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To give timely and accurate diagnosis in the early stage of demagnetization failure for effective control and treatment, based on
wavelet packet analysis, principal component analysis (PCA) dimensionality reduction, and least squares support vector
machine(LSSVM), the extraction of features and the classification of demagnetization faults are completed. Since it is difficult
to collect real data sets of demagnetization faults in practice, a two-dimensional finite element simulation model of permanent
magnet synchronous motor (PMSM) under uniform demagnetization and partial demagnetization faults is established based
on the Maxwell simulation platform. The wavelet packet analysis is used to extract the demagnetization feature of the A-phase
current of the PMSM. Based on PCA dimensionality reduction, the dimensionality reduction of fault features is realized. The
LSSVM is used to identify the fault and complete the fault classification. The simulation results show that the method has a
high classification accuracy rate for demagnetization faults.

1. Introduction

At present, there are still many challenges to directly apply
PMSM to mining machinery, especially shearer cutting
transmission systems with high-end loads and large impacts.
The risk of demagnetization of permanent magnets in PMSM
is a common concern [1]. The shearer cutting transmission
system has complex and changeable operating conditions
such as large starting torque, strong vibration and shock, long
operating time, and harsh heat dissipation conditions [2, 3],
which will also lead to local demagnetization and irreversible
demagnetization of the permanent magnets [1, 4]. After the
motor is demagnetized, the vibration will increase and the
performance will be degraded. In addition, after the perma-
nent magnet demagnetization, the three-phase current of
the PMSM will change. The demagnetization feature of per-
manent magnet can be extracted from the three-phase cur-
rent and used for the early diagnosis of demagnetization
fault. Corresponding measures can be taken to restore the
magnetic properties of permanent magnets. At the same
time, it can provide guidance for the subsequent application

parameter setting of permanent magnet motor. Therefore,
it is an important reality significance for protecting the motor
to study the demagnetization fault monitoring method of the
permanent magnet drive system in the shearer.

A group of scholars and institutions have carried out
research on the demagnetization of PMSM. In order to diag-
nose motor demagnetization faults, researchers have studied
the characteristics of demagnetization faults from different
angles [5-7]. Urresty et al. [8] believe that when the motor
is partially demagnetized, the copper loss will increase. The
research of Ruoho et al. [9] showed that the PMSM is prone
to demagnetization phenomenon due to the combined
action of electrical, thermal, and mechanical stress and envi-
ronmental problems. The output torque generated by the
magnetic field is greatly reduced when the motor is demag-
netized. Some scholars have also tested the back EMF, tor-
que ripple, and zero-sequence voltage of the PMSM under
the demagnetization fault [10, 11]. Zhu et al. [12] introduced
the Vold-Kalman filter order to track the torque ripple of
PMSM, extracted characteristic parameters. When a PMSM
has demagnetization fault, the stator current of the motor


https://orcid.org/0000-0002-8168-8390
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/6648925

2 International Journal of Rotating Machinery
TaBLE 1: Simulation parameters.

Parameter Value Unit Parameter Value Unit
Number of pole pairs 8 Rotating speed 400 r/min
Phase 3 Working frequency 26.7 Hz
Operating temperature 75 °C Remanence 1.23 T
Permanent magnet material NdFe35 H/m Magnetization thickness 16.2 mm
Air gap length 3 mm Rated torque 5 kNm
Rated current 107 A Stator outer radius 300 mm
Rotor radius 183 mm Air gap 1 mm

