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The significance of deep learning techniques in relation to steady-state visually evoked potential- (SSVEP-) based brain-computer
interface (BCI) applications is assessed through a systematic review. Three reliable databases, PubMed, ScienceDirect, and IEEE,
were considered to gather relevant scientific and theoretical articles. Initially, 125 papers were found between 2010 and 2021
related to this integrated research field. After the filtering process, only 30 articles were identified and classified into five
categories based on their type of deep learning methods. The first category, convolutional neural network (CNN), accounts for
70% (n = 21/30). The second category, recurrent neural network (RNN), accounts for 10% (n = 3/30). The third and fourth
categories, deep neural network (DNN) and long short-term memory (LSTM), account for 6% (n = 30). The fifth category,
restricted Boltzmann machine (RBM), accounts for 3% (n = 1/30). The literature’s findings in terms of the main aspects
identified in existing applications of deep learning pattern recognition techniques in SSVEP-based BCI, such as feature
extraction, classification, activation functions, validation methods, and achieved classification accuracies, are examined. A
comprehensive mapping analysis was also conducted, which identified six categories. Current challenges of ensuring
trustworthy deep learning in SSVEP-based BCI applications were discussed, and recommendations were provided to
researchers and developers. The study critically reviews the current unsolved issues of SSVEP-based BCI applications in terms
of development challenges based on deep learning techniques and selection challenges based on multicriteria decision-making
(MCDM). A trust proposal solution is presented with three methodology phases for evaluating and benchmarking SSVEP-
based BCI applications using fuzzy decision-making techniques. Valuable insights and recommendations for researchers and
developers in the SSVEP-based BCI and deep learning are provided.
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1. Introduction

Artificial intelligence (AI) technology advancements, partic-
ularly in the brain-computer interface (BCI), are rapidly
growing in medical and nonmedical applications. Patients
who have been paralyzed after a stroke and those undergo-
ing inpatient rehabilitation are aided by BCI technology in
the medical field. The nonmedical applications are used in
the internment applications such as video games [1, 2].
Brain-machine interfaces (BMIs) use electric signals from
the brain to control electronic devices without using limbs.
Those with complex neuromuscular problems, such as
amyotrophic lateral sclerosis (ALS), have their brain
impulses converted into actions by BCI technology to restore
certain functions and abilities [2]. In BCI technology, vari-
ous electroencephalographic (EEG) signals are used for
steady-state visually evoked potential (SSVEP), movement-
related cortical potential, motor imagery, and P-300 [3].
This field of research interests researchers in rehabilitation
medicine and neuroscience, which utilize AI theory to study
it [4].

SSVEPs produce natural responses to visual stimulation
at specific frequencies. They are helpful in neurology and
neuroscience research due to their excellence in signal-to-
noise ratio and relative immunity to artefacts [2]. The
SSVEP is a persistent response that the visual cortex pro-
duces after repeating retinal inputs with a specific frequency.
Currently, SSVEP-based BCI applications are widely applied
in the academic literature [5]. SSVEP implementation for
BCI use cases is aimed at directly detecting brain activity
and communicating messages to the outside world. SSVEP
is a visually evoked potential (VEP) type that can be
extracted from the attention of the subject, which focuses
on a repetitive visual stimulus. Signal processing and other
techniques like pattern recognition can determine the fre-
quency and harmonics of SSVEPs [3]. The visual stimulus
can be an LED or a pattern reversal stimulus, such as a
checkerboard. Neural signals should be exploited by cogni-
tive BMIs in more diverse areas that range from particular
areas, both parietal and frontal, to complex prefrontal net-
works. The SSVEP-extracted feature may be constructed
into the appropriate BCI applications more effectively using
the deep learning technique. Accordingly, this research
focuses on demonstrating and strengthening the contribu-
tion of deep learning methods in SSVEP-based BCI applica-
tions [6].

Natural responses to visual stimulation at specific fre-
quencies are produced by SSVEPs [7]. Due to their excel-
lence in signal-to-noise ratio and relative immunity to
artefacts, they are helpful in neurology and neuroscience
research. A persistent response, the SSVEP, is produced by
the visual cortex after repeating retinal inputs with a specific
frequency [3]. SSVEP-based BCI applications are widely
applied in the academic literature. SSVEP implementation
for BCI use cases is aimed at directly detecting brain activity
and communicating messages to the outside world [8]. A
visually evoked potential (VEP) type, the SSVEP, can be
extracted from the attention of the subject, which focuses
on a repetitive visual stimulus [9]. The frequency and har-

monics of SSVEPs can be determined by signal processing
and other techniques like pattern recognition [6]. The visual
stimulus can be an LED or a pattern reversal stimulus, such
as a checkerboard [9, 10]. Cognitive BMIs should exploit
neural signals in more diverse areas that range from partic-
ular areas, both parietal and frontal, to complex prefrontal
networks. The SSVEP-extracted feature can be constructed
into the appropriate BCI applications more effectively using
the deep learning technique [6, 11–13]. This research dem-
onstrates and strengthens deep learning methods’ contribu-
tion to SSVEP-based BCI applications.

To understand the issue and current research in this
domain and to provide a clear understanding of the prob-
lems encountered, their solutions, and the main idea being
pursued in this research, this introduction is structured in
a question-and-answer format, starting with the following
question:

Q1: “How does BCI base on SSVEP work?”
SSVEPs based on BCIs have gained popularity due to

their high information transfer rate, ease of use, and mini-
mal training requirements [14]. These responses are trig-
gered by the stimulation of the retina at a specific
frequency and can be detected through EEG on the visual
cortex. Various fields have applied SSVEPs, including medi-
cine, industry, communication, home automation, gaming,
and robot and vehicle control [15]. To generate an SSVEP-
based image, a target image is divided into smaller overlap-
ping subimages presented as visual stimuli for a set period,
flickering at a constant frequency [16]. Simultaneously, raw
EEG data is collected from a wearable EEG device, and the
EEG data corresponding to each subimage is extracted using
signal processing techniques to represent a pixel of informa-
tion [17, 18] (see Figure 1).

SSVEPs are found to be periodic responses to the rapid
repetition of visual stimuli at frequencies between 1 and
100Hz and are composed of harmonic frequencies [5].
Despite being utilized in BCI systems, long-term use can
result in fatigue, limiting their potential applications [20].
Studies have been conducted to explore the potential appli-
cations of SSVEPs in cognitive and clinical neurosciences
using deep learning techniques, including in areas such as
visual attention, binocular rivalry, working memory, and
EEG waves, as well as in the diagnosis of neurodegenerative
disorders, schizophrenia, ophthalmic conditions, depression,
autism, anxiety, stress, and epilepsy [18, 21]. This leads to
the following question:

Q2: “How does deep learning contribute to SSVEP-based
BCI applications?”

Deep learning techniques have recently made significant
progress in pattern recognition and signal processing, partic-
ularly in computer vision and natural language processing
[22, 23]. These techniques have also been applied to time
series classification, including in the field of BCIs. The
advantages of using deep learning in BCI research include
processing raw brain signals directly, eliminating the need
for time-consuming preprocessing and feature engineering,
and capturing high-level features and latent dependencies
through deep neural network structures [24]. As EEG signals
are high-dimensional, deep learning techniques can extract
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more comprehensive EEG features than manually designed
features [5]. The use of deep learning in BCI research has
also led to algorithmic advances, such as data augmentation
and transfer learning, which can reduce or eliminate the
need for data acquisition and calibration. These advance-
ments can significantly impact BCI research by allowing
for the learning of complex patterns inherent in EEG and
addressing the issue of insufficient data in certain datasets
[25]. In recent years, deep learning techniques, particularly
neural network-based methods such as convolutional neural
networks (CNNs), have been successfully applied to various
fields and utilized in the analysis of multichannel EEG sig-
nals for tasks such as the classification of visually evoked
potential signals [20]. Unlike traditional methods, CNNs
can perform automatic feature extraction and classification
as an end-to-end decoding process. Several studies have
demonstrated the effectiveness of using CNNs to improve
the classification of scalp-EEG signals by combining EEGs
from different channels and at different times through non-
linear operations on signals [26]. In the context of SSVEP,
CNNs are structured with five layers: an input layer, a con-
volutional layer, a linear unit layer, a pooling layer, and a
fully connected layer [14, 15]. These layers are organized
into three dimensions: height, width, and depth [27] (see
Figure 2).

