the methods in this paper. Therefore, this
paper will not study this issue here.

4. Stability Analysis and Parameter Choosing

In this section, the stability of the proposed controller is ana-
lyzed, and recommendations for the selection of adjustable
parameters are given.

4.1. Stability Analysis. Before proceeding with the stability
analysis, we first introduce the following lemma.

Lemma 6 (see [22]). Let x, y > 0 and γ > 0. Then,

xγ + yγ ≥ x + y γ, 0 < γ ≤ 1,
xγ + yγ ≥ 21−γ x + y γ, γ > 1

20

We use this lemma to simplify the proof process of the
control system stability. Second, we give the following
theorem.

Theorem 7. The kinematic system (8) is stable for a pre-
scribed time under the action of the control laws (16) and
(18). Moreover, the convergence time of the system (8) can
be determined by the prescribed-time parameter Tcon.

Proof. Choose the following Lyapunov function

L = 1
2 d2 + e2ψ 21

Now, taking the time derivative of (21), we get

L t = −du cos eψ − ζ + eψ α − ω +
k dα + dα

dmax 1 − kdα/dmax
2

= −du + du 1 − cos eψ − ζ

+ eψ α − ω +
k dα + dα

dmax 1 − kdα/dmax
2

22

Substituting the auxiliary function Δ, and −0 4 ≤ Δζ ≤
0 4, we can obtain

L t = −du 1 + Δζ + eψ duΔ + α − ω +
k dα + dα

dmax 1 − kdα/dmax
2

≤ −0 6du + eψ duΔ + α − ω +
k dα + dα

dmax 1 − kdα/dmax
2

23

We substitute the proposed control laws (16) and (18)
into the above equation to obtain

L t ≤ −μ∗ t, Tcon p∗ 0 6K1d
2β + K2e

2β
ψ 24

We have defined the minimum value of p∗ as p∗min,

L t ≤ −μ∗ t, Tcon p∗minK d2β + e2βψ 25

Subsequently, according to Lemma 6, we zoom in on the
right half of inequality (25).

d2
β + e2ψ

β
≥ d2 + e2ψ

β
≥ 0, 26

where 1/2 < β < 1. Therefore, inequality (26) can be scaled
up to

L t ≤ −μ∗ t, Tcon p∗minK d2 + e2ψ
β
= −2βKp∗minμ

∗ t, Tcon Lβ,

27

which is definitely negative since, by definition, μ∗ t, Tcon
> 0. Then, inequality (27) can be specifically described as

L t ≤
−2βKp∗min

1
Tcon − t

Lβ, 0 ≤ t ≤ tv,

−2βKp∗min
1

Tcon − tv
Lβ, t > tv

28
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We solve the differential inequality (27) for the case
when time t ∈ 0, tv .

t

0

1
Lβ

dL ≤ −2βKp∗min

t

0

1
Tcon − s

ds,

1
1 − β

L1−β t ≤
1

1 − β
L1−β 0 + 2βKp∗min ln

Tcon − t
Tcon

,

29

then,

L1−β t ≤ L1−β 0 + 1 − β 2βKp∗min ln
Tcon − t
Tcon

30

From inequality (27), the Lyapunov function L is mono-
tonically decreasing, which implies that the function L1−β is
also monotonically decreasing. Therefore, when t⟶∞,
there must exist some time tl such that L1−β tl ⟶ 0. We
can get

L1−β 0 = − 1 − β 2βKp∗min ln
Tcon − tl
Tcon

, 31

and further obtain an expression for tl:

tl = Tcon 1 − exp −
L1−β 0

1 − β 2βKp∗min
32

From equation (17), tl = tv. Therefore, for the Lyapunov
function (21), there is lim

t⟶tv
L = 0. This means that when

t⟶ tv, there is d, eψ ⟶ 0, i.e., lim
t⟶tv

d, eψ = 0. Then,

when t > tw, we have d, eψ = 0.
In summary, the control laws (16) and (18) allow the

control system (8) of the DWR to be asymptotically stabi-
lized for a set time tv. This time tv is prespecified by the
prescribed-time parameter Tcon. The proof is completed.

Theorem 7 proves that the system position error con-
verges to 0 within the preset time, which means that the
method in this paper achieves the preset time positioning
control. Then, robots sometimes need to perform angle con-

trol. Therefore, this paper further proves that after the sys-
tem is stable, the angle can also be stabilized.