will generate specific harmonics [13], but this method is dif-
ficult to distinguish from an eccentric fault. Espinosa et al.
[14] used the Hilbert-Huang transform to perform steady-
state and dynamic analysis of the stator current at low,
medium, and high speed changes. Ebrahimi and Faiz [15]
directly detected the torque signal and selected two indica-
tors, the amplitude of the sideband component in frequency
and the radius of gyration, to estimate the degree of demag-
netization failure. Urresty et al. [16] analyzed the torque
effect, using two self-mixing laser diodes to measure the dis-
placement of the shaft. The degree of demagnetization can
be judged according to the magnitude of the shaft displace-
ment. Bisschop et al. [17] estimated the susceptibility of per-
manent magnets based on the actual measured current,
voltage, and motor structure parameters to monitor the
degree of demagnetization failure. Li et al. [18] proposed a
new fault diagnosis method of rolling bearing based on
wavelet packet analysis and deep forest algorithm. Xiong
et al. [19] proposed a bearing fault diagnosis method based
on wavelet packet transform and DRN lightweight variant
multibranch depth residual network. Zhao et al. [20] pro-
posed a fault diagnosis method based on wavelet packet dis-
tortion and convolutional neural networks. In order to
improve the accuracy of engine valve clearance fault diagno-
sis, Kuai and Huang [21] proposed a fault identification
algorithm based on wavelet packet decomposition and artifi-
cial neural network. Krichen et al. [22, 23] proposed a two-
step analysis study dealing with both uniform and partial
demagnetization and studied the combined static eccentric-
ity and the partial demagnetization faults in a permanent
magnet synchronous motor. Haddad et al. [24] used a two-
dimensional finite element analysis to model and simulate
machine tools in health and fault states and performed fast
Fourier transform to obtain the spectrum of phase voltage
or current signals, which was used as a detailed feature of
the classifier for fault detection. Fitouri et al. [25] proposed
an interturn fault detection technique based on fast Fourier
transform analysis of stator current and electromagnetic tor-
que. Zhang et al. [26] propose a new method for diagnosing
mechanical unbalance faults in permanent magnet synchro-
nous motors and eliminate the fundamental components of
the motor current fast Fourier transform results by Parker
vector. Song et al. [27] used fast Fourier transform spectrum
analysis to detect the correlation frequency of bearing outer
raceway faults. However, there are few researches on demag-
netization fault diagnosis using wavelet packet.

FiGure 1: Two-dimensional model.

Ishikawa and Igarashi [28] simulated a partial loss of field
failure by cutting a single permanent magnet and replacing a
part of the cut with a nonpermanent magnet material. Zhu
et al. [29], based on the noise signal, proposed a method to
detect the demagnetization of permanent magnets by means
of neural network, so as to realize the detection of PMSM
uniform demagnetization diagnosis. At present, most of the
pattern recognition of loss-of-excitation faults is aimed at
the classification between loss-of-excitation faults and other
faults, and there are few studies on the judgment of partial
and uniform loss of excitation of motors.

Therefore, the research on demagnetization faults of
mining PMSM will be developed. To reduce the cost, the
data used in the demagnetization failure research adopts
the simulation data. The two-dimensional simulation model
of PMSM under normal state, uniform demagnetization,
and partial demagnetization fault types is established by
using Maxwell, and the current changes of the motor under
different demagnetization fault types are analyzed. Demag-
netization characteristic quantities of different demagnetiza-
tion fault types are characterized. Finally, the classification of
demagnetization characteristic quantities under different
demagnetization fault types is realized based on PCA dimen-
sionality reduction and LSSVM.

2. Finite Element Model of
Demagnetization Fault

The demagnetization failure of PMSM means that the motor
has suffered irreversible damage. The study of different
degaussing faults needs many sets of experimental equip-
ment and the cost is huge. Therefore, this kind of research
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(a) Uniform demagnetization

(b) Partial demagnetization

FIGURE 2: Finite element model of demagnetization failure.

is generally based on simulation data. The finite element
method based on Maxwell software is a good method to sim-
ulate demagnetization faults. It can handle various complex
mechanical problems and obtain more accurate results. To
simulate different types of demagnetization faults, the two-
dimensional simulation models of PMSM under different
types of demagnetization faults are established with the help
of Ansys Maxwell software.

Based on Maxwell’s differential equation shown in equa-
tion (1), the electromagnetic field is analyzed by discrete
finite element analysis and matrix solution, which has the
advantages of high precision, convenient solution, and good
convergence.

VxH=]+ B_D’
ot
Vsz—a—B, (1)
ot
VxD=p,
VxB=0,

where D is the electrical displacement and p is the charge
density.

The following assumptions are made for the PMSM.

(1) The influence caused by the displacement current is
ignored. (2) The eddy current effects in the iron core and
armature windings are ignored, and the magnetic field is
equivalent to a quasisteady field. (3) The influence of mag-
netic flux leakage at the end of the stator and rotor is not
considered. (4) The material used in the motor is isotropic
and uniformly distributed, ignoring the change of magnetic
permeability with temperature.

The vector magnetic potential of the two-dimensional
transient field solution domain of PMSM is represented by
A,, and then, the field domain Q needs to satisty the follow-
ing boundary value problem.