Deep learning techniques are utilized in the integrated
framework of SSVEP-based BCI applications to provide a
self-learning procedure for regression and classification
tasks, including speech, image, and video [28]. The pattern
of producing high-level abstract aspects utilizing low-level
data integration and recognizing properties specific to the
data arrangement is a significant characteristic of deep learn-
ing [29]. Normal shallow learning techniques, such as radial
basis function (RBF) or BP networks, are overcome in their
inability to present features by deep learning [30]. Complex
layers, including hidden ones, are more involved in top-
down SSVEP-based cognitive BCIs than those with physi-
cally driven bottom-up ones, with even the physiological
processes of such layers being unknown [13, 31–36]. This
issue can be solved by implementing deep learning, which
provides more optimal decoding performance by learning

from raw and image data to decode SSVEP brain signals
through understanding each SSVEP stimulus feature [10,
36, 37]. The critical analyses of current academic literature
reviews for deep learning in SSVEP-based BCI applications
are discussed further as it is significant to various neurology
and neuroscience research areas. In order to capture the cur-
rent state in this multidisciplinary field, this study clarifies
and discusses the latest published reviews from the technical
and scientific perspectives of deep learning and SSVEP-
based BCIs. Therefore, the third question is as follows:

Q3: “What is the current literature review of SSVEP-
based BCI applications?”

A review of training environments with motor imagery
BCI is discussed by researchers [13]. Additionally, studies
[13, 33] review the background of existing studies related
to wheelchair control based on BCI for disability and map
the literature study into an intelligible taxonomy. The devel-
opment of motor imagery EEG based on classification BCI
systems is also studied by researchers [32, 33]. While the
existing studies cover several important aspects, integrating
deep learning and SSVEP-based BCI applications are over-
looked. To the best of the authors’ knowledge, neither a
review study nor a systematic review study discussing the
utilization of deep learning methods in SSVEP-based BCI
applications has been presented [3]. This research is aimed
to filling this gap by examining different perspectives of deep
learning and SSVEP-based BCI applications. The critical
research facets of this domain are evaluated by providing
researchers with an understanding of current deep learning
trends and their applications in deploying SSVEP-based BCI
applications. In-depth analyses were conducted to determine
the most effective methods for collecting and storing data for
this study, including a review of pattern recognition tech-
niques applied to various research requirements [13]. The
challenges and requirements for making SSVEP-based BCI
applications trustworthy as current trend research are dis-
cussed, and recommendations for researchers and developers
are presented in five important directions. Methods and solu-
tions to assist SSVEP-based BCI researchers in improving
available deep learning methods and techniques, overcoming
issues, and increasing the usability of SSVEP-based BCI
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Figure 1: Functional model of an SSVEP-based BCI [19].
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deployment for people with and without impairments are
offered. Finally, a proposed solution for selecting the optimal
SSVEP-based BCI application using a new integration meth-
odology phase is presented. The contributions of this system-
atic review are as follows:

(1) A thorough understanding of current deep learning
trends and how they are applied to SSVEP-based
BCI applications is provided for researchers

(2) A review of pattern recognition techniques applied
to various research requirements is presented

(3) The challenges and requirements for making
SSVEP-based BCI applications trustworthy as cur-
rent trend research are discussed

(4) Recommendations for researchers and developers
are offered for improving the available deep learning
methods and techniques, overcoming issues, and
increasing the usability of SSVEP-based BCI deploy-
ment for people with and without impairments

(5) A proposed solution for selecting the optimal
SSVEP-based BCI application is presented using a
new integration methodology phase

2. Method

This study used the Preferred Reporting Items for Reviews
and Meta-Analyses (PRISMA) to conduct the investigation,
as shown in Figure 3 [31, 38, 39]. The researchers avoided
relying on a single database to find literature in the review
article, as all relevant references may not be included, so a
supplementary search is often necessary [32, 40]. According
to studies [36, 41–43], a review should be conducted across
multiple databases to capture the majority of publications.
The study used the ScienceDirect, PubMed, and IEEE data-
bases for a detailed literature review of articles between
2010 and 2021. These databases extensively publish corre-
lated articles and address conceptual, scientific, and clinical
aspects from multidisciplinary viewpoints [44–46]. The
authors formulated a Boolean search approach based on
keywords associated with “steady-state visual evoked poten-
tial” (such as steady-state visual induced potential OR
SSVEP) and those associated with electroencephalography
(such as electroencephalography or the abbreviation EEG)
and keywords with deep learning (such as RNN, LSTM,
DNN, deep neural network, convolutional neural network,

deep learning, CNN, and restricted Boltzmann machine,
among others). The criteria for selecting relevant articles
are as follows:

(1) The article is written in English language

(2) The article is a journal or conference paper

(3) The study with SSVEP is based on an EEG device for
data collection

(4) The BCI modality is based on SSVEP

(5) The AI algorithm employed to identify the SSVEP
patterns is based on deep learning techniques

Not included articles are research works that focus on
non-EEG devices, non-SSVEP brain signals, and nondeep
learning-based applications. Three researchers followed the
selection criteria to identify abstracts and titles, ignoring
duplicates. They then evaluated the complete text of the
likely relevant works. Three other researchers completed a
process review comprising an assessment of the data in the
screened papers. The authors were consulted, and the
authenticity and relevance of the papers were assessed and
validated. The research also implemented two screening
techniques to identify articles relevant to the SSVEP domain
using a deep learning approach for several BCI applications.
The first screening process filters articles based on the title
and abstract text [47–50]. The other filter comprises an
extensive assessment of the complete articles. The data gath-
ering process proposed by existing researchers is thoroughly
assessed to review, providing insight and perspective from
several significant researchers. This approach is aimed at
enhancing the consistency and robustness of the study [51].

3. Systematic Results and Discussion

This section presents and describes the existing deep learn-
ing techniques in the literature for SSVEP-based BCI appli-
cations. An overview of existing feature extractions,
classifications, activation functions, validation methods,
and the achieved classification accuracy with detailed infor-
mation regarding each subprocess is provided in Figure 4.
In this literature, the CCA method for feature extraction is
used in twelve existing works. Among them, the CNN tech-
nique is used by six researchers, as convolutional correlation
analysis is utilized to enhance the performance of SSVEP-
based BCI [15]. In contrast, CNN decodes the brain signal
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Figure 2: SSVEP-based deep learning model [27].
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in BCI speller applications [52]. The frontal and occipital
EEG features are fused to detect a “brain switch” using a
CNN by the study in [53]. Asynchronous SSVEP signals
are classified using compact CNNs [54]. The modular con-

tinuous restricted Boltzmann machine is used for SSVEP-
based BCI applications [55]. Additionally, CNN is used to
enhance the detection of SSVEP in the presence of compet-
ing stimuli [56]. On the other hand, the CCA with hybrid
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Figure 3: Schematic of the approach to identify, screen, and include relevant studies.
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(CNN and RNN) technique for signal classification is used
in only two studies [10, 28], in which the former is used
for the detection of asynchronous steady-state motion
visual-evoked potential and the latter for classifying the
SSVEP brain signal in the time domain. Additionally, the
CCA is used with LSTM in [45] for classifying
multiflicker-SSVEP in single-channel dry-EEG for low-
power/high-accuracy quadcopter-BMI systems. In the study
[27], the CCA with the RRN classifier is used in an SSVEP-
based BCI system for user authentication in a personal
device. The CCA is also used with EEGNet and ensemble
learning to improve the cross-session classification of
SSVEP-based BCI from Ear-EEG. In research [6], singular
spectrum analysis (SSA) is used to separate random and
periodic EEG components, and the SSA parameters are opti-
mized using the skewness coefficient and Spearman correla-
tion. Advanced signal processing techniques, such as CCA
and SSA, can improve the accuracy and robustness of BCI
systems. Additionally, using machine learning algorithms,
such as RRN and MLR, can further enhance the perfor-
mance of these systems. A noninvasive BCI based on a
CNN has been proposed in [57] for virtual environment
(VE) navigation. SSVEP properties in EEG data are distin-
guished in real time by CNN to control the navigation inter-
face. The proposed approach has been examined by walking
in an immersive and believable virtual environment (VE),
which enhances the participant’s involvement and percep-
tion of the VE. In [58], the feasibility of using a CNN to
interpret human EEG responses for authentication purposes
is investigated. Specifically, biometrics are composed of low-
frequency components of the SSVEP, which include stable
and personalized patterns. The evaluation of the study [58]
utilizes the distinguishing capacities over several parameter
combinations to optimize the CNN model. Additionally,
the authors analyze how the duration of EEG data affects
authentication performance. Frequency domain methods,
such as the fast Fourier transform (FFT), have been widely
adopted in BCI modalities for extracting signal features from