Theorem 8. For the state variable ψ (yaw angle) in system
(1), it is prescribed-time stable under the action of the control
laws (16) and (18).

Proof. Choose the following auxiliary function Lα = α2/2.
Taking its time derivative, we get

Lα = α
u sin eψ − ζ

d
= αK1μ

∗ t, Tcon p∗d2β−1
sin eψ − ζ

d
33

In Theorem 7, we conclude that eψ decreases gradually
to zero at tv and remains stable after time tv. Therefore,
when t⟶ tv , there is

Lα ⟶ −K1μ
∗ t, Tcon p∗kd2β−1α2, 34

where Lα satisfies Lα ≤ 0 in some neighborhood of time tv .
Second, as t⟶ tv , the function Lα will appear monotoni-
cally decreasing at this time such that Lα ⟶ 0, i.e., lim

t⟶tv
α

⟶ 0 and lim
t⟶tv

ζ⟶ 0. Subsequently, eψ is defined as eψ =
α − ψ + ζ and satisfies lim

t⟶tv
eψ ⟶ 0. Then, we can obtain

lim
t⟶tv

ψ⟶ 0. The proof is completed.

Remark 9. Due to the infinite gain risk, conventional PTC
methods cannot be directly applied to DWR control systems
that require continuous operation [16, 17]. In this paper, a
novel time-varying scaling function (17) is designed and
used to propose the prescribed-time fractional order posi-
tion control laws (16) and (18). The proposed controller
ensures that the kinematic system of the DWR (8) is
prescribed-time globally asymptotically stable in tv . Then,
tv is predetermined by a prescribed-time parameter Tcon.
This issue ensures that the settling time for the closed-loop
system stability is earlier than that of conventional preset
time control methods.

The proposed velocity control laws (16) and (18) have
the following advantages: (1) Compared with [9], the

Table 1: The model parameters of the DWR.

Symbol Parameters meaning Selection advice

k For adjusting the orientation error (6) 0 ≤ k ≤
1
2π

Ke For adjusting the constraint function (10) 1

K1, K2 Controller parameters K1, K2 > 0

β, K For adjusting the time-varying scale function (17)
1
2 < β < 1, K =min 0 6K1, K2

Tcon Prescribed-time parameter Tcon >
d0
umax

7International Journal of Rotating Machinery



improved orientation error (6) allows the DWR to reach the
target position with its yaw angle remaining at zero. More-
over, the novel orientation error auxiliary function (10)
solves the problem that the robot cannot accelerate when
the robot yaw angle is opposite to the azimuth angle α −
ψ = ±π . (2) In contrast to [20], the time-varying scaling
function (17) ensures that the DWR’s control system is
prescribed-time globally asymptotically stable at time tv,
rather than a neighborhood around time tv.

4.2. Parameter Choosing. The prescribed-time parameter
Tcon is satisfying 0 < d0/umax < Tcon (umax is the maximum
line speed allowed for the robot) and is irrelevant to initial
system conditions. K0 = 0 1 is given in literature [9].
Table 1 gives the selection range of controller parameters.
To adjust the orientation error, we choose a small parameter
k. This is because a large k may cause the robot to rotate too
fast and lose accuracy. In the range of less than 1, the smaller
parameter β theoretically is, the faster the system stabilizes.
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Figure 6: Different prescribed-time parameters. (a) Distance (b) Lyapunov function (21).
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Figure 5: Any initial yaw angles. (a) Motion trajectory (b) Orientation error variation.

8 International Journal of Rotating Machinery



But at the same time, it will also cause the smoothness of the
control law to deteriorate, which will actually affect perfor-
mance. Therefore, this paper suggests that the selection of
beta should be as large as possible, with a range of 1/2 < β
< 1. According to the above statement, the time-varying
scale function parameters need to satisfy K =min 0 6K1,
K2 . On the basis of meeting the algorithm requirements,
the parameter Tcon can be selected according to the actual
situation. Therefore, the selection of parameters is summa-
rized in this paper as follows.

5. Numerical Simulation

In this section, we used MATLAB to simulate the method
mentioned and discussed the results. We first verified the
effectiveness of the proposed controller. Subsequently, we

compared the approach of this paper with literatures [9,
23], respectively. First, the effectiveness of control laws (16)
and (18) is verified in the numerical simulation in
Figures 5 and 6.