)

Az!rl,rZ =0,

—AZ]Z}dxdy = min,

(2)

where ], is the conduction current density and I'; and I',
are the outer boundaries of the stator and rotor in the motor
solution domain (2, respectively.

According to the shape and size of each component of
the motor, the motor model is drawn by related engineering
drawing software such as AutoCAD and imported into Max-
well software, and the required motor finite element model
is generated by setting the excitation source, boundary con-
ditions, meshing method, and solution method.

The parameters of the PMSM are listed in Table 1.

The model of the PMSM is shown in Figure 1.

Since the demagnetization fault is measured according to
the coercive force value of the permanent magnets, in the
uniform demagnetization fault model, the coercive force of
all permanent magnets is reduced by 25% to simulate the
uniform demagnetization fault at 25% demagnetization
degree, as shown in Figure 2(a). Second, the 1/2 permanent
magnets in the motor were replaced with air to simulate a
partial demagnetization fault at 25% demagnetization
degree, as shown in Figure 2(b). The red area represents
the demagnetized permanent magnet.

The model is set to start running under constant torque
load and 1330V working voltage. The simulation time is
2s, and the data after stable operation is taken for analy-
sis. Figures 3 and 4 are the magnetic density diagram
and the A-phase current diagram under the normal state,
uniform demagnetization, and partial demagnetization,
respectively.

Figure 3 shows that when the motor is uniformly demag-
netized, the magnetic density decreases as a whole, and the
color becomes lighter; when the motor is partially demagne-
tized, the color of the permanent magnet in the demagne-
tized part turns blue. When the motor is in a normal state,
the motor stator current amplitude is about 260 A, and when
the motor is demagnetized, the motor current amplitude
increases to a certain extent. When the motor loses magne-
tism, specific harmonics will appear in the A-phase current
of the motor, and the greater the degree of fault, the more
obvious the harmonic content, but the proportion of the
fault component harmonics is not large. The accuracy of
fault diagnosis by the method of judging specific harmonic
content is not high. Therefore, the demagnetization charac-
teristic quantity is extracted from the A-phase current by
wavelet packet analysis.
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FiGgure 3: Continued.
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FIGURE 3: Magnetic density map.

3. Demagnetization Fault Feature Extraction

To improve the signal processing accuracy and remove the
influence of current amplitude, the signal is decomposed into
each frequency band by wavelet packet analysis, and the
energy value of each frequency band is calculated, and the
eigenvector is obtained after normalization. Compared with
wavelet transform, wavelet packet analysis can subdivide
the high-frequency part and the low-frequency part more
effectively, and the signal processing accuracy is higher.

3.1. Principle of Wavelet Packet Analysis. Based on wavelet
packet analysis, the feature extraction of loss of magnetic
field is carried out. The function w,, satisfies

Wy, (1) = V2 h,w,(2t - k),
k
Woat (1) = V2D g,0,(2t - k).
k
The relationship between h, and g, is as follows:
Yh,=V2,
Zn:hn—zkhn—zl =8y, (4>

9= (1) hyy

LR’ =@ W, J€Z; W; wavelet packet analysis will

. . 2k+mg
decompose the arbitrary subspace expression as Uk

The corresponding canonical orthonormal basis is {2075/
w0, 27Kt — 1, n=2F+ m,1 € Z}. The variables j and k are scale
parameters. m is the mth frequency band. n is the frequency
parameter. The wavelet packet coefficients can be solved
according to

j2n 7 Jj+ln
di - th—Zldk >
k
j2n+l - j+ln
d; = ng—zldk :

k

The decomposition process is shown in Figure 5.
The wavelet packet decomposition filter is G and H,
where G is related to @;(t) and H is related to the scale.

The algorithm is

po(t) =f(1),
Pyt = Y Hk=20)p; (1),
k

pi'= ;G(k = 20)pl (1)
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FIGURE 5: Schematic diagram of wavelet packet decomposition.

The reconstruction equation is
Pty =2 Y h(t=2k)pf(6) + Y gt = 2k)piL, ()| (7)
k k

The signal sampling frequency is 1kHz in the Maxwell
simulation model. According to the sampling theorem, the
maximum frequency is 500 Hz. Since the fault harmonic
energy in the signal is much smaller than the fundamental
frequency, to separate the fundamental frequency from the
fault harmonic, 7-layer wavelet packet decomposition is per-
formed on the A-phase current signal, and 2” sub-bands are
obtained.