brain signals. Many studies have utilized this process in their
feature extraction procedures in the current literature. For
example, in [37], deep learning is applied to a top-down con-
trol strategy utilizing SSVEP brain signals. At the same time,
[59] employs a convolutional neural network (CNN) for
classifying SSVEP in an ambulatory environment. Addition-
ally, [60] utilizes deep separable CNNs in the SSVEP frame-
work. Furthermore, studies such as [59, 61] and [10, 62]
utilize the FFT in conjunction with CNNs in BCI speller
applications. However, in virtual environment (VE) applica-
tions, such as [54], the FFT is used in conjunction with
CNNs for extracting brain signal features while controlling
walking in the VE. Additionally, [20] proposes the multihar-
monic linkage CNN (MHLCNN) model for SSVEP and
SSMVEP signal classifications. Furthermore, studies such
as [10, 15, 26, 28, 53, 56, 63, 64] utilize CNNs for person
identification and improving the performance of SSVEP-
based BCI systems, respectively. Researchers have employed
various feature extraction methods in conjunction with their
deep learning models for extracting SSVEP brain signal fea-
tures. For example, cross-correlation [65] has been used for
person authentication using SSVEP visual stimulation, while
Welch’s method [66] controls mobile robots in a brain-
based teleoperation system. Additionally, two-level com-
pressed sensing [30] has been employed in SSVEP-based
BCI systems, and CNNs alone have been used in real-time
humanoid robot navigation using SSVEP stimuli [67]. How-
ever, other studies have used raw EEG data to extract SSVEP
signal features for a CNN-based user authentication system
[61] and classify SSVEP-based CNN applications [68]. In
the time-frequency domain, short-time Fourier transform
(STFT) with CNNs has been used to classify SSVEP
responses in a BCI framework [17, 69]. Multiscale convolu-
tion [19] has also been utilized to extract SSVEP features
according to multiple frequencies in SSVEP stimulations.
In terms of hybrid feature extraction methods, which are
also widely used in BCI applications, studies such as [70]
have employed a combination of power spectral density
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Figure 4: The existing applications of deep learning pattern recognition techniques in SSVEP-based BCI.
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(PSD) and independent component analysis (ICA) for fea-
ture extraction and feature reduction to minimize the
dimensionality of the BCI signal. Furthermore, in [14],
FFT and CCA have been used to extract BCI system SSVEP
signal features.

4. Comprehensive Mapping Analysis

In this study, various data are gathered using the literature
and devised a classification based on the article bibliography,
data acquisition method, and brain signal assessment. The
first category comprises academicians’ nationalities and pub-
lication years, followed by the word cloud. EEG instrument
category, channel name and number employed for capturing
brain signals, and the subject count are involved in data
gathering in the second category. The third category con-
tained the feature extraction technique for extracting the
dominant features of the SSVEP brain signal, the deep learn-
ing approach used in distinguishing the brain signal, the
classification accuracy system, and the advantages of the
proposed system, framework, or algorithm. However, the
review method suffers from issues of objectivity and reliabil-
ity. Previous literature strongly recommended the adoption
of bibliometric analysis to address the mentioned issues
[8]. There are many ways to perform a bibliometric analysis,
for example, RStudio and VOSviewer. This study adopted
these techniques to reorganize the previous literature’s find-
ings, summarize the literature’s findings, and provide insight
to academics and practitioners about the previous works.
Therefore, bibliometric analysis helps keep up with current
and published research. The following subsections describe
the results of the mapping analysis.

4.1. Word Cloud. The word cloud shows the most common
and crucial terms from existing studies [71]. In order to syn-
thesize the overview of those discoveries and rearrangement
of information, Figure 5 provides key phrases in the findings
of previous studies.

Figure 5 displays various keywords relevant to this field
of study. The larger the keywords, the more frequently they
appear in the literature. In contrast, the smaller the size of
keywords, the less frequently they appear in the literature.
In this context, SSVEP, BCI, deep learning, and EEG are sev-
eral significant vital topics in the previous studies that we are
looking into. Most of the studies have attempted to apply
deep learning techniques to SSVEP-based BCI applications,
especially in the usage of EEG. The study’s findings indicate
that feature extraction, classification, activation function,
validation, and accuracy of the deep learning techniques
are critical factors for the emergence of SSVEP-based BCI
applications in medical use cases.

4.2. Cooccurrence. Cooccurrence networks refer to common
words established by existing studies [72]. Cooccurrence
analysis is a semantic network that provides critical clues
to researchers about the conceptual structure of a field of
specialization. Figure 6 shows cooccurrence networks and
identifies common keywords.

The cooccurrence illustrates the topics’ network consist-
ing of lines and knots. Large knots represent the most com-
mon themes. Regarding SSVEP-based BCI applications in
medical fields, feature extraction, classification, activation
function, validation, and accuracy are integral to SSVEP,
BCI, EEG, and deep learning. This cooccurrence provides a
clear overview of the research area’s related themes and con-
ceptual structure. It also creates opportunities for
researchers to identify the gaps in this research field. By cap-
turing the common repetition of keywords for SSVEP-based
BCI applications, researchers can apply data networks to
facilitate attempts to reorganize the available information
and results.

4.3. Trending Topics. Trending topics are the most impor-
tant topics dealing with a certain subject matter. Trending
topics represent concepts and elements analyzed in the exist-
ing literature for deep learning techniques, SSVEP, BCI, and
EGG. Figure 7 shows the essential critical words adopted by
existing studies about SSVEP-based BCI applications and
the relationships between them.

Trending topics can support the research taxonomy
because they illustrate and confirm that most studies related
to SSVEP-based BCI applications focused on medical use
cases. As shown in Figure 7, the most frequently used key-
word is SSVEP, followed by BCI, as these two are closely
related in this research field. The keywords indicate that
the authors who investigated the SSVEP-based BCI applica-
tions were also interested in those areas. Trending topics can
support the search ranking by clarifying the percentage of
keywords. Figure 7 shows the most relevant elements of
the organized text data. This procedure prevented academics
and recipients comparing the different components from
finding the similarities and differences between the larger
and bolder words. Furthermore, trending topics have pro-
vided huge opportunities for researchers to understand the
importance of SSVEP-based BCI implementation in any
field by grouping words of various sizes in terms of critical
factors.

4.4. Factorial Analysis. The factorial analysis computes the
similarity index, which allows the user to normalize biblio-
graphic coupling, cooccurrence, and cocitation, a similarity

Figure 5: Word cloud.
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measure. The factorial analysis was used to map the concep-
tual structure of a field based on the frequency of words in a
particular bibliographical group. Such an analysis provides
insight to the researchers into understanding the relation-
ship between the main topic and emerging subfields. The
size of nodes shows the frequency of occurrence of key-
words. To this end, a factorial analysis has been used to
understand the relationship between the topics which
applied SSVEP-based BCI, as shown in Figure 8.

Two clusters have been shown based on distinct colors.
Each cluster is a simultaneous keyword in the studies being
sampled. The red cluster is the largest network of keywords
comprising the main topic of SSVEP and BCI applications.
The literature which has adopted significant deep learning

techniques has been associated with other nodes such as fea-
ture extraction, classification, activation function, validation,
and accuracy. The blue cluster provides insight into EGG
and the accuracy of BCI applications in the medical field.
Investigating factorial analysis provides the developing
blocks for ongoing research and development in the SSVEP
and BCI applications.