The initial position of the selected robot is 0, 0 , and the
target position is 0 8, 0 . The remaining controller parame-
ters are as follows: K1 = 2, K2 = 10, K = 1 2, Ke = 1, Tcon =
20, β = 24/25, k = 1/ 2π . Testing a number of representative
initial yaw angles ψ0 = 0,−π/4,−π/2,−3π/4, π, 3π/4, π/2,
π/4 , Figure 5(a) shows the changes in the coordinates
of the robot during position control, and Figure 5(b)
shows the changes in the orientation error of the robot
during position control. The simulation results show that
under any initial yaw angle, the proposed control laws
(16) and (18) can enable the robot to reach the endpoint
in a prescribed-time Tcon. When α − ψ = π p = 0 , the
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Figure 7: Control performance comparison. (a) Distance changes (b) Linear velocity (c) Angular velocity.
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line velocity in literature [9] is zero, causing error balance
points, which may cause the robot not to move correctly.
The linear velocity constraint function p∗ > 0 proposed in
this paper avoids this risk.

Subsequently, in Figure 6, set the initial value of the
robot’s yaw angle to ψ0 = π. Figures 6(a) and 6(b) show the
effects of different prescribed-time parameters (Tcon = 20,
25, 30, and 35) on the distance d and the Lyapunov function
(21), respectively. The simulation results show that the
designed position control law can control the time of robot

arrival at the target position by adjusting Tcon, and the
choice of Tcon is independent of other design parameters.

Finally, under the same driving conditions, we compare
the asymptotically stable control laws in [9], the fixed-time
control law in [23], and the control law of this paper. The
initial position is fixed to −0 4,0 , the initial yaw angle ψ0
= −178°, and the target position is 0 8, 0 In literature
[9], the control system of the robot reaches a steady state
at around t = 70 s. Therefore, we set the prescribed-time
parameter Tcon = 70 as a way to compare the advantages
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and disadvantages of the control strategies. Other parame-
ters are as follows: K0 = 0 1, K1 = 2 5, K2 = 40, K = 1 2, Ke =
1, β = 24/25, and k = 1/ 2π .

Figure 7(a) shows the variation in the distance between
the robot and the target position. Although the controller
in this paper has no significant advantage in the control
effect of distance d, the controller proposed in this paper
can adjust the time for the robot to reach the target position
by setting the prescribed-time parameter Tcon, which is not
available in other control methods. Figure 7(b) shows the
comparison of linear velocity. The results show that the peak
linear velocity under the control method of this paper is the
lowest for similar settling times. Moreover, Figure 7(c)
shows the comparison result of the angular velocity. Due
to the fixed time control law of literature [23], there is a high
power item with hidden dangers of high control gain, which
makes its initial angle speed value significantly higher than
other curves. In contrast, this paper’s angular velocity con-
trol law does not have a high power term and can achieve
system convergence within a prescribed time.

To illustrate the role of fractional order control, this
paper presents a comparison between control laws with frac-
tional powers and conventional prescribed-time controls.
Figures 8(a) and 8(b) respectively show the cases where the
prescribed settling times Tcon = 25 and 50. In order to
improve the smoothness of the control law, this paper
chooses the fractional power parameter beta = 24/25. The
two figures illustrate that compared to the conventional
prescribed settling time method, this method can ensure
system convergence by using fractional powers before the
preset deadline Tcon, thereby avoiding the risk of the term
1/ Tcon − t being infinite at the prescribed settling time.

As shown in Figures 9(a) and 9(b), as regards the robot’s
arrival at the target position, the control law proposed in this
paper has the best trajectory and lower energy consumption.

6. Conclusion

This paper proposes a novel prescribed-time fractional order
position controller for the DWR kinematic model. This con-
troller is equipped with a new piecewise time-varying scaling
function, which avoids the infinite gain risk faced near the
settling time in conventional PTC. Using this controller,
the system state of DWR can converge to a bounded interval
in a prescribed time, and the prescribed time can be arbi-
trarily specified within the allowable physical range. Com-
pared with reference [9], the designed linear velocity
control law avoids the risk of incorrect balance points. In
addition, when implementing position control, the proposed
controller has a better movement trajectory and less energy
consumption.

Using active disturbance rejection control to compensate
for unknown disturbances to the robot is a good solution
[24]. Also, when the robot has an actuator failure, DWR’s
prescribed-time position control will be more complex
[18]. In addition, considering combining adaptive control
and prescribed-time control is also a topic worth researching
[25, 26].
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