In order to better distinguish the energy between differ-
ent fault states, the db6 wavelet basis is used, and the decom-
position process is shown in Figure 6. Since there are many

sub-bands after decomposition, only the sub-band signals of
the first 12 dimensions are shown in the figure.

The energy value of the reconstructed signal is calculated
according to

2i=0,1,2---127.  (8)

2 n
E;= USj(t) dt = kzl ER

E; is the energy amplitude of each frequency band. xj is
the value of each discrete point.

To avoid the interference caused by the change of energy
amplitude of each frequency band under different working
conditions, the energy value of each frequency band is nor-
malized. The normalized energy value obtained is shown in
Figure 7. Due to the large number of sub-bands obtained
by wavelet packet decomposition, only the normalized
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FIGURE 6: Wavelet packet decomposition process.

energy values of the first nine sub-bands are shown. As can
be seen from Figure 7, the energy contained in each fre-
quency band under normal operation and global and local

demagnetization is different, and the gap is obvious. The
sub-band S7 contains the highest energy. The normalized
energies of the three states are 56.35, 54.77, and 55.14,
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respectively. The energy difference of the three states in sub-
band S4 is the most obvious, which is 5.048, 7.365, and
6.864, respectively. Therefore, it is feasible to extract the
degaussing characteristic of A-phase current by wavelet
packet analysis.

According to the relevant reference [30], the 10th and
above harmonics in the current signal have small signal
amplitudes, so the first 40-dimensional wavelet packet
energy value is selected as the fault feature vector for subse-
quent fault classification.

4. Demagnetization Fault Diagnosis Method

SVM is a machine learning algorithm based on the principle
of structural risk minimization, which realizes sample classi-
fication by solving the optimal hyperplane. It is widely used
in regression problems and classification problems. LSSVM
is an improved algorithm of SVM, which uses equality con-
straints instead of inequality constraints in SVM to solve the
optimization problem into a linear equation, which greatly
reduces the computational complexity. In order to identify
the demagnetization fault type of PMSM according to the
fault feature vector extracted above, the method of LSSVM
is used to realize the discrimination of demagnetization fault
type. The flowchart of LSSVM and SVM methods is shown
as Figure 8.

4.1. Principle of SVM. For a training set with n points D =
{(x5y,)i=1,2,---n},x; €R", y, € {1,-1}, it can be binary
classified by an optimal plane H: w,+b=0. Two other
hyperplanes H,:w,+b=1 and H,:w,+b=-1 are

defined. Both H, and H, are parallel to H, and the mini-
mum distances from H; and H, to the two types of sample
points are 0, respectively, as shown in Figure 9.

The no sample points that exist between H; and H,
should be ensured, that is,

wx; +b>1, =1,
Vi ()
wx; +b<-1, y,=-1

Equation (9) can be rewritten as
yi(w-x;+b)-120, i=12-n. (10)

To maximize the classification interval 2/||w||, the SVM
learning task is used:

1 1
min — ||w||2 =min -0 w
wb 2 wb 2

s.t.y;(wex; +b) —120,

(11)

i=1,2--n.

The corresponding Lagrangian function is

L(w, b,a) = %wTw - iaib/i(a)oxi +b)-1], (12)

i=1

where «; is the Lagrange multiplier.

For problems that are difficult to be classified by a linear
hyperplane, a kernel function can be introduced to map the
samples to a high-dimensional space, that is, x — @(x),
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Transform the original problem into an optimization
problem

v
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Construct a lagrange function
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v
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End
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FiGURE 8: The flowchart of LSSVM and SVM methods.

v

FIGURE 9: Optimal hyperplane diagram.

(x5, y;) — (@(x), y(i)), to make the problem linearly sep-
arable, as shown in Figure 10.

4.2. Principle of LSSVM. In LSSVM, the slack variable &; can
take a negative value, and the optimization problem becomes

N C
min ~w 0w+ =) ¢
2 2; (13)
s.t.y;(wed(x;) +b) - 1+&,=0,

11

where C is the penalty factor, which represents the tolerance

to wrong samples.
The Lagrangian function is
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v

F1GURE 10: Schematic diagram of SVM dimension transformation.