4.5. Collaboration Map. The country collaboration map
shows the scientific cooperation network between universi-
ties, countries, and authors. Coauthorship increases coun-
tries’ and researchers’ skills and experience in developing a
specialization field [73]. Figure 9 presents a country collabo-
ration map for SSVEP in healthcare.
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The figure consists of three colors. Dark blue indicates
the countries with the most scientific production, light blue
represents little scientific production, and grey indicates
the lack of scientific production. In addition, the red line
represents scientific cooperation between countries.
Figure 9 confirms that scientific cooperation between the
European and American continents enhances the SSVEP
techniques in the healthcare sector. However, there is a con-
siderable lack of scientific cooperation between the Asian,
European, African, and American continents. Moreover,
the lack of scientific cooperation between countries indicates
a lack of experience and knowledge regarding the ethical
issues in SSVEP applications. Therefore, policymakers and
academics in the continents mentioned above should seek
more innovative ways to stimulate and enhance scientific
cooperation and benefit from the expertise and skills in this
field in the European and American continents.

5. Current Challenges: Trustworthy Deep
Learning in SSVEP-Based BCI Applications

Deep learning technology has become an important part of
BCI applications that use SSVEPs [74]. These systems can

greatly enhance our daily lives, but they also have the poten-
tial to cause harm to users or society, either directly or indi-
rectly. Therefore, ensuring that these systems are safe,
reliable, and trustworthy is essential [75, 76]. Trustworthy
deep learning technology in these applications can be
achieved through several measures, including thorough test-
ing and evaluation, transparent design and decision-making
processes, and robust security and privacy measures. By pri-
oritizing these considerations, we can ensure that these sys-
tems are effective, responsible, and ethical in their use [77].
Accordingly, several requirements can help to ensure the
trustworthiness of deep learning technology in BCI applica-
tions based on SSVEPs [78–80]. Some of these requirements
include the following:

(i) Thorough testing and evaluation: deep learning
systems should be tested and evaluated extensively
to ensure that they are accurate, reliable, and effec-
tive. This can involve simulated and real-world
testing to cover many scenarios

(ii) Transparent design and decision-making pro-
cesses: the design and decision-making processes
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behind these systems must be transparent so that
users and other stakeholders can understand how
the systems work and how decisions are made

(iii) Robust security and privacy measures: these sys-
tems should have strong security measures to pro-
tect against unauthorized access or misuse. They
should also have strong privacy protections to
ensure that user data is handled responsibly and
in compliance with relevant regulations

(iv) Ethical considerations: deep learning systems
should be designed and used ethically, considering
the potential impacts on society and individual
users. This can involve considering issues such as
bias and diversity in the development and use of
the systems

(v) User-centered design: these systems should be
designed with the needs and preferences of the
users in mind to ensure that they are easy to use
and provide a positive user experience

(vi) Explainability: it should be possible to understand
and explain the decision-making processes of these
systems so that users and other stakeholders can

understand how they work and why certain deci-
sions are made

(vii) Responsiveness to change: deep learning systems
should be able to adapt and learn over time to con-
tinue to be effective even in changing environ-
ments or as new data becomes available

(viii) Responsiveness to feedback: these systems should be
designed to be responsive to user feedback and adapt
to changing user needs and preferences over time

(ix) Scalability: deep learning systems should be able to
handle large amounts of data and be able to oper-
ate effectively at scale

Several challenges can arise in developing and deploying
trustworthy deep learning technology in BCI applications
based on SSVEPs [81–83]. Some of these challenges include
the following:

(i) Complexity: deep learning systems can be complex
and may require specialized expertise to develop
and maintain. This can make it challenging to ensure
that these systems are reliable and trustworthy

(ii) Bias and diversity: deep learning systems can be
prone to bias if they are trained on biased data or

Figure 9: Collaboration world map.
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are not designed to consider diverse perspectives.
This can lead to unfair or discriminatory outcomes
and undermine trust in these systems

(iii) Security and privacy: ensuring the security and pri-
vacy of user data is a major challenge in developing
deep learning systems, particularly in the context of
BCIs, which may involve sensitive personal
information

(iv) Explainability: it can be difficult to understand and
explain deep learning systems’ decision-making
processes, making it challenging to ensure that
these systems are transparent and trustworthy

(v) Ethical considerations: deep learning systems can
have unintended consequences and may have
potential impacts on society and individual users.
Ensuring that these systems are used ethically and
responsibly can be a challenge

(vi) Inability to adapt to change: if the system cannot
adapt and learn over time, it may become less effec-
tive in changing environments or as new data
becomes available

(vii) Lack of scalability: if the system cannot handle large
amounts of data or operate effectively at scale, it
may not meet the needs of a growing user base or
handle increasing amounts of data

6. Recommendations to Researchers
and Developers

This study opens a way for future researchers to enhance
this research field and cope with the existing studies. Future
works can be focused on optimization in the pattern recogni-
tion models and the implementation of hybrid techniques to
maximize the performance of the developed models. Addi-
tionally, the generalization issue can be addressed in future
research to develop a generalized model that can fit any sub-
ject. These future works might help the researchers and the
developers to deploy the deep learning-based BCI-SSVEP pat-
tern recognition system in real-time systems. The future works
can be directed into many paths and aspects, such as real-time
implementations, optimizations, generalization, hybrid tech-
niques, recognition of brain signals, and robotic rehabilitation
system. These aspects are further elaborated in detail in the
following subsections to portray future trends.

6.1. Real-Time Implementation. The real-time SSVEP cate-
gorization setup for exoskeleton and robotic cars must be
addressed in future studies [28]. A real-time CNN imple-
mentation must be devised to regulate an exoskeleton, spe-
cifically the lower limb, and assess performance for healthy
individuals and groups to determine the feasibility of gait
rehabilitation. Nevertheless, a CNN classifier independent
of subjects might provide a productive approach because it
helps reduce training duration [59]. Assessing the influence
of various window dimensions must be considered for future
studies. Moreover, real-time setup and overlap concerning

the remote operation of mobile robots should be assessed.
A simple and highly accurate drone controller should be
developed for a larger number of participants by using more
complicated drone movements, its effectiveness should be
verified, and the system should be implemented using
lower-cost hardware that utilizes little power [63].

6.2. Optimization. Different deep learning techniques should
be examined to enhance top-down SSVEP BMI’s decoding
accuracy [37]. Optimizing the hyperparameter is one of the
important research directions. For example, CNN hyper-
parameters like network layer distribution, feature map size
and count during convolution, and convolutional layer
count are recommended evaluation areas. Further, several
hyperparameters can be modified for performance improve-
ment, including the learning rate, weight initialization
methods, regularization-related methods, the number of
iterations, and attenuation function. Optimizing parameters
might provide a significantly positive effect on deep learning
efficacy, leading to more significance on hyperparameter
improvement specific to deep neural systems, which are
already being explored extensively [70].

6.3. Generalization and Hybrid Technique. Enhancing gener-
alization efficacy for more test subjects is a recommended
future work direction. Setting complexity, teleoperation dura-
tion, and robot-environment interaction should be studied
[67]. Further studies should involve large datasets for the clas-
sification and generalization across subjects in the different
deep learning approaches [68]. Further research is needed to
investigate how to adapt or use combined CCA directly to
handle asynchronous operations better [54]. Other forms of
the MCRBM framework should be assessed to enhance the
performance of the SSVEP-BCI approach [55].

6.4. Robotic Rehabilitation Systems. An SSVEP-based BCI
system with an integrated rehabilitation robot system has
been proposed. The subject’s movements were perceived as
commands to the robot system to help the upper extremities
engage in physical therapy-like training [67]. The existing
study focused on determining whether performance in a
BCI based on SSVEP response produced by visual attention
was affected by attention to real-world activity. However, the
asynchronous BCI system should be improved rather than
the current synchronization SSVEP-based BCI. The study
can be further directed into validating this integrated reha-
bilitation approach with a group of patients who have upper
limb paralysis [66].

6.5. Recognition of Brain Signal. An SSVEP-BCI implemen-
tation has several IC states. High recognition accuracy is
challenging because prevalent recognition approaches use
the threshold mechanism and suffer from statistical issues
like concurrent low false positives and high true positives
[10]. Several obstacles still exist despite significant techno-
logical advancements. The BMI control signals are generated
by the primary sensory-related processing of the brain areas,
which are the most commonly used. However, utilizing these
signals only limits the decodable human intentions’ range.
Thus, for better controlling multiclass BCIs, further brain
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activity sources need to be explored [37]. This can be
enhanced in future works as ambulatory BCI regulation pro-
vides reduced performance levels compared to a static refer-
ence because of deterioration caused by subject movement,
head movement, sound, walking speed, and electric influ-
ence of exoskeleton motors, leading to different user charac-
teristics [59]. Deep learning schemes use handcrafted
processes. Complete training for feature identification and
extraction was not implemented. EEG data has high volatil-
ity, overloading convolutional feature identifiers. These
aspects hinder system convergence [60]. These issues need
a thorough study in the future by focusing on hardware
inputs that can be reduced using single EEG electrodes. It
is suggested to apply this approach due to its cost-
efficiency and simplicity of the system [63]. Paste-free dry
electrodes with lesser contact resistance concerning the elec-
trode and scalp surface can help participants by reducing
cleaning effort after the procedure [63]. Additional brain
activity sources need to be explored. In BCIs, a new potential
field could be opened by the brain activity associated with
top-down cognitive functions [37].

7. Critical Review and Unsolved Issues of
SSVEP-Based BCI Applications

The applications of SSVEP-based BCIs and their effects on
individuals are discussed in this section of the research
paper. The examined researches how SSVEP-based BCIs
can be utilized to help individuals in various settings and
explores the potential implications [84]. This section dis-
cusses and highlights two main challenges regarding the
future trust methodology of evaluating and benchmarking
SSVEP-based BCI applications.

7.1. Development Challenges Based on Deep Learning
Techniques. There are several unsolved issues when using
DL technology in SSVEP-based BCI applications. These
include the following:

(1) One of the major challenges in utilizing deep learn-
ing for SSVEP-based BCI applications is obtaining
high classification accuracy [79]. SSVEP signals tend
to be weak and can be easily overwhelmed by noise
originating from various sources, such as eye move-
ments, muscle activity, and electrical interference.
This noise can obscure the SSVEP signals, making
them difficult to detect, which leads to low classifica-
tion accuracy. Several solutions have been proposed
to address this issue, such as utilizing advanced sig-
nal processing techniques, applying spatial filtering
to improve the signal-to-noise ratio, and using
ensemble methods to combine the outputs of multi-
ple classifiers. Additionally, research is being con-
ducted to develop deep learning models that are
more robust to noise and have greater generalization
capabilities

(2) The limited frequency range of SSVEP signals can
restrict the number of commands a BCI system can

detect [85]. SSVEP signals are created in response
to visual stimuli that flicker at a specific frequency
and typically have a frequency range between 5 and
25Hz. This means that a BCI system using SSVEP
signals can only detect commands associated with
visual stimuli that flicker within this frequency
range. This limitation reduces the number of com-
mands detected by the BCI system and the number
of stimuli that can be presented to the user. Addi-
tionally, the frequency range of SSVEP signals can
vary among individuals, leading to variability in the
system’s performance across different users. To over-
come this limitation, researchers have proposed
methods to detect SSVEP signals at higher frequen-
cies by using frequency-tagged visual stimuli and
advanced signal processing techniques to extract
SSVEP signals from EEG data

(3) The high variability of SSVEP signals between indi-
viduals poses a significant challenge in creating a
generalizable BCI system. Factors such as visual acu-
ity, cognitive abilities, and brain anatomy can lead to
significant differences in SSVEP signals among indi-
viduals, making it challenging to develop a system
that works well for many users [86]. To address this
issue, some researchers have suggested using person-
alized calibration methods, such as individualized
stimuli or adapting the model to each user’s specific
characteristics. Additionally, advanced signal pro-
cessing techniques, such as ICA or CSP, have been
proposed to extract more robust features to intersub-
ject variability. Still, these methods can be less effec-
tive and more complex to implement. More research
is needed to overcome this limitation, understand
the causes of intersubject variability, and develop
strategies to reduce it

(4) Head movements can greatly affect the performance
and stability of SSVEP-based BCI systems as they
can alter the quality of SSVEP signals. Head move-
ments can cause changes in the EEG signals, such
as shifts in the position of electrodes, changes in ref-
erence and ground electrodes, and changes in the
eyes’ position relative to the stimuli [87]. These
changes can lead to a reduction in the SSVEP signals’
amplitude and frequency, which makes them more
difficult to detect. This can decrease the performance
of the BCI system and make it less dependable. Sev-
eral methods have been suggested to address this
problem, such as using advanced signal processing
techniques to correct for head movements’ effects,
using eye-tracking systems to monitor gaze position
and compensate for changes in SSVEP signals, and
using head-mounted displays to keep stimuli in a
fixed position relative to the eyes. Additionally, some
researchers are exploring using deep learning models
to detect and correct head movements in real time

(5) Using a limited number of EEG channels in SSVEP-
based BCI systems can restrict the amount of
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information that can be obtained from the brain.
Typically, SSVEP-based BCI systems use only a
small number of EEG channels, ranging from 4 to
8, to detect SSVEP signals which can limit the sys-
tem’s spatial resolution, making it harder to differen-
tiate between different SSVEP signals [88].
Furthermore, it also limits the ability to detect
SSVEP signals from different brain regions, which
can be important for broadening the range of appli-
cations of BCI systems. To address this limitation,
researchers have suggested using advanced signal
processing techniques such as ICA and CSP to
extract features that are less affected by the limited
number of channels. Additionally, some researchers
have proposed using high-density EEG systems with
up to 128 channels to enhance the system’s spatial
resolution and improve the detection of SSVEP
signals

(6) The lack of interpretability in deep learning models
is a significant challenge when using them in
SSVEP-based BCI systems [89]. These models are
considered black boxes due to their complexity and
nonlinearity, making it hard to understand how they
make decisions and which features they use to classify
SSVEP signals. This can make it difficult to debug the
models and ensure they make decisions based on the
correct features. It can also make it challenging to
ensure that the models are not making decisions based
on irrelevant or biased features. To overcome this lim-
itation, researchers have proposed using interpretable
machine learning methods such as decision trees and
rule-based systems or methods to visualize and com-
prehend the internal representations of deep learning
models like saliency maps, activation maximization,
and layer-wise relevance propagation

(7) Obtaining a sufficient amount of labeled EEG data is
a key challenge when training and fine-tuning deep
learning models for SSVEP-based BCI applications
[17]. These models require a large amount of data,
which can be difficult to acquire. Typically, collecting
EEG data for BCI applications requires participants
to perform a specific task, such as looking at a flick-
ering stimulus, while the data is being recorded. This
process can be costly and time-consuming, making it
hard to ensure that the data is of high quality. Further-
more, collecting EEG data from a diverse population
can be challenging, making it hard to develop models
that generalize well to different users. To address this
issue, researchers have suggested using transfer learn-
ing and domain adaptation techniques to fine-tune
pretrained models using a smaller amount of labeled
data. Additionally, researchers have proposed using
synthetic data, such as computer-generated EEG sig-
nals, to increase the amount of labeled data available
for training and fine-tuning models

(8) Real-time performance is a significant issue when
using deep learning models for SSVEP-based BCI

systems, as these models can be computationally
intensive [90]. Deep learning models typically have
many parameters that require significant computa-
tional resources to train and evaluate. Furthermore,
the inference stage of deep learning models can also
be computationally expensive, as it requires many
matrix multiplications and nonlinear operations.
This can make it challenging to implement these
models in real-time BCI systems, as the EEG data
needs to be processed in real time to provide timely
feedback to the user. To end this limitation,
researchers have proposed using techniques such as
model compression, quantization, and hardware
acceleration to reduce the computational cost of
deep learning models. Alternatively, researchers have
proposed using lightweight models such as shallow
neural networks or decision trees, which are more
computationally efficient than deep learning models

In addition to the above issues, developing SSVEP-based
BCI applications presents several challenges, particularly
considering the criteria of security [28, 58, 64], robot control
[52, 65–67], BCI framework [37, 56, 59], drone control [55,
66], and BCI speller [62]. More explanation for each crite-
rion explains as follows:

(i) Security: SSVEP-based BCI systems are vulnerable
to signal spoofing, in which an attacker generates
an artificial signal to impersonate a genuine user.
Additionally, SSVEP-based BCI systems also face
the challenge of ensuring the privacy of the users’
brain signals, which may contain sensitive
information