Let the partial derivatives of the above formula to w, b,
and &, be equal to 0, that s,

oL !
= = (D )y
Xt

JL a
%—0: ;aiyi—o,

(15)
L
g—si =0=a,=C¢,
g—é =0=y,(wed(x;) +b)—1+&,=0.
Equation (15) is simplified as follows:
I 0 0 Z"[w 0
0 0 0 -Y'||®b 0
= | (16)
0 0 CI -I & 0
Z Y I 0 o 1
where
Z=[D(x)y; (D(xz)yz-«-,(D(xz)yz]T,
Y= D’l’yz""’)’n]T’
1 =[1,1,--1]", (17)
&= [51’52""’En]T’
= oy, @t

Set Q=27Z", w, and & are eliminated, and the following
equation can be obtained.

o -YT ]lb] lo]
= . (18)
Y Q+C'I| |« 1

Local degaussing
Global test set \
degaussing 25

test set
25

Normal state
test set
25

FiGure 11: Data set distribution.

The inner product of the feature space [D(x;), D(x;)] is
replaced by the kernel function K(x;, x;).

Q;; =yiyj®(xi)T.®(xj) =K (%)) (19)

The classification decision function is

f(x)=sgn li oy K(x, x;) + b] . (20)

i=1

The A-phase current data in three states of normal, uni-
form demagnetization, and partial demagnetization are col-
lected. The demagnetization feature quantity is extracted.

Input is the first 40-dimensional wavelet packet energy
value. There are 125 groups of samples in the three states,
of which 100 groups are training samples and 25 groups
are test samples. The specific distribution is shown in
Figure 11. The output is the diagnostic result shown in
Table 2. The previous 40-dimensional wavelet packet energy
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TABLE 2: Partial sample eigenvector.
Number E, E, E, E; E¢ E, Eg
1 20.3937 1.1228 2.7706 5.0482 0.5553 0.2233 56.3504 11.8921
2 20.3901 1.1226 2.7706 5.0508 0.5524 0.2233 56.3514 11.8928
3 19.6515 1.1074 2.9345 7.3652 0.7712 0.2160 54.7725 11.4718
4 19.6421 1.1070 2.9345 7.3709 0.7682 0.2160 54.7773 11.4741
5 19.6406 1.1069 2.9345 7.3719 0.7678 0.2160 54.7780 11.4745
6 19.6406 1.1069 2.9345 7.3722 0.7677 0.2160 54.7779 11.4745
7 19.7628 1.1083 2.9005 6.8642 0.7246 0.2174 55.1419 11.5664
8 19.7558 1.1079 2.9005 6.8683 0.7225 0.2174 55.1456 11.5682
9 19.7545 1.1079 2.9005 6.8690 0.7223 0.2174 55.1463 11.5684
10 19.7543 1.1079 2.9005 6.8691 0.7223 0.2174 55.1464 11.5684
100
90 -
80 -
=~ 70F
&
=1
£ 60t
=
=2
§ 50
5y
= 40
8
o}
=¥ 30 +
20
10
0 I 1 1 1
2 3 4 5 6
Dimension

Ficure 12: Contribution of the first five dimensions of data.

value was used as the fault feature vector, and the data set
was established as shown in Table 2. The data set was
divided into training set and test set. PCA replaces the orig-
inal N features with a smaller number of K features. The
new features are linear combinations of the old features.
These linear combinations maximize the sample variance
and make the new K features as independent as possible.
The specific steps are as follows: (1) the sample mean and
standard deviation of each index are calculated. (2) The sam-
ple is standardized and its standardized matrix is calculated.
(3) According to the obtained standardized matrix, the cor-
relation coeflicient matrix is calculated. (4) The eigenvalues
are solved. The range of K is determined according to the
contribution rate of cumulative variance, and K principal
components are established. (5) The feature vector set of
principal component whose feature contribution rate is
greater than 95% is selected. After PCA dimensionality

reduction of the data set, SVM or LSSVM was trained using
the training set, and the trained SVM or LSSVM was used
for fault diagnosis classification. The first 8-dimensional fea-
ture vectors of some samples are shown in Table 2. Groups 1
and 2 are eigenvectors under normal conditions. Groups 3-6
are eigenvectors under partial demagnetization faults.
Groups 7-10 are eigenvectors under uniform demagnetiza-
tion faults.

In order to improve the recognition accuracy, the energy
value is reduced in dimension. The dimensionality reduction
of the demagnetization feature can not only reflect the original
data with low-dimensional data but also eliminate redundant
data from the excessive demagnetization feature, reduce the
calculation amount, improve the recognition rate, and make
the subsequent classification results stable and effective.