(ii) Robot control: SSVEP-based BCI systems are chal-
lenging to apply in real-world robot control scenar-
ios because of the variability of the SSVEP signals
across different users and environmental condi-
tions. Additionally, achieving accurate and respon-
sive control of robots using SSVEP-based BCI
systems is challenging and may require significant
computational resources

(iii) BCI framework: developing a robust and reliable
BCI framework for SSVEP-based systems is a chal-
lenging task. It requires integrating components
such as signal acquisition, feature extraction, classi-
fication, and feedback, which may be affected by dif-
ferent factors such as noise, artefacts, and variability
of the SSVEP signals

(iv) Drone control: the control of drones using SSVEP-
based BCI systems is challenging due to the high
speed and dynamic nature of the drones. Addition-
ally, achieving accurate and responsive control of
drones using SSVEP-based BCI systems is challeng-
ing and may require significant computational
resources and advanced signal processing techniques

(v) BCI speller: SSVEP-based BCI speller applications
are challenging to develop because of the high
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variability of the SSVEP signals across different
users and environmental conditions. Additionally,
it is challenging to achieve accurate and responsive
control of the speller using SSVEP-based BCI sys-
tems, which may require significant computational
resources and advanced signal processing techniques

7.2. Selection Challenges Based on MCDM. This review has
highlighted that the use of deep learning techniques in
SSVEP-based BCI applications has increased in recent
research. These applications have been developed to support
various medical systems and other fields. However, there is a
need for a comprehensive evaluation framework to deter-
mine the optimal SSVEP-based BCI application for specific
criteria. One of the main challenges in the literature
reviewed is the diversity of SSVEP-based BCI applications,
with no clear consensus on the optimal approach. Studies
have shown a range of variations in the developed applica-
tions, taking into account different criteria and ignoring
others. It is crucial to consider the following criteria: security
[28, 58, 64], robot control [52, 65–67], BCI framework [37,
56, 59], drone control [55, 66], and BCI speller [62] to design
and implement an optimal SSVEP-based BCI application.
The taxonomy presented in this review highlights that these
criteria are crucial in developing SSVEP-based BCI applica-
tions. However, it is important to note that these five essen-
tial criteria should be considered together, and none should
be neglected when evaluating developed SSVEP-based BCI
applications. Another issue is that the evaluation criteria
are comparative and may overlap with other models when
considering multiple evaluation criteria and the importance
levels of each [91, 92]. This highlights the need for a compre-
hensive evaluation framework that considers multiple cri-
teria and their relative importance to determine the
optimal SSVEP-based BCI application. Generally, evaluation
criteria can be categorized into benefit and cost [93]. Benefit
criteria refer to values considered more valuable, whereas
cost criteria are the opposite. From a BCI perspective, the
five evaluation criteria discussed in this review are consid-
ered to be benefit criteria. Therefore, due to the issues dis-

cussed, the evaluation and benchmarking of SSVEP-based
BCI applications is a complex multicriteria decision prob-
lem. MCDM is a methodology used to evaluate alternatives
and make decisions based on multiple, often conflicting cri-
teria. MCDM involves various processes, including structur-
ing, planning, and solving decision problems using multiple
criteria [94, 95]. Therefore, MCDM methods could be useful
for evaluating and selecting the optimal SSVEP-based BCI
application based on the abovementioned criteria.

In summary, the main challenges of developing SSVEP-
based BCI applications include ensuring security, achieving
accurate robot control, designing an efficient BCI frame-
work, ensuring precise drone control, and achieving high
accuracy in BCI speller applications. These challenges are
further complicated because different criteria may have
varying levels of importance and overlap with other models.
Therefore, developing a comprehensive evaluation frame-
work using MCDM methods is necessary to address these
challenges and benchmark the developed SSVEP-based
BCI applications. This framework would involve decision-
makers providing qualitative and/or quantitative assess-
ments to determine the performance of each alternative con-
cerning each criterion and the relative importance of the
evaluation criteria concerning the overall objective
[96–101]. Therefore, the propose solution for the above
issues is explained in the next section.

8. Evaluation and Benchmarking of SSVEP-
Based BCI Applications: Future Methodology

Fuzzy MCDM techniques intervene in clinical fields to pro-
vide intelligent decision-making [102–105]. Therefore, a
new framework proposal can be developed as a trusted tool
for future neurology and neuroscience research (i.e., disabil-
ities). The methodology can be introduced in three phases,
as shown in Figure 10.

8.1. Phase 1: Construction of Decision Matrix. This section
explains the developed dynamic DM used to evaluate and
benchmark SSVEP-based BCI applications. The developed

Construction of decision matrix
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Decision matrix (DM)
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FWZIC for evaluation SSVEP-based BCIs criteria
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evaluation criteria
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EDM building based on the intersection of

the transparency evaluation criteria and SEJ
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Figure 10: Proposed methodology for evaluation and benchmarking of SSVEP-based BCI applications for disabilities.
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applications must be benchmarked based on the five SSVEP-
based BCI criteria: security, robot control, BCI framework,
drone control, and BCI speller. Therefore, a new decision
matrix must be developed for this purpose [106]. The deci-
sion matrix is the most critical aspect of the assessment
and benchmarking technique [91, 92, 94, 107–109]. The pri-
mary decision-making components are the five affected
SSVEP-based BCI criteria and alternatives (SSVEP-based
BCI applications). The processes taken to construct the deci-
sion matrix are detailed in Table 1. In addition, two MCDM
methods (FWZIC-FDSOM) must be formulated to evaluate
and benchmark the developed SSVEP-based BCI applica-
tions using the developed decision matrix, as explained in
the following sections.

8.2. Phase 2: FWZIC for Evaluation of SSVEP-Based BCI
Criteria. FWZIC is one MCDM method that needs to be
used for weighting the five SSVEP-based BCI criteria.
Figure 11 illustrates the steps of FWZIC through five essen-
tial processes that need to be applied for each set of five cri-
teria [110, 111]. The five steps are illustrated below.

Step 1. Establish the set of evaluation of SSVEP-based BCI
criteria: the predetermined set of assessment criteria of
SSVEP-based BCIs should be examined and presented in
the first step [92].

Step 2. Structured expert judgment (SEJ) is a process for
identifying and selecting a team of experts in the SSVEP-
based BCIs. The experts are nominated and selected, and a
panel is formed [112]. The panel then uses a numerical scale
to evaluate each of the five criteria, as shown in Table 2,
using an evaluation form to capture the consensus of all
panel members. In this process, a panel of four experts sub-
jectively assesses the criteria.

Step 3. The expert decision matrix (EDM) is constructed
based on the list of selected experts and their choices within
specific criteria for SSVEP-based BCIs. The EDM consists of
alternatives and decision criteria [113], as shown in Table 3.
Each criterion in the attribute of SSVEP-based BCI criteria is
cross-referenced with each expert (Ei), who evaluates the rel-
evance of each criterion.

Step 4. A fuzzy membership function and defuzzification
procedure are applied to the data in the expert decision
matrix (EDM) to improve the accuracy and usability of the
data for criterion analysis in MCDM. In MCDM, assigning
specific preference rates to each criterion is often difficult
due to ambiguity and imprecision [114–116]. Using fuzzy
techniques, such as triangular fuzzy numbers (TFNs), can
address this issue by allowing for calculating relative values
for criteria using fuzzy numbers rather than exact numbers.
TFNs are a common type of fuzzy number and are repre-
sented as a, b, and c with a triangle membership function,
as shown in Figure 12. They are preferred for their simplicity
and are frequently used in real-world applications [117].

The membership function (x) of TFN A is given by

μA xð Þ =

0 if x < a,
x − a
b − a

if a ≤ x ≤ b,
c − x
c − b

if b ≤ x ≤ c,

0 if x > c,

8>>>>>>><
>>>>>>>:

ð1Þ

where a ≤ b ≤ c.

Remark 1. Let ~x = ða1, b1, c1Þ and ~y = ða2, b2, c2Þ be two
nonnegative TFNs and α ∈ℝ+. Following the extension
principle, the arithmetic operations are defined as follows:

~x + ~y = a1 + a2, b1 + b2, c1 + c2ð Þ, ð2Þ

~x − ~y = a1 − c2, b1 − b2, c1 − a2ð Þ, ð3Þ

α~x = αa1, αb1, αc1ð Þ, ð4Þ

~x − 1 ≅ 1
c1 ,

1
b1 ,

1
a1

� �
, ð5Þ

~x × ~y ≅ a1a2, b1b2, c1c2ð Þ, ð6Þ
~x
~y
≅

a1
c2 ,

b1
b2 ,

c1
a2

� �
: ð7Þ

The value of each numerical term with TFN is shown in
Table 4.

Table 4 indicates that all linguistic variables should be
transformed to TFNs, supposing that the fuzzy number is
the variable for each expert N criterion. In other words,
expert N should be asked to identify the critical degree of
the assessment criteria (SSVEP-based BCIs) inside variables
assessed using linguistic variables.

(1) By using Equation (8), the ratio of fuzzification data
is determined. As demonstrated in Table 5, the pre-
ceding equations are employed with TFNs [117].

gImp E1/C1ð Þ
∑n

j=1
gImp E1/C1j
À Á , ð8Þ

Table 1: The developed decision matrix.

Alternatives/criteria SSVEP-based BCI criteria
SSVEP-based BCI
applications

C1 C2 C3 C4 C5

A1 Application #1 C1-A1 C2-A1 C3-A1 C4-A1 C5-A1

A2 Application #2 C1-A2 C2-A2 C3-A2 C4-A2 C5-A2

A3 Application #3 C1-A3 C2-A3 C3-A3 C4-A3 C5-A3

A4 Application #4 C1-A4 C2-A4 C3-A4 C4-A4 C5-A4

A5 Application #5 C1-A5 C2-A5 C3-A5 C4-A5 C5-A5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

An Application #n C1-An C2-An C3-An C4-An C5-An

C = criteria; A = alternative; C1 = security; C2 = robot control; C3 = BCI
framework; C4 = drone control; C5 = BCI speller.
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where gImpðE1/C1Þ represent the fuzzy number of
ImpðE1/C1Þ

(2) To determine the final fuzzy values of the weight

coefficients of the criterion ðfw1, fw2,⋯, fwnÞT , the
mean values should be determined. The fuzzy EDM
ð gEDMÞ is utilized to calculate the final weight value
of each SSVEP-based BCI criterion using Equation
(9).

fwj =
∑m

i=1
gImp Ei j /Ci j

À Á
/∑n

j=1
gImp Ei j /Ci j

À Á� �
m

,

for i = 1, 2, 3, ::m and j = 1, 2, 3, ::n:
ð9Þ

(3) Defuzzification to find the final weight: the centroid
approach is the most prevalent defuzzification tech-
nique. Using TFNs, the mathematical expression
for this procedure is ða + b + cÞ/3. Before computing
the final values of the weight coefficients, the weight
of importance should be allocated to each criterion
based on the total weights of all SSVEP-based BCI
criteria for the rescaling purpose used in this step

Step 5. Compute the final values of the weight coefficients of
the evaluation criteria: in this stage, the final values of the
weight coefficients for the evaluation criteria ðw1,w2,⋯,
w5ÞT that represented C1 = security, C2 = robot control,
C3 = BCI framework, C4 = drone control, and C5 = BCI
speller should be determined using the fuzzy data for the cri-
terion from the previous step.

At this step, the weights for the five SSVEP-based BCI
criteria will be calculated to be used with the FDOSM
method in the next phase.

8.3. Phase 3: FDOSM Method for Benchmarking SSVEP-
Based BCI Applications. The FDOSM is an MCDM method
for ranking alternatives, such as in a benchmarking process
for SSVEP-based BCI applications. FDOSM is a mathemati-
cal model that addresses MCDM issues involving individual
and group decision-making contexts [29, 118, 119]. The
FDOSM process consists of three units: a data input unit, a
data transformation unit, and a data processing unit [120].
It also has two phases for group decision-making, external
and internal aggregations [121], as illustrated in Figure 13.
The steps of the FDOSM method can be summarized as
follows:

(i) Data input unit: like existing MCDM approaches
[122, 123], the proposed MCDM method assigns m
choices to each MCDM issue. A1,⋯, Am presented
SSVEP-based BCI applications and n set of decision
criteria C1, C2 ⋯ , Cn represented SSVEP-based BCI
criteria. The DM represents this block’s output.
Then, this choice matrix is converted into an opin-
ion matrix

(ii) Data transformation unit: once the DM has been
constructed (as the output of the first block in the
FDOSM process), the transformation unit is used
to select a three-parameter optimal solution consist-
ing of minimum, maximum, and critical values. The
minimum value criterion is used for cost criteria,
where the lowest value indicates the best option.

Step 1
Define and explore the set of
five affected SSVEP criteria

Robot control

BCI framework

Drone control

Task 3
EDM building based on the

intersection of the five SSVEP
criteria and SEJ

Step 4
Fuzzy membership function

application to the EDM result

Step 5
Final values computation of the

weight coefficients of the
five SSVEP criteria

Step 2
Structured expert judgment (SEJ)

Experts
identification

Identification

Experts selection

Selection

Evaluation form
development

Form
Development

Definition of scale
leveling

Scale leveling

Lingustic to
numerical

Scale
Convertion

Scale
convertionScale levelingForm

developmentSelection

FINISHSTART

2 31 54

Security

BCI speller

Figure 11: FWZIC methodology of evaluation of SSVEP-based BCI criteria.
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The maximum value is used for benefit criteria,
where the highest value represents the best solution.
The critical value is used when the optimal solution
is neither minimum nor maximum [124]. The fol-
lowing steps are then followed to complete this stage
of the FDOSM process:

Step 1. Select the optimal solution (SSVEP-based BCI appli-
cation). Consequently, the optimal solution should be
described as follows:

A∗ = max
i vij j ∈ Jjð Þ, min

i vij j ∈ JjÀ Á
, Opij ∈ I:J
À Á

i = 1:2:3⋯ ::m
Â ÃÈ É

ð10Þ

Step 2. In the FDOSM process, the optimal solution is com-
pared to the alternative values (remaining SSVEP-based BCI
applications) based on the criterion, with weights implicitly
assigned to the assessment criteria. Subjectively, the signifi-
cance of the differences between the ideal solution and the
alternatives can be evaluated, as shown in

OPlang = ~vij ⊗ vij
À ��j ∈ J
À Á

: i = 1:2:3j ⋯ ::mÞÈ É
: ð11Þ

A panel of three experts in data mining with the SSVEP-
based BCI should be asked in this stage for more than five
years of experience in this field.

8.3.1. Data Processing Unit. The output of the transforma-
tion unit is referred to as the opinion matrix [109]. The final
block of the FDOSM process involves converting the opin-
ion matrix into a fuzzy opinion decision matrix using trian-
gular fuzzy numbers (TFNs). A direct aggregation operator,
such as the arithmetic mean, is then applied. Table 6 shows
the transformation of linguistic terms into TFNs after com-
paring the ideal solution with other values in the decision
matrix.

Step 1. Once the opinion matrix is created in the FDOSM
process, a fuzzification process is used to convert it to the
fuzzy opinion decision matrix using triangular fuzzy num-
bers (TFNs). This is done by replacing the opinion terms
with TFNs, which can be defined by their membership func-
tion as follows:

μA xð Þ =

0 if x < a,
x − a
b − a

if a ≤ x ≤ b,
c − x
c − b

if b ≤ x ≤ c,

0 if x > c,

8>>>>>>><
>>>>>>>:

ð12Þ

where a ≤ b ≤ c.

Remark 2. ~x = ða1, b1, c1Þ and ~y = ða2, b2, c2Þ are two non-
negative TFNs, and α ∈ℝ+. The arithmetic operations are
defined according to the extension principle as follows:

(1) ~x + ~y = ða1 + a2, b1 + b2, c1 + c2Þ
(2) ~x − ~y = ða1 − c2, b1 − b2, c1 − a2Þ
(3) α~x = ða a1, α b1, α c1Þ
(4) ~x−1 ≅ ð1/c1, 1/b1, 1/a1Þ
(5) ~x × ~y ≅ ða1a2, b1b2, c1c2Þ
(6) ~x/~y ≅ ða1/c2, b1/b2, c1/a2Þ

Step 2. The fuzzy opinion decision matrix is subject to direct
aggregation using an aggregation operator, such as the

a b c 

1

0

𝜇 A(x)

Figure 12: Membership of TFNs.