PCA is a common method of data dimensionality reduc-
tion, which transforms the original data from n-dimensional
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TaBLE 3: SVM comprehensive test results.
Kernel Motor status Number of test Number of correct Number of Correct Total correct
function samples classifications misclassifications rate rate
Normal 25 23 2 92%
Uniform o
Linear demagnetization 25 2 ! 96% 90.67%
Partial 25 21 4 84%
demagnetization
Normal 25 23 2 92%
Uniform o
Polynomial demagnetization 25 24 ! 96% 89.33%
Partial 25 20 5 80%
demagnetization
Normal 25 23 2 92%
Uniform 9
Radial basis demagnetization 25 24 ! 96% 88%
Partial 25 19 6 86%
demagnetization
TaBLE 4: LSSVM comprehensive test results.
Kernel Motor status Number of test Number of correct Number of Correct  Total correct
function samples classifications misclassifications rate rate
Normal 25 24 1 96%
Uniform
0,
Linear demagnetization 25 25 0 100% 98.67%
Partial 25 25 0 100%
demagnetization
Normal 25 23 2 92%
Uniform o
Polynomial demagnetization 25 2 ! 96% 92%
Partl.al . 25 22 3 88%
demagnetization
Normal 25 25 0 100%
Uniform 9
Radial basis demagnetization 25 23 2 92% 94.67%
Partial 25 23 2 92%
demagnetization

space to m-dimensional linear space by solving the eigenvec-
tors of the covariance matrix of the original data. The PCA
method is used to reduce the dimensionality of the fault fea-
ture vector, and the first 5-dimensional data are selected for
subsequent fault classification according to the principle that
the sum of the contributions of the selected dimensional
data is greater than 95%. The contribution of the first 5-
dimensional data is shown in Figure 12.

In order to verify the advantages of the LSSVM, we also
use the traditional SVM to classify the signal. SVM and
LSSVM classification and recognition are performed on the
data after PCA dimensionality reduction, respectively. The
kernel functions are linear, polynomial, and radial basis ker-
nel functions, respectively. The grid search method is used

for the specific parameters in the model. The test results
are shown in Tables 3 and 4. The results shows that the
accuracy of classification and recognition with LSSVM and
SVM is basically similar, and the accuracy of LSSVM
method is slightly higher. At the same time, the accuracy
of the radial basis kernel function is higher.

In order to further analyze the research results, the con-
fusion matrix is obtained, as shown in Figure 13.

Therefore, the LSSVM is finally used to classify and test
the data after wavelet packet decomposition and PCA
dimension reduction, where ¢ =9.7656e — 4 and g = 1.4641.
The results show that the judgment error of the method pro-
posed for the type of demagnetization fault does not exceed
10%, which shows that the method has a good effect on the
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Confusion matrix for test data

8.0%

4.0%

16.0%

True class

85.7% 91.3%

4.2% 14.3% 8.7%

Predicted class
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Confusion matrix for test data

4.0%

2 100.0%

w

100.0%

True class

100.0% 100.0% 96.2%

Predicted class

FiGUure 13: Confusion matrix of SVM and LSSVM.

classification of demagnetization faults. Compared with the
accuracy of existing studies (MGWO-SVM/correct rate
96.5% [31], IPSO-LSSVM/correct rate 96.7% [32]), the
LSSVM based on linear kernel function in this paper has a
higher accuracy (98.67%) for the classification and diagnosis
of permanent magnet demagnetization faults.

5. Conclusion

The two-dimensional simulation model of PMSM under
normal state, uniform demagnetization, and partial demag-
netization faults was established based on the Maxwell sim-
ulation platform by using the time-step finite element
method. The A-phase current in the simulation process is
collected and demagnetized by 7-layer wavelet packet
decomposition to extract the demagnetization feature quan-
tities that can characterize different demagnetization fault
types. Finally, based on PCA dimensionality reduction and
LSSVM, the classification of demagnetization feature quanti-
ties under different demagnetization fault types is realized.
The research results show that the classification accuracy
can reach more than 90%, which has important significance
for the judgment of PMSM permanent magnet demagnetiza-
tion fault types. The results show that the classification accu-
racy is high when the kernel function is linear. Compared
with SVM, LSSVM has higher accuracy and is more suitable
for classification diagnosis of demagnetization faults.
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