Table 4: Numerical terms and their equivalent TFNs.

Numerical scoring scale TFNs

1 (0.00, 0.10, 0.30)

2 (0.10, 0.30, 0.50)

3 (0.30, 0.50, 0.75)

4 (0.50, 0.75, 0.90)

5 (0.75, 0.90, 1.00)

Table 2: Five-point Likert scale and equivalent numerical scale.

Linguistic terms Numerical scoring scale

Not important 1

Slight important 2

Moderately important 3

Important 4

Very important 5

Table 3: EDM.

Criteria/experts C1 C2 … Cn

E1 Imp E1/C1ð Þ Imp E1/C2ð Þ … Imp E1/Cnð Þ
E2 Imp E2/C1ð Þ Imp E2/C2ð Þ … Imp E2/Cnð Þ
E3 Imp E3/C1ð Þ Imp E3/C2ð Þ … Imp E3/Cnð Þ
... … … … …

Em Imp En/C1ð Þ Imp En/C2ð Þ … Imp Em/Cnð Þ
Imp represents the importance level.
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arithmetic mean, as described in [125]. The aggregation pro-
cess can be completed using

Am xð Þ= 〠 af +am+a1ð Þ bf +bm+b1ð Þ cf +cm+c1ð Þð Þ/n: ð13Þ

Step 3. The centroid method can be utilized for the defuzzi-
fication process by applying the following equation:

Diff = a + b + cð Þ
3 : ð14Þ

The best-ranking order correlates to the lowest mean
score value.

8.3.2. External Aggregation. In external aggregation, fuzzy
opinion matrices from various DMs are individually proc-
essed based on the processes outlined in the processing unit.

Table 6: Linguistic terms and their equivalent TFNs.

Linguistic terms TFNs

No difference (0.00, 0.10, 0.30)

Slight difference (0.10, 0.30, 0.50)

Difference (0.30, 0.50, 0.75)

Big difference (0.50, 0.75, 0.90)

Huge difference (0.75, 0.90, 1.00)

St
ag

e o
ne

: d
at

a t
ra

ns
fo

rm
at

io
n

Opinion matrix (linguistic term opinion matrix)

Reference comparison between 
the ideal solution and other 
values in the same criterion

Minimum value

Maximum value

Critical value

Step 1 determine the ideal solution

Step 2 opinion score

St
ag

e t
w

o:
 d

at
a p

ro
ce

ss
in

g Transferring the opinion matrix into fuzzy opinion matrix using triangular membership-fuzzy type-1

Applied FDOSM to benchmark SSVEP-based BCIs 
applications 

Final rank

Figure 13: FDOSM stages [122].

Table 5: Fuzzy EDM ( gEDM) [117].

Experts
CriteriafC1 fC2 … fCn

E1
gImp E1/C1ð Þ

∑n
j=1

gImp E1/C1j
À Á gImp E1/C2ð Þ

∑n
j=1

gImp E1/C1j
À Á …

gImp E1/Cnð Þ
∑n

j=1
gImp E1/C1 j
À Á

E2
gImp E2/C1ð Þ

∑n
j=1

gImp E2/C2j
À Á gImp E2/C2ð Þ

∑n
j=1Imp E2/C2j

À Á …
gImp E2/Cnð Þ

∑n
j=1Imp E2/C2 j

À Á

E3
gImp E3/C1ð Þ

∑n
j=1

gImp E3/C3j
À Á gImp E3/C2ð Þ

∑n
j=1

gImp E3/C3j
À Á …

gImp E3/Cnð Þ
∑n

j=1
gImp E3/C3 j
À Á

E4
gImp E4/C1ð Þ

∑n
j=1

gImp E4/C4j
À Á gImp Em/C2ð Þ

∑n
j=1

gImp Em/C4j
À Á …

gImp E4/Cnð Þ
∑n

j=1
gImp E4/Cnj

À Á
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The outcomes of the decision matrices should then be aggre-
gated into the final group decision using the arithmetic
mean. In this instance, the expert opinions will be jointed
after determining the final ranking.

9. Conclusion

SSVEP-based BCI applications allow users to be in touch
with the real world through repeated visual stimulation.
The presentation of this study is oriented towards under-
standing the academic literature from various contextual
aspects by considering the research domain from the techni-
cal and scientific parts. In this organized review, the study
has stressed important facts about commonly used deep
learning techniques for data processing in SSVEP-based
BCIs such as RBM, RNN, LSTM, DNN, and CNN. Based
on the analysis done, the research portrays that the CNN
method has been applied more often in various domains,
although the others provide higher accuracy levels. The
advanced data acquisition, recording, and pattern recogni-
tion methods for deep learning in SSVEP-based BCI applica-
tions are discussed. Improvements to the deep learning
technique can enrich the SSVEP-based BCI applications in
many domains, streamline signal processing, allow addi-
tional targets, check loss of attention, and make allowances
for independent BCI operation. Several requirements can
help to ensure that deep learning technology in BCI applica-
tions based on SSVEP is trustworthy. These include thor-
ough testing and evaluation, transparent design and
decision-making processes, robust security and privacy mea-
sures, and ethical considerations. These requirements help to
ensure that these systems are accurate, reliable, effective, and
easy to use. By meeting these requirements, we can help to
ensure that deep learning technology in these applications
is safe, reliable, and trustworthy. The study outcome dramat-
ically impacts the community of disabled people since it
addresses the existing recommended solution to solve them
in the future in a well-designed manner. Overall, deep learn-
ing is considered an approach that can be deployed in
SSVEP-based BCI applications, which can aid disabled peo-
ple. Other researchers can benefit from this study as it pro-
vides a clear guideline for selecting the best techniques for
SSVEP-based BCI supported by scientific justification. Five
SSVEP-based BCI criteria have been defined in this study
that affects the development of SSVEP-based BCI applica-
tions: C1 = security, C2 = robot control, C3 = BCI frame-
work, C4 = drone Control, and C5 = BCI speller.
Accordingly, the selection process for the best SSVEP-
based BCI applications cannot be achieved based on a spe-
cific criterion. In order to make the robust selection,
researchers must be satisfied that the SSVEP-based BCI
application will perform well on real-world data based on
the relevant criteria (five predefined SSVEP-based BCI cri-
teria). SSVEP-based BCI applications are validated by apply-
ing accuracy measures to a validation dataset. However, real-
world data is frequently vastly different, and the evaluation
metric may not reflect the product’s intended purpose. In
addition to such measurements, inspecting selection and
their justifications is beneficial. Therefore, the five prede-

fined SSVEP-based BCI criteria should be considered simul-
taneously for choosing the optimal SSVEP-based BCI
application within other BCI fields. In these contexts, the
presented study developed a proposed solution to overcome
these issues and can be used as a trust framework for select-
ing SSVEP-based BCI applications for future neurology and
neuroscience research. The future study of using deep learn-
ing technology in SSVEP-based BCI applications can focus
on a number of areas. Some of the possible research direc-
tions include the following:

(i) Optimization and improvement of the current deep
learning models for SSVEP recognition: this could
involve the exploration of different deep learning
algorithms and architectures to achieve higher rec-
ognition accuracy and lower computational cost

(ii) Hybrid techniques: combining deep learning with
other signal processing techniques (such as filtering,
feature extraction, and classification methods) to
improve the overall performance of the BCI system

(iii) Real-time implementation: research could focus on
developing deep learning-based BCI systems that
can operate in real time without significant delay
or latency

(iv) Generalization: improving the ability of the deep
learning models to generalize to new subjects and
new SSVEP frequencies without the need for indi-
vidualized model training

(v) Integration with other modalities: research could
focus on integrating deep learning with other
modalities, such as EEG and fMRI, on enhancing
the information obtained from the BCI system and
improve its accuracy

(vi) Robotic rehabilitation applications: developing deep
learning-based BCI systems for use in robotic reha-
bilitation systems to improve the quality of life for
individuals with disabilities or injuries

These are just a few examples of the potential research
directions in this field. The goal of future studies will be to
further advance the state of the art in deep learning-based
SSVEP-BCI applications and to make these systems more
practical, efficient, and widely accessible.